JPS59200055A - Fuel injection device for compression firing engine - Google Patents

Fuel injection device for compression firing engine

Info

Publication number
JPS59200055A
JPS59200055A JP58071543A JP7154383A JPS59200055A JP S59200055 A JPS59200055 A JP S59200055A JP 58071543 A JP58071543 A JP 58071543A JP 7154383 A JP7154383 A JP 7154383A JP S59200055 A JPS59200055 A JP S59200055A
Authority
JP
Japan
Prior art keywords
fuel
pressure
valve
injection
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58071543A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanesaka
兼坂 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanesaka Gijutsu Kenkyusho KK
Original Assignee
Kanesaka Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanesaka Gijutsu Kenkyusho KK filed Critical Kanesaka Gijutsu Kenkyusho KK
Priority to JP58071543A priority Critical patent/JPS59200055A/en
Priority to GB08400736A priority patent/GB2134978B/en
Priority to US06/570,911 priority patent/US4598863A/en
Priority to FR8400729A priority patent/FR2539818B1/en
Priority to DE19843401658 priority patent/DE3401658A1/en
Publication of JPS59200055A publication Critical patent/JPS59200055A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps

Abstract

PURPOSE:To aim at lowering the injection rate of fuel in an initial stage of fuel injection, as well at lowering engine noise and at enhancing the reliability of the fuel injection device in order to restrain the generation of nitrogenoxide, and to reduce the minimum fuel injection amount, by providing a restrictor which restricts fuel stream counterflowing through a spill port. CONSTITUTION:Along with the progress of fuel injection, the pressure of fuel compressed in an accumulating chamber 12 continuously lowers so that an injection terminating control valve 13 is depressed by a spring 14 to open, and therefore, the fuel in the accumulating chamber 12 counter-flows into passages 3a, 4a through passages 4b, 3b. At this time a suction return valve 20 is in its closed condition so that fuel does not overflow from a spill port 18, and therefore, the pressure of the fuel passage 4a is naturally made equal to the pressure in the accumulating chamber 12, resulting in a needle valve 8 tending to close. Since a restrictor 3f is disposed in a part of the passage 3a between the passage 3b and the suction return valve 20, the needle valve 8 initiates to close in a short time by pressure waves of fuel counter-flowing from the passage 3b.

Description

【発明の詳細な説明】 本発明は圧縮着火エンジン(以下「ディーゼルエンジン
」と云う)の蓄圧室式燃料噴射装置の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of an accumulator type fuel injection device for a compression ignition engine (hereinafter referred to as a "diesel engine").

蓄圧室式燃料噴射装置は燃料噴射期間を短縮し。Accumulator type fuel injection system shortens the fuel injection period.

噴射率を高めるためエンジンの熱効率が向上する反面そ
の特性上噴射開始直後の噴射率が高くなり。
Although increasing the injection rate improves the thermal efficiency of the engine, due to its characteristics, the injection rate immediately after the start of injection increases.

燃料噴射量を少なく制御することが困難で小型エンジン
に適用し難く、又燃焼圧力を急上昇させ。
It is difficult to control the small amount of fuel injection, making it difficult to apply to small engines, and it also causes the combustion pressure to rise rapidly.

燃焼圧力も高くなる。Combustion pressure also increases.

このことはエンジンの信頼性を損うばかりでなく、燃焼
騒音を増大させ、排気中の酸化窒素をも増大させる。
This not only impairs engine reliability, but also increases combustion noise and nitrogen oxides in the exhaust.

噴射率をさらに高める目的で単に燃料噴射圧力を高める
と燃料噴射装置の高圧燃料通路は燃料の急激にして且つ
高い圧力振幅によってキャビテーション エロージョン
を発生し、噴射装置を破壊するおそれがある。
If the fuel injection pressure is simply increased for the purpose of further increasing the injection rate, cavitation erosion may occur in the high-pressure fuel passage of the fuel injection device due to the sudden and high pressure amplitude of the fuel, which may destroy the injection device.

この解決手段として本発明者は先に特願昭58−670
5号により針弁の大気圧側に連通ずる燃料通路と蓄圧室
との間の燃料通路に噴射終り制御弁を設置して針弁の閉
弁時、これを閉ちる方向に圧力を加え、閉弁速度と噴射
期間を従来の蓄圧室式燃料噴射装置におけるものより著
しく短縮させた発明を行った。
As a means of solving this problem, the present inventor previously applied for a patent application filed in 1986-670.
According to No. 5, an injection end control valve is installed in the fuel passage between the fuel passage communicating with the atmospheric pressure side of the needle valve and the pressure accumulation chamber, and when the needle valve is closed, pressure is applied in the direction to close it. We have developed an invention that significantly shortens the valve speed and injection period compared to conventional accumulator fuel injection systems.

本発明は上記発明に加え、針弁の開弁時高圧燃料通路内
をスピル ボートを経て逆流する燃料流を絞る絞りを噴
射終り制御弁よりの通路と上記高圧燃料通路と合流する
点より燃料タンク側に設けることにより、噴射初期の燃
料噴射率を低下させ。
In addition to the above-mentioned invention, the present invention provides an arrangement in which, when the needle valve is opened, a throttle that throttles the flow of fuel flowing backward through the spill boat in the high-pressure fuel passage is connected to the fuel tank at the point where the passage from the control valve at the end of injection merges with the high-pressure fuel passage. By installing it on the side, the fuel injection rate at the initial stage of injection is reduced.

これによりエンジンの燃焼室内の圧力上昇率と最高圧力
とを抑制し、エンジンの騒音を低下させ。
This suppresses the pressure rise rate and maximum pressure in the engine's combustion chamber, reducing engine noise.

信頼性を向上させるとともに酸化窒素の発生を抑え、且
つ最少燃料噴射量を減少させることを目的とする。
The purpose is to improve reliability, suppress the generation of nitrogen oxide, and reduce the minimum fuel injection amount.

これを本発明の実施例について詳細に説明する。This will be explained in detail with regard to embodiments of the present invention.

第1図に示すように本発明に係る噴射装置は。As shown in FIG. 1, there is an injection device according to the present invention.

噴射ポンプ装置へと該装置の先端に連結したノズル組立
体旦とによって構成する。
A nozzle assembly is connected to an injection pump device at the tip of the device.

第1図の例はユニットインジェクター タイプを示し、
噴射ポンプ装置Aの外枠1の先端ねじにト ノズル組・立体Bの外枠を構成するナラに2の後端雌ね
じを螺着しである。そこで先ずこのノズル組立体Bの具
体的構成について説明する。ナツト2内には上方より制
御弁体3.上部スペーサ4.蓄圧筒5.下部スペーサ6
及び針弁体7が互いに密に強く圧縮された状態で収納さ
れている。
The example in Figure 1 shows a unit injector type,
A rear end female screw 2 is screwed onto the end screw of the outer frame 1 of the injection pump device A and a nut constituting the outer frame of the nozzle assembly/body B. First, the specific structure of this nozzle assembly B will be explained. A control valve body 3 is inserted into the nut 2 from above. Upper spacer 4. Pressure accumulator 5. Lower spacer 6
and the needle valve body 7 are housed tightly and strongly compressed together.

針弁体7の先端には噴射ロアaが一体的に穿設され、こ
の噴射口の開閉は弁体の弁座7bと針弁8のバルブフェ
ース8aによって制御さたる。
An injection lower a is integrally formed at the tip of the needle valve body 7, and the opening and closing of this injection port is controlled by the valve seat 7b of the valve body and the valve face 8a of the needle valve 8.

針弁8の大径部8bは針弁体7に上下動自在に嵌合し、
この大径部の上端すなわち大気圧側には 、)ばね受9
が固着して、このばね受9と上部スペーサ40間にばね
10を弾着させ、このばね力によって針弁8を下方に押
圧しノ【ルズフェース8aと弁座7bの着座を確実にし
ている。
The large diameter portion 8b of the needle valve 8 is fitted into the needle valve body 7 so as to be movable up and down.
At the upper end of this large diameter part, that is, on the atmospheric pressure side, there is a spring holder 9.
The spring 10 is firmly attached between the spring receiver 9 and the upper spacer 40, and the spring force presses the needle valve 8 downward to ensure that the nozzle face 8a and the valve seat 7b are seated.

針弁体7内には燃料の通路7cが設けられ、この通路は
針弁小径部8cの外周に設けた空間11に連通している
A fuel passage 7c is provided within the needle valve body 7, and this passage communicates with a space 11 provided on the outer periphery of the needle valve small diameter portion 8c.

前記下部スペーサ6内にも燃料の通路6aが穿設してあ
り、この通路の上端は蓄圧筒5内の蓄圧室12と連通し
、下端は前記針弁体7内の通路7Cに連通している。
A fuel passage 6a is also formed in the lower spacer 6, and the upper end of this passage communicates with the pressure accumulating chamber 12 in the pressure accumulating cylinder 5, and the lower end communicates with the passage 7C in the needle valve body 7. There is.

前記上部スペーサ4には、針弁8の大気圧側に連通ずる
燃料通路4aと蓄圧室12とを連通する通路4b、4c
が形成しである。
The upper spacer 4 has passages 4b and 4c that communicate the fuel passage 4a that communicates with the atmospheric pressure side of the needle valve 8 and the pressure accumulation chamber 12.
is formed.

上記燃料通路4aは、制御弁体6の燃料通路6a及びこ
の通路3aより分岐している燃料通路3b、3cに連通
し、さらに通路3aは外枠1の燃料通路1aに連通する
とともに2本発明装置においては、上記燃料通路6aに
は第6図に詳細を示すように絞り3fを形成している。
The fuel passage 4a communicates with a fuel passage 6a of the control valve body 6 and fuel passages 3b and 3c branching from this passage 3a, and furthermore, the passage 3a communicates with the fuel passage 1a of the outer frame 1. In the device, a throttle 3f is formed in the fuel passage 6a, as shown in detail in FIG.

尚燃料通路4a及び5 a + 5 ’gは針弁8の大
気圧側に連通するものである。
The fuel passages 4a and 5a+5'g communicate with the atmospheric pressure side of the needle valve 8.

16は噴射終り制御弁で、前記通路6bと前記燃料通路
4bとの間に設けられるが、その大径部isbは、制御
弁体6に上下動自在に嵌合し、第2図に示すようにこの
制御弁のバルブフェース13aは、外枠1内に挿置しで
ある圧縮ばね14によって押し下げられ、スペーサ4に
あけた通路4改 すが開口する凹所4#の底部に押圧されている。
Reference numeral 16 denotes an end-of-injection control valve, which is provided between the passage 6b and the fuel passage 4b, and its large diameter portion isb fits into the control valve body 6 so as to be movable up and down, as shown in FIG. The valve face 13a of this control valve is pushed down by a compression spring 14 inserted into the outer frame 1, and pressed against the bottom of a recess 4# that opens into a passage 4 formed in the spacer 4. .

このバルブフェース13aは噴射終り制御弁16が上昇
する時は、制御弁体3の弁座3dに着座し通路6bと通
路4b間の燃料の流通を遮断する。
When the control valve 16 rises at the end of injection, this valve face 13a seats on the valve seat 3d of the control valve body 3 and blocks the flow of fuel between the passage 6b and the passage 4b.

他方前記燃料通路3cと前記通路4cとの間には1通路
4cから通路3cへの燃料の逆流を遮断し、その逆方向
には燃料の流通可能な逆上弁16を制御弁体3内に取り
付は上部スペーサ4内に収納した圧縮ばね15により通
常は通路3cを閉じている。17は燃料戻し通路で制御
弁体3と噴射終り制御弁16の摺動面からの燃料の漏れ
を、燃料タンクに戻すものである。
On the other hand, between the fuel passage 3c and the passage 4c, a reverse flow valve 16 is provided in the control valve body 3 to block the backflow of fuel from the passage 4c to the passage 3c, and to allow fuel to flow in the opposite direction. When installing, the passage 3c is normally closed by a compression spring 15 housed within the upper spacer 4. A fuel return passage 17 returns fuel leaking from the sliding surfaces of the control valve body 3 and the end-of-injection control valve 16 to the fuel tank.

18はバレル23に設けたスピルボートで2本発明にお
いては、該スピルポート18に、第4図に詳細示すよう
に絞り18aを形成し、スピルポ−ト開ロ時高圧燃料通
路4 a + 5 a + 18 +及び後記チキンバ
ー23内の圧力の急激な低下を防止する・・ 次に本体1内の噴射ポンプ装置Aについて説明すると、
吸戻弁体19内に遊合しつつ、漏れ止めをする公知の吸
戻し弁2oは、圧縮ばね21によって逆止弁としての機
能を持ち、ストッパ22はその弁揚程を規制している。
Reference numeral 18 designates a spill boat provided in the barrel 23. In the present invention, a throttle 18a is formed in the spill port 18 as shown in detail in FIG. 18 + and to prevent a sudden drop in pressure within the chicken bar 23 described later...Next, the injection pump device A inside the main body 1 will be explained.
A known suction-back valve 2o that fits loosely within the suction-back valve body 19 and prevents leakage has a function as a check valve by means of a compression spring 21, and a stopper 22 regulates the lift of the valve.

バレル26内に摺動自在に挿置しであるプランジャ24
は、正リードで公知のボッシュ式と同じ構造である。
A plunger 24 slidably inserted within the barrel 26
has the same structure as the well-known Bosch type with a positive lead.

バレル26には燃料人口25と燃料通路26との間に、
ばね27によって逆止作用を行っている逆上弁28が設
けられており5通路26から入口25への燃料の逆流を
阻止している。
In the barrel 26, between the fuel port 25 and the fuel passage 26,
A check valve 28 is provided which is operated by a spring 27 and prevents the fuel from flowing back from the five passages 26 to the inlet 25.

尚、燃料人口25と燃料戻し口29との間や。In addition, between the fuel population 25 and the fuel return port 29.

燃料戻し口と大気との間は0リングなどにより適宜漏れ
止めが必要である。
It is necessary to properly prevent leakage between the fuel return port and the atmosphere using an O-ring or the like.

なおバレル26及び吸戻し弁体19は、ねじ50により
本体1に取り付けられている。
Note that the barrel 26 and the suction-back valve body 19 are attached to the main body 1 with screws 50.

ボッシュ式と全く同じ構造のプランジャ24は外枠1の
上端の中空部内に上下動自在に嵌合しているクロスヘッ
ド34により回転自在な状態で結合され駆動され、かつ
その内部に通路24aを有し、正リードの切欠面24b
はスピルポート17と連通したとき送油を終了し、それ
以降のプランジャの揚程による排油量はスピルポートを
経て燃料戻し口29より排出される9 次に本発明の燃料噴射装置の作動を説明する。
The plunger 24, which has exactly the same structure as the Bosch type, is rotatably connected and driven by a crosshead 34 that is fitted into a hollow part at the upper end of the outer frame 1 so as to be able to move up and down, and has a passage 24a inside. and the notch surface 24b of the positive lead
The oil supply ends when the fuel injection device communicates with the spill port 17, and the amount of oil discharged due to the lifting height of the plunger thereafter passes through the spill port and is discharged from the fuel return port 29.9 Next, the operation of the fuel injection device of the present invention will be explained. do.

第1図において燃料は計量送油ポンプ(例えばカミンズ
社のPTポンプ又は電子制御された計量送油ポンプ)か
ら1回に噴射すべき量の燃料が、燃料人口25.逆止弁
28及び通路26を経て、バレル26内のチャンバー2
3aに供給される。
In FIG. 1, the amount of fuel to be injected at one time from a metering oil pump (for example, a Cummins PT pump or an electronically controlled metering oil pump) is 25. Chamber 2 in barrel 26 via check valve 28 and passage 26
3a.

プランジャ24の上死点からの下降に従い、高圧油によ
り逆止弁28は閉じ、チキンバー25a内の圧力は上昇
し、吸戻し弁20を押し下げ、燃   )料通路1a、
3a、4aを介して針弁8の大気圧側に圧送される。
As the plunger 24 descends from the top dead center, the check valve 28 is closed by high pressure oil, the pressure inside the chicken bar 25a increases, and the suction return valve 20 is pushed down, causing the fuel passage 1a,
It is fed under pressure to the atmospheric pressure side of the needle valve 8 via 3a and 4a.

この時、噴射終り制御弁13は、ばね14により押し下
げられ、第2図のようにそのバルブフェース13aは制
御弁体3の弁座6dから離れ、開弁している。
At this time, the injection end control valve 13 is pushed down by the spring 14, and as shown in FIG. 2, its valve face 13a is separated from the valve seat 6d of the control valve body 3, and the valve is opened.

父9通路6aに圧送された燃料は1通路3b、噴射終り
制御弁16及び通路4bを経て、蓄圧室12内に圧送さ
れる。
The fuel fed under pressure to the first passage 6a passes through the first passage 3b, the end-of-injection control valve 16, and the passage 4b, and is then fed under pressure into the pressure accumulation chamber 12.

燃料油は公知の如く弾性流体であり、圧力上昇に比例し
て、その体積を減少し、蓄圧室12内に蓄えられる。
As is well known, fuel oil is an elastic fluid, and its volume decreases in proportion to the increase in pressure and is stored in the pressure accumulator chamber 12.

蓄圧室12内の圧力が設定圧力1例えばio。The pressure inside the pressure accumulator 12 is set to the set pressure 1, for example io.

O気圧に達すると、噴射終り制御弁16は、ばね14の
押し下げ力に抗して押し上げられ、そのため弁座3dと
バルブフェース13aとは接触して閉じ9通路6bと同
4bとの間は遮断される。
When the pressure reaches O atmospheric pressure, the injection end control valve 16 is pushed up against the downward force of the spring 14, so that the valve seat 3d and the valve face 13a are brought into contact and closed, blocking the connection between the passage 6b and the passage 4b. be done.

この時から逆止弁16が開弁し9通路3c及び同4cを
通った燃料は、更に高圧に圧縮され蓄圧室12内罠蓄え
られ、この圧力は燃料通路6a及び7cを経て針弁8の
下部8dに加わる。
From this time on, the check valve 16 opens and the fuel that has passed through the nine passages 3c and 4c is further compressed to a high pressure and stored in the pressure storage chamber 12, and this pressure passes through the fuel passages 6a and 7c to the needle valve 8. It is added to the lower part 8d.

通路4a内も蓄圧室12内と同様に高圧となり呑 この圧力は針弁大径部8婬の上側(大気圧側)に加わる
。この状態では、ばね10の力+燃料圧力X針弁大径部
8bの面積−針弁8を押し下げる力となり、圧力×(針
弁大径部8bの面積−針弁小径部8cの面積)=針弁8
を押し上げる力に勝るため、パルシフエース8aは強く
弁座7bに押しつげられ、燃料が噴射ロアaから渥れる
ことはない。
The pressure inside the passage 4a is also high as in the pressure storage chamber 12, and the pressure of the intake is applied to the upper side (atmospheric pressure side) of the large diameter portion 8 of the needle valve. In this state, the force of the spring 10 + fuel pressure Needle valve 8
In order to overcome the force pushing up the valve seat 7b, the pulsiface 8a is strongly pressed against the valve seat 7b, and the fuel is not splashed out from the injection lower a.

エンジンの回転とともに、プランジャ24はさらに押し
下げられ、最大燃料噴射量のとき噴射系の高圧側の最高
圧力は例えば2000気圧に達すルカ、該圧力を最高設
定圧力とすれば、このときプランジャ24の切欠面24
bによって通路24aとスピルポート18との間が通ず
る。
As the engine rotates, the plunger 24 is further pushed down, and when the maximum fuel injection amount is reached, the maximum pressure on the high pressure side of the injection system reaches, for example, 2000 atmospheres. Surface 24
b communicates between the passage 24a and the spill port 18.

これによりチャンバー23a内の高圧側の燃料油は通路
24aを通り、スピルポート18を経て燃料戻し口29
に溢流する。
As a result, the fuel oil on the high pressure side in the chamber 23a passes through the passage 24a, passes through the spill port 18, and then passes through the fuel return port 29.
overflows into.

し゛かし、スピルポート18には絞り18aが附設しで
あるので、チャンバー23a内の圧力はゆるやかに低下
する。
However, since the spill port 18 is provided with the throttle 18a, the pressure inside the chamber 23a is gradually reduced.

したがって、吸戻し弁2oはゆるやかに閉じ。Therefore, the suction-back valve 2o closes slowly.

その吸戻し作用によって通路1 a +同3a及び同4
a内の圧力をゆるやかに下げ、針弁8の大径部8bを押
し下げる大気圧側の圧力も徐々に消失する。
Due to its suction and return action, passages 1a + 3a and 4
The pressure inside a is gradually lowered, and the atmospheric pressure that pushes down the large diameter portion 8b of the needle valve 8 also gradually disappears.

一方蓄圧室12内の高圧の燃料は逆上弁16により、又
噴射路り制御弁13は圧力が例えば100.0気圧以上
なので押し上げられたまま、バルブフェース13aと弁
座3dは閉じ続け、燃料は通路1a、同3a及び同4a
内に向って逆流することはない。
On the other hand, the high-pressure fuel in the pressure accumulation chamber 12 is pushed up by the reverse valve 16, and the injection path control valve 13 is pushed up because the pressure is, for example, 100.0 atmospheres or more, and the valve face 13a and valve seat 3d continue to close, and the fuel are passages 1a, 3a and 4a.
It does not flow back inward.

上記により針弁8の大気圧側の圧力が成る値まで減少す
ると、(針弁大径部8bの面積−針弁小径部8cの面積
)×圧力の力は、ばね10の力に抗して針弁8をゆるや
かに押し上げ、バルブフェース8aと弁座7bとの間は
開き、ここを通って燃料は噴射ロアaよりエンジン燃焼
室内へ噴射される。燃料噴射の開始直後は針弁8の揚程
は小さく、シたがってバルブフェース8 ’aと弁座7
aとの間の面積は絞られているので1時間当りの燃料噴
射量は小さい。
When the pressure on the atmospheric pressure side of the needle valve 8 decreases to a value as described above, the force of (area of the large diameter portion 8b of the needle valve - area of the small diameter portion 8c of the needle valve) x pressure is applied against the force of the spring 10. By gently pushing up the needle valve 8, the space between the valve face 8a and the valve seat 7b is opened, and fuel is injected into the engine combustion chamber from the injection lower a through this space. Immediately after the start of fuel injection, the lift of the needle valve 8 is small, so the valve face 8'a and valve seat 7
Since the area between a and a is narrowed, the amount of fuel injected per hour is small.

時間の進行とともに、チャンバー23a及び通路1a+
同5 a +及び同4a内の燃料は、絞り18aを通り
燃料タンク側圧溢流し、針弁8の大気圧側の圧力を低下
させ、それにしたがって、針弁8の揚程は徐々に増加し
、噴射率(時間当りの燃料、噴射量)を増大させる。
As time progresses, the chamber 23a and the passage 1a+
The fuel in 5a+ and 4a passes through the throttle 18a and overflows the pressure on the fuel tank side, lowering the pressure on the atmospheric pressure side of the needle valve 8. Accordingly, the lift of the needle valve 8 gradually increases, and the injection Increase the rate (fuel per hour, injection amount).

燃料噴射の進行とともに、蓄圧室12内に圧縮された燃
料の圧力は低下し続け、遂に例えば1000気圧にまで
低下すると、ばね14により噴射路り制御弁16は押し
下げられ、第2図のように開弁し、蓄圧室12内の燃料
は通路4b及び同3bを通って通路5a及び同4a内に
逆流する。
As the fuel injection progresses, the pressure of the fuel compressed in the pressure storage chamber 12 continues to decrease, and when it finally drops to, for example, 1000 atmospheres, the injection path control valve 16 is pushed down by the spring 14, and as shown in FIG. The valve is opened, and the fuel in the pressure accumulation chamber 12 flows back into the passages 5a and 4a through the passages 4b and 3b.

このとき、前述の如く吸戻し弁20は閉じた状態にあり
、スピルポート18から燃料は溢流せず燃料通路4aも
当然に蓄圧室12内と同圧力となり、針弁大径部8bの
上部の大気圧側に、この圧力が加わり針弁8は閉じよう
とする。本発明では通−■ 路3bと吸戻し弁20との間の通路3aの一部には、前
述の如く絞り3fが設けられているので。
At this time, as described above, the suction valve 20 is in a closed state, the fuel does not overflow from the spill port 18, and the pressure in the fuel passage 4a is naturally the same as that in the pressure accumulator 12, and the upper part of the large diameter portion 8b of the needle valve This pressure is applied to the atmospheric pressure side and the needle valve 8 attempts to close. In the present invention, a part of the passage 3a between the passage 3b and the suction-back valve 20 is provided with the throttle 3f as described above.

通路3bから逆流する燃料の圧力波は、絞93f前で反
射し、急速に針弁8の大気圧側に達し、この圧力波の作
用によって短時間に針弁8を閉じ始める。
The pressure wave of the fuel flowing backward from the passage 3b is reflected in front of the throttle 93f, rapidly reaches the atmospheric pressure side of the needle valve 8, and the needle valve 8 begins to close in a short time due to the action of this pressure wave.

因みに絞り18aを有さない従来の蓄圧室式燃料噴射装
置では、燃料通路4a内の圧力が消失したとき、ばね1
0の押し下げ力よりも、蓄圧室内圧力×(針弁大径部の
面積−針弁小径部の面積)が大きい場合に、針弁8は開
弁するが、これと同時にバルブフェース8aにも圧力が
加わるので。
Incidentally, in a conventional pressure accumulator type fuel injection device that does not have the throttle 18a, when the pressure in the fuel passage 4a disappears, the spring 1
When the pressure in the pressure accumulator x (area of the large diameter portion of the needle valve - area of the small diameter portion of the needle valve) is greater than the pressing force of 0, the needle valve 8 opens, but at the same time, pressure is also applied to the valve face 8a. Because it will be added.

受圧面積の増大により急速に針弁8を押し上げ全開させ
る。
Due to the increase in the pressure receiving area, the needle valve 8 is rapidly pushed up and fully opened.

また絞り3fを有さない噴射路り制御弁15を有する蓄
圧室式燃料噴射装置では、噴射路り制御弁160開弁じ
た後に、低圧となった通路3a及び同4a内の燃料のほ
かに9通路1a内の燃料も圧縮した後でなげれば、針弁
8の大気圧側の圧力は上昇せず、従って絞り3fを有す
る場合に比して通路1aの長さ及び容積に応じて針弁8
の大気圧側の圧力上昇率は低下し、その低下分だげ閉弁
速度は低下する。
In addition, in a pressure accumulator type fuel injection device having an injection path control valve 15 without a throttle 3f, after the injection path control valve 160 is opened, in addition to the fuel in the low pressure passages 3a and 4a, 9 If the fuel in the passage 1a is also compressed and then released, the pressure on the atmospheric pressure side of the needle valve 8 will not increase. 8
The rate of pressure increase on the atmospheric pressure side of the valve decreases, and the valve closing speed decreases by the amount of the decrease.

ボッシュ式等のユニットインジェクタ式でない燃料噴射
装置では1通路1aは長い噴射管におきかえられ、これ
の容積及び長さにより閉弁速度はさらに低下させられる
In a fuel injection device other than a unit injector type, such as a Bosch type, one passage 1a is replaced with a long injection pipe, and the valve closing speed is further reduced due to the volume and length of the injection pipe.

以上の現象を第6図によって更に詳細に説明すると、実
線0−1は蓄圧室12内の蓄圧中の圧力上昇を示す。
To explain the above phenomenon in more detail with reference to FIG. 6, the solid line 0-1 shows the pressure increase during pressure accumulation in the pressure accumulation chamber 12.

蓄圧室式燃料噴射装置ではその構造上プランジャを急加
速する必要がないので、蓄圧中の燃料の流速が低(9本
発明における絞り3fの抵抗も蓄圧中は低い。
In the pressure accumulation chamber type fuel injection device, there is no need to rapidly accelerate the plunger due to its structure, so the flow velocity of the fuel during pressure accumulation is low (9) The resistance of the throttle 3f in the present invention is also low during pressure accumulation.

点1に達するとプランジャ24の切欠面24bとスピル
 ポート18との間の流路は開き9通路4a、同3a、
同1a、及びチャンバー25a内の高圧の燃料はスピル
 ポート18より溢流する。
When point 1 is reached, the flow path between the cutout surface 24b of the plunger 24 and the spill port 18 opens, and the flow path 9 opens.
The high pressure fuel in the chamber 1a and the chamber 25a overflows from the spill port 18.

このとき、絞り5f及び同18aを有しない構造では通
路4a内の圧力は急速に低下し、針弁8の大気圧側の圧
力は消失し、上述の理由により針弁8の揚程は急激に閉
弁状態の1aから1xにまで1点鎖線の如く増大し、開
弁する。
At this time, in the structure without the throttle 5f and the throttle 18a, the pressure in the passage 4a decreases rapidly, the pressure on the atmospheric pressure side of the needle valve 8 disappears, and the lift of the needle valve 8 rapidly closes due to the above-mentioned reason. The value increases from the valve state 1a to 1x as shown by the one-dot chain line, and the valve opens.

それに伴ない噴射率は0である1Cから急激に1yにま
で1点鎖線の如く増大し、それ以後は蓄圧室内圧力が実
線1−2をたどって低下し続け。
Accompanying this, the injection rate suddenly increases from 0 1C to 1y as shown by the dashed line, and thereafter the pressure in the accumulator continues to decrease following the solid line 1-2.

それにしたがって噴射率も1y−2zの線をたどって低
下し続ける。
Accordingly, the injection rate also continues to decrease following the line 1y-2z.

このような、噴射初期の高噴射率はエンジンの燃焼室内
において急速に多量の燃料を燃焼させ。
Such a high injection rate at the beginning of injection causes a large amount of fuel to be rapidly burned in the combustion chamber of the engine.

急激な圧力上昇となり、前述の如く高い騒音を発生し、
且つ高い燃焼圧力となり、エンジン各部に高応力を発生
し、燃焼温度も高まり、酸化窒素を大量に発生させる。
There was a sudden pressure rise, and as mentioned above, high noise was generated.
Moreover, the combustion pressure becomes high, generating high stress in various parts of the engine, the combustion temperature also increases, and a large amount of nitrogen oxide is generated.

本発明では絞り3f及び同18aを設けたことにより流
れの抵抗をもたらし、これにより針弁8の大気圧側の圧
力は徐々に低下させることカーでき。
In the present invention, the provision of the throttles 3f and 18a provides flow resistance, which allows the pressure on the atmospheric pressure side of the needle valve 8 to be gradually reduced.

それにしたがって針弁8の揚程も第6図実線1a−2a
に示す如く徐々に増大する。
Accordingly, the lifting height of the needle valve 8 is also determined by the solid line 1a-2a in Figure 6.
It gradually increases as shown in .

針弁8の揚程が低い場合は噴射ロアaの面積よりもバル
ズ フェース8aと弁座7bとの間の面積は小さく、こ
こが絞りとなって噴射率は当然に低くなる。
When the lift of the needle valve 8 is low, the area between the valve face 8a and the valve seat 7b is smaller than the area of the injection lower a, which acts as a throttle and naturally lowers the injection rate.

したがって−噴射率は実線1cm2cに示す如(噴射初
期には低く、針弁8の揚程の増加とともに高まる。
Therefore, the injection rate is low at the beginning of injection and increases as the lift of the needle valve 8 increases, as shown by the solid line 1 cm2c.

このような、噴射初期の低噴射率の燃料噴射は。This kind of fuel injection with a low injection rate at the beginning of injection.

エンジンの燃焼室内において少量の燃料を先づ着火させ
9着火後は噴射率に応じて燃焼させることカを可能で、
圧力上昇率の低下による低い騒音と。
It is possible to first ignite a small amount of fuel in the combustion chamber of the engine and then burn it according to the injection rate after ignition.
With lower noise due to lower pressure rise rate.

低い燃焼圧力によるエンジン各部の応力の低下と。Lower combustion pressure reduces stress in various parts of the engine.

更に燃焼温度の低下による酸化窒素の発生の抑制をする
ことができる。
Furthermore, the generation of nitrogen oxides can be suppressed by lowering the combustion temperature.

燃料噴射の後期に蓄圧室12内圧力が点2の圧力にまで
低下すると、上述の如く噴射終り制御弁13は開弁する
When the internal pressure of the pressure accumulation chamber 12 decreases to the pressure at point 2 in the latter half of fuel injection, the end-of-injection control valve 13 opens as described above.

絞り6fのない構造では、噴射終り制御弁16を通じて
蓄圧室12より逆流した燃料によって。
In a structure without a throttle 6f, this is caused by fuel flowing backward from the pressure accumulation chamber 12 through the end-of-injection control valve 16.

通路4a+同3a及び同1a内の燃料を圧縮して圧力を
高め、この圧力によって針弁8の大気圧側   、)を
押し、閉弁するので、絞り3fを有する本発明の通路4
a及び同6aのみの燃料を圧縮する構造に比し、閉弁速
度は遅く、実線2a−3xをたどつて針弁8は閉弁し続
けこの間の噴射率は1点鎖線2z −′5zにて示され
、針弁8は点3xにて閉弁し。
The fuel in the passages 4a + 3a and 1a is compressed to increase the pressure, and this pressure pushes the atmospheric pressure side of the needle valve 8 and closes it, so the passage 4 of the present invention having the throttle 3f
Compared to the structure that compresses only fuel a and 6a, the valve closing speed is slow, and the needle valve 8 continues to close following the solid line 2a-3x, during which the injection rate follows the dashed line 2z-'5z. The needle valve 8 is closed at point 3x.

点6zにて噴射を終了する。Injection ends at point 6z.

一方、絞り3fを有する本発明の構造では、上述の如く
閉弁速度は高く、実線2a−6をたどって急速に閉弁し
つづけ、この間の噴射率は実線2cm3cによって表は
される。
On the other hand, in the structure of the present invention having the throttle 3f, the valve closing speed is high as described above, and the valve continues to close rapidly following the solid line 2a-6, and the injection rate during this period is represented by the solid line 2cm3c.

上述の如く1本発明によって閉弁速度を高め。As mentioned above, the present invention increases the valve closing speed.

燃料噴射期間を短縮し、熱効率の高い燃焼を可能とした
のである。
This shortened the fuel injection period and enabled combustion with high thermal efficiency.

次に本発明の蓄圧室式燃料噴射装置が低出力時の燃料噴
射量制御を容易にした点を第6図に基いて詳述する〇 第6図によって説明すると、絞り3f及び18aを有し
ない従来構造では、低出力時においては蓄圧室内圧力は
点線0°−1°に示す如く噴射量に応じて低く蓄圧され
る。
Next, the point that the pressure accumulator type fuel injection device of the present invention facilitates fuel injection amount control at low output will be explained in detail based on FIG. In the conventional structure, when the output is low, the pressure in the pressure accumulating chamber is accumulated low according to the injection amount, as shown by the dotted line 0°-1°.

プランジャー24の切欠面24bによって不ピル ポー
ト18を開くと、前述の如く針弁8は1点鎖線1a−1
xをたどり急激に開弁し、蓄圧室内圧力が点線1゛−2
“をたどって低下し9点21に達すると噴射終り制御弁
13は開弁し、その結果、針弁8は1点鎖線2’x−5
’xをたどって閉弁しつづけ点3’ xにて閉弁する。
When the non-pilling port 18 is opened by the cutout surface 24b of the plunger 24, the needle valve 8 is moved along the dashed-dotted line 1a-1 as described above.
The valve suddenly opens following the line x, and the pressure in the pressure accumulator reaches the dotted line 1゛-2.
When it reaches the 9 point 21, the injection end control valve 13 opens, and as a result, the needle valve 8 moves to the dotted line 2'
'Continue to close the valve by following x' Point 3' Close the valve at x.

この間の噴射率は上述の理由により1点鎖線1cm1’
 7−2’ y−6°2をたどり、1点鎖線1C−I’
y−2’y−3’z−1cに囲まれた面積力tこの間の
燃料噴射量となる。
The injection rate during this period is 1cm1' as shown by the dashed-dotted line due to the above-mentioned reason.
7-2' Follow y-6°2, dashed line 1C-I'
The area force t surrounded by y-2'y-3'z-1c is the fuel injection amount during this period.

一方、絞り3f及び同18aを有する本発明の構造では
前述の如く9点線1’ −2’に示される蓄圧室12内
圧力の変化により、針弁8の揚程は線1a−2’a−3
’に示され、この間の噴射率は点線1 c−2’ c−
′5’ dとなる。
On the other hand, in the structure of the present invention having the throttle 3f and the throttle 18a, the lifting height of the needle valve 8 is changed along the line 1a-2'a-3 due to the change in the pressure inside the pressure storage chamber 12 shown by the nine-dot line 1'-2' as described above.
', and the injection rate during this period is indicated by the dotted line 1 c-2' c-
'5' d.

この間の燃料噴射量は点線1cm2’c−3’d−1c
に囲まれた面積となる。
The fuel injection amount during this period is the dotted line 1cm2'c-3'd-1c
The area surrounded by

なお、11yが1yに比し、且つ点線1cm2’Cが線
i c−2c Ic比し低い理由は噴射始めの蓄圧室内
圧力が11は1よりも低いからである。
The reason why 11y is lower than 1y and the dotted line 1cm2'C is lower than the line ic-2cIc is that the pressure inside the pressure accumulator at the beginning of injection is lower than 1.

面積1 c−1’ y−2’ y−3’z−1cと面積
1cm2’ c−3’ d−1cとを比較すれば明らか
に後者の本発明の方式が最小噴射量を低下させうろこと
が理解されよう。
Comparing the area 1 c-1'y-2'y-3' z-1c and the area 1 cm2'c-3' d-1c, it is clear that the latter method of the present invention reduces the minimum injection amount. will be understood.

なお、上記スピルポート18の絞り18aはスピル ボ
ート18に設置する代りに、プランジャ240通路24
aの面積を小さくして、ここに設置してもその効果は全
く変らない。
Note that the throttle 18a of the spill port 18 is installed in the plunger 240 passage 24 instead of being installed in the spill boat 18.
Even if you reduce the area of a and install it here, the effect will not change at all.

即ち、第5図は第1図のバレル23.プランジャ24及
びスピル ポート18付近を示している。
That is, FIG. 5 shows the barrel 23. of FIG. The vicinity of plunger 24 and spill port 18 is shown.

第1図と異なる点はプランジャ24に端面24dを有す
る絞り24cが付設されたことである。
The difference from FIG. 1 is that the plunger 24 is provided with a diaphragm 24c having an end surface 24d.

又第5図ではプランジャ24は逆リードとなっているが
1本発明の作用及び効果には何の影響もなし1 。
In addition, although the plunger 24 has a reverse lead in FIG. 5, this has no effect on the operation and effect of the present invention.

次に第5図の実施例の作動を説明するとこれ)ま第1図
の如(スピル ボート18を絞るのではな(、プランジ
ャ24の切欠面24bに絞り24cを付設した構造であ
るので、蓄圧室12えの送油後、プランジャ24の切欠
面24bと。
Next, to explain the operation of the embodiment shown in FIG. 5, as shown in FIG. After the oil is supplied to the chamber 12, the notch surface 24b of the plunger 24.

スピル ボート18との流路を開(と、チャンバー26
a内の高圧の燃料を溢流し始めるが、第5図に示す如く
、絞り24cとスピル ボート18との間の隙間は小さ
く、ここを通過し溢流する燃料の抵抗となっている。
Open the flow path with the spill boat 18 (and open the flow path with the spill boat 18)
The high-pressure fuel in the tank a begins to overflow, but as shown in FIG. 5, the gap between the throttle 24c and the spill boat 18 is small and acts as a resistance to the fuel passing through and overflowing.

第7図により更に第5図の実施例の作用と効果を詳述す
ると、実線0−1は噴射量の多い場合の蓄圧室12内の
圧力上昇を示す。
The operation and effect of the embodiment shown in FIG. 5 will be further explained in detail with reference to FIG. 7. A solid line 0-1 shows the pressure increase in the pressure accumulator 12 when the injection amount is large.

点1に達すると切欠面24bとスピル ボート18との
間の流路が開かれ、これにより上述の如(、第1図の針
弁8を開弁し始める。
When point 1 is reached, the flow path between the cutout surface 24b and the spill boat 18 is opened, and the needle valve 8 of FIG. 1 begins to open as described above.

しかし、第5図に示す如く、切欠面24bとスピル ボ
ート18との間には絞り24cがあり。
However, as shown in FIG. 5, there is a throttle 24c between the notch surface 24b and the spill boat 18.

流路面積は狭いので抵抗となり、従って針弁の開弁速度
は遅く、実線1a−1bをたどり、噴射率は実線1 x
 −17をたどる。
Since the flow path area is narrow, it becomes a resistance, so the opening speed of the needle valve is slow, following the solid line 1a-1b, and the injection rate is the solid line 1 x
Follow -17.

さらにプランジャ24が下降すると端面24dとスピル
 ポート18間の流路を開き、急速に流路面積を増大し
針弁8の揚程は急速に増大し、最 ・:。
Further, when the plunger 24 descends, it opens the flow path between the end face 24d and the spill port 18, rapidly increasing the flow path area, and the lifting height of the needle valve 8 increases rapidly, reaching a maximum of .

大揚程となり、蓄圧室内圧力が点2にまで低下すると、
上述の理由により噴射終り制御弁16は開き、針弁8の
揚程は点2aから急速に閉ぢ始め。
When the head becomes large and the pressure in the accumulator decreases to point 2,
Due to the above-mentioned reason, the end-of-injection control valve 16 opens, and the lift of the needle valve 8 begins to close rapidly from point 2a.

点2bで閉ぢる。Close at point 2b.

この間の噴射率は点1yから点1zに向って実線の如く
急激に増大し、以後点2xに向って蓄圧室内圧力の低下
に伴って低下しつづけ9点2yにて噴射を終了する。
During this period, the injection rate increases rapidly from point 1y to point 1z, as shown by the solid line, and thereafter continues to decrease toward point 2x as the pressure in the pressure accumulator decreases, and ends at point 9, 2y.

燃料噴射量が少ないとき7例えばエンジンのアイドル運
転時には、蓄圧室内圧力は点線01−1゜に示す如く上
昇し1点1′において第5図のプランジャ24の切欠面
24bとスピル ボート18との間の流路を開き、針弁
8は開弁し始める。
When the fuel injection amount is small7, for example, when the engine is running at idle, the pressure in the accumulator increases as shown by the dotted line 01-1°, and the pressure in the accumulator rises as shown by the dotted line 01-1°, and the pressure in the accumulator rises between the notch surface 24b of the plunger 24 and the spill boat 18 in FIG. The needle valve 8 begins to open.

第5図に示す如く、噴射量が少ない場合は、スピル ボ
ート18に面する絞り24cが長く、燃料のスピル ボ
ート18えの溢流は燃料噴射の全期間にわたって絞りつ
づけられる構造になっており、針弁の開弁速度は低く9
点線1a−2’aをたどり開弁する。
As shown in FIG. 5, when the injection amount is small, the throttle 24c facing the spill boat 18 is long, and the structure is such that the overflow of fuel into the spill boat 18 is continued to be throttled during the entire period of fuel injection. The opening speed of the needle valve is low9
Open the valve by following the dotted line 1a-2'a.

このとき、当然罠噴射率も低く点線1 x −2’xを
たどり噴射しつづける。
At this time, the trap injection rate is naturally low and the injection continues following the dotted line 1x-2'x.

したがって、蓄圧室内圧力の低下率も低く1点線1’ 
−2’をたどり1点2′の圧力にまで低下すると上述の
如く噴射終り制御弁1仝は開き9点2′bで針弁 は閉
じ9点21yで噴射を終了する。
Therefore, the rate of decrease in the pressure in the pressure accumulator is also low, as indicated by the dotted line 1'.
-2' and when the pressure decreases to point 2', the injection end control valve 1 opens at point 9 2'b and the needle valve closes at point 9 21y, ending injection as described above.

上述の如く9本発明では蓄圧式燃料噴射装置において針
弁の開弁時、高圧燃料通路内を逆流する燃料流を絞る絞
りを、噴射終り制御弁よりの通路が高圧燃料通路と合流
する点より燃料タンク側に設けたので、燃料噴射量の多
い高出力時には噴射率を高め、熱効率の向上、黒煙排出
の防止が可能であるばかりでなく、燃料の噴射の初期の
噴射率を低くする事が可能で騒音、燃焼用力及び酸化窒
素の排出の低下をさせることができる。
As described above, in the present invention, when the needle valve is opened in the pressure accumulation type fuel injection device, the throttle that throttles the fuel flow flowing backward in the high-pressure fuel passage is set from the point where the passage from the end-of-injection control valve merges with the high-pressure fuel passage. Since it is installed on the fuel tank side, it not only increases the injection rate during high output with a large amount of fuel injection, improving thermal efficiency and preventing black smoke emissions, but also lowering the initial injection rate of fuel injection. can reduce noise, combustion power and nitrogen oxide emissions.

また、燃料噴射量の少ない低出力時には噴射率を低下さ
せ、低騒音運転を可能にするばかりでなく、最少燃料噴
射量を噴射終り制御弁の助けにより、少なくすると同時
に、低出力における燃料噴射量の調整を容易とすること
ができる。
In addition, the injection rate is lowered at low outputs when the amount of fuel injection is small, which not only enables low-noise operation, but also reduces the minimum amount of fuel injection with the help of the end-of-injection control valve. can be easily adjusted.

尚、上記説明では本発明に係る噴射装置を噴射ポンプ装
置Aとノズル組立体Bとが一体のものとして説明したが
、噴射ポンプ装置Aとノズル組立体Bとを一体化せず9
通常の燃料噴射装置の如く。
Incidentally, in the above explanation, the injection device according to the present invention has been explained as an integral unit in which the injection pump device A and the nozzle assembly B are integrated.
Like a normal fuel injector.

別体化し、噴射ポンプ装置Aとノズル組立体Bとの間を
分離し2通路1aに相当する高圧管(図示せず)にて接
続する方式であっても本発明の機能及び性能は全く同一
である。
Even if the injection pump device A and the nozzle assembly B are separated and connected by a high-pressure pipe (not shown) corresponding to the two passages 1a, the functions and performance of the present invention are completely the same. It is.

又、第5図における絞り24cの形状は円筒形に限定さ
れることはなく5円錐形であっても負荷に応じて噴射率
を変えるものであれば他の形状であってもよい。
Further, the shape of the aperture 24c in FIG. 5 is not limited to a cylindrical shape, and may be a five-cone shape or any other shape as long as it changes the injection rate according to the load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燃料噴射装置の一実施例の縦断面
図、第2図は噴射終り制御弁の拡大断面図、第6図は高
圧燃料通路の絞りを示す拡大断面図、第4図はスピル 
ボート附近の拡大断面図。 第5図はプランジャーに絞りを形成した本発明の他の実
施例を示す要部断面図、第6図、第7図は蓄圧室内圧力
、針弁揚程及び噴射率の各々と、クランク軸回転角度と
の関係を示すグラフである。 A・・・噴射ポンプ装置、B・・・ノズル組立体、1・
・・外枠、2・・・ナツト、3・・・制御弁体+3a+
3b+60・・・燃料通路、3f・・・絞り、4・・・
スペーサ。 4a+4b、4c・・・燃料通路、5・・・蓄圧筒、6
・・・スペーサ、6a・・・燃料通路、7・・・針弁体
、7a・−・噴射口、7c・・・燃料通路、8・・・針
弁、8a・・・バルブフェース、10・・・ばね、12
・・・蓄圧室、13・・・噴射終り制御弁、14・・・
圧縮ばね、16・・・逆止弁。 17・・・燃料戻し通路、18・・・スピル ボート。 18a・・・絞り、19・・・吸戻弁体、20・・・吸
戻し弁。 21・・・圧縮ばね、26・・・バレル、24・・・プ
ランジャ、25・・・燃料入口、26・・・燃料通路、
28・・・逆止弁、24c・・・絞り、24d・・・端
面、29・・・燃料戻し口。 特許出願人  株式会社 並板技術研究所) 第41図
FIG. 1 is a longitudinal sectional view of an embodiment of the fuel injection device according to the present invention, FIG. 2 is an enlarged sectional view of the end-of-injection control valve, FIG. Figure spills
Enlarged cross-sectional view of the vicinity of the boat. Fig. 5 is a cross-sectional view of a main part showing another embodiment of the present invention in which a throttle is formed in the plunger, and Figs. It is a graph showing the relationship with angle. A... Injection pump device, B... Nozzle assembly, 1.
...Outer frame, 2...Nut, 3...Control valve body +3a+
3b+60...fuel passage, 3f...throttle, 4...
Spacer. 4a+4b, 4c...Fuel passage, 5...Pressure cylinder, 6
... Spacer, 6a... Fuel passage, 7... Needle valve body, 7a... Injection port, 7c... Fuel passage, 8... Needle valve, 8a... Valve face, 10... ...Spring, 12
...Accumulation chamber, 13...End of injection control valve, 14...
Compression spring, 16... check valve. 17... Fuel return passage, 18... Spill boat. 18a... Throttle, 19... Suction-back valve body, 20... Suction-back valve. 21... Compression spring, 26... Barrel, 24... Plunger, 25... Fuel inlet, 26... Fuel passage,
28... Check valve, 24c... Throttle, 24d... End face, 29... Fuel return port. Patent applicant: Naimita Technology Research Institute Co., Ltd.) Figure 41

Claims (1)

【特許請求の範囲】[Claims] (り  プランジャを挿置しであるバレルにスピルポー
トを設け、上記バレルに連通ずる高圧燃料通路に吸戻し
弁を設け、この通路の圧力とばね力とによって開弁圧力
を制御する針弁を有し、この針弁によって開閉される噴
射口を有し、上記高圧燃料通路の一部に蓄圧室を設け、
且つ上記針弁はとの蓄圧室への蓄圧中に該針弁の燃料通
路側と大気圧側とに燃料の圧力を加えて閉弁しておき、
その大気圧側の圧力を減圧させることによって開弁し、
燃料の噴射を開始させる圧縮着火エンジン用燃料噴射装
置において、上記針弁の大気圧側に連通する燃料通路と
蓄圧室との間の燃料通路に、上記針弁の開弁後設定した
圧力で開(噴射終り制御弁を設け、その開弁時上記針弁
の大気圧側へ上記蓄圧室内の高圧の燃料を導入して上記
針弁を閉じるように構成するとともに、上記針弁の開弁
時、高圧燃料通路内をスピル ボートを経て逆流する燃
料流を絞る絞りを噴射終り制御弁よりの通路が上記高圧
燃料通路との合流する点より燃料タンク側に設けたこと
を特徴とする圧縮着火エンジン用燃料噴射装置。
(i) A spill port is provided in the barrel in which the plunger is inserted, a suction return valve is provided in the high pressure fuel passage communicating with the barrel, and a needle valve is provided to control the valve opening pressure by the pressure of this passage and the spring force. and has an injection port that is opened and closed by the needle valve, and a pressure accumulation chamber is provided in a part of the high-pressure fuel passage,
and the needle valve is closed by applying fuel pressure to the fuel passage side and the atmospheric pressure side of the needle valve while the pressure is being accumulated in the pressure accumulation chamber,
The valve opens by reducing the pressure on the atmospheric pressure side,
In a fuel injection device for a compression ignition engine that starts fuel injection, the fuel passage between the fuel passage communicating with the atmospheric pressure side of the needle valve and the pressure accumulation chamber is opened at a set pressure after the needle valve is opened. (An end-of-injection control valve is provided, and when the valve is opened, the high-pressure fuel in the pressure accumulation chamber is introduced into the atmospheric pressure side of the needle valve to close the needle valve, and when the needle valve is opened, For a compression ignition engine, characterized in that a throttle for restricting the flow of fuel flowing back through the spill boat in the high-pressure fuel passage is provided on the fuel tank side from the point where the passage from the end-of-injection control valve merges with the high-pressure fuel passage. Fuel injection device.
JP58071543A 1983-01-20 1983-04-25 Fuel injection device for compression firing engine Pending JPS59200055A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58071543A JPS59200055A (en) 1983-04-25 1983-04-25 Fuel injection device for compression firing engine
GB08400736A GB2134978B (en) 1983-01-20 1984-01-12 Diesel engine fuel injectors
US06/570,911 US4598863A (en) 1983-01-20 1984-01-16 Fuel injector
FR8400729A FR2539818B1 (en) 1983-01-20 1984-01-18 FUEL INJECTOR
DE19843401658 DE3401658A1 (en) 1983-01-20 1984-01-19 FUEL INJECTION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071543A JPS59200055A (en) 1983-04-25 1983-04-25 Fuel injection device for compression firing engine

Publications (1)

Publication Number Publication Date
JPS59200055A true JPS59200055A (en) 1984-11-13

Family

ID=13463756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071543A Pending JPS59200055A (en) 1983-01-20 1983-04-25 Fuel injection device for compression firing engine

Country Status (1)

Country Link
JP (1) JPS59200055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167066A (en) * 1986-09-10 1988-07-11 Kubota Ltd Advance for accumulator type fuel injection device
JPS63167068A (en) * 1986-09-13 1988-07-11 Kubota Ltd Advancer for accumulator type fuel injection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167066A (en) * 1986-09-10 1988-07-11 Kubota Ltd Advance for accumulator type fuel injection device
JPS63167068A (en) * 1986-09-13 1988-07-11 Kubota Ltd Advancer for accumulator type fuel injection device

Similar Documents

Publication Publication Date Title
JP3583784B2 (en) Hydraulic drive electronic fuel injection system
KR960031783A (en) Fuel system
US5651346A (en) Accumulator-type injection system
US4598863A (en) Fuel injector
US6205978B1 (en) Fuel injection
JPH02191865A (en) Fuel injection device
JPS59200055A (en) Fuel injection device for compression firing engine
JP3235286B2 (en) Fuel injection device for internal combustion engine
US7654469B2 (en) Fuel injection system for an internal combustion engine
Coldren et al. Advanced technology fuel system for heavy duty diesel engines
JPS60228766A (en) Fuel injection nozzle of direct-injection type diesel engine
JP2890782B2 (en) Fuel injection pump check valve
JPH031508B2 (en)
JP3651188B2 (en) Fuel injection device
JP2795138B2 (en) Fuel supply device for internal combustion engine
JP2848316B2 (en) Fuel supply device for internal combustion engine
JPH08144892A (en) Discharge valve of fuel injection pump
JPS647244Y2 (en)
JPS59200057A (en) Fuel injection rate control device
JPS59213944A (en) Fuel injector for compression firing engine
JPH0452464Y2 (en)
JPH0461189B2 (en)
US20030164404A1 (en) Fuel-injection valve for internal combustion engines
JP2553011B2 (en) Fuel injection pump
JP2582195Y2 (en) Fuel injection device for internal combustion engine