JPS59199814A - Easily dyeable polyester fiber - Google Patents

Easily dyeable polyester fiber

Info

Publication number
JPS59199814A
JPS59199814A JP6833383A JP6833383A JPS59199814A JP S59199814 A JPS59199814 A JP S59199814A JP 6833383 A JP6833383 A JP 6833383A JP 6833383 A JP6833383 A JP 6833383A JP S59199814 A JPS59199814 A JP S59199814A
Authority
JP
Japan
Prior art keywords
fibers
range
max
birefringence
tmax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6833383A
Other languages
Japanese (ja)
Other versions
JPH0373654B2 (en
Inventor
Tetsuo Sato
哲男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6833383A priority Critical patent/JPS59199814A/en
Priority to EP83111427A priority patent/EP0109647B2/en
Priority to DE8383111427T priority patent/DE3381318D1/en
Priority to KR1019830005452A priority patent/KR870000362B1/en
Publication of JPS59199814A publication Critical patent/JPS59199814A/en
Priority to US06/804,229 priority patent/US4668764A/en
Publication of JPH0373654B2 publication Critical patent/JPH0373654B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:Easily dyeable polyester fibers, having specific relationships between the crystallinity and birefringence and dynamic loss tangent and temperature, and dyeable in deep colors under boiling conditions and ordinary pressure. CONSTITUTION:Copolyester fibers, consisting of 80-98% ethylene terephthalate in repeating units, and having the relationship between the crystallinity (Xc) and birefringence (DELTAn) thereof satisfying formula I and a temperature (Tmax) at which the dynamic loss tangent (tandelta) shows the maximum at 110Hz measuring frequency within the range of formula II and the maximum of tandelta (tandelta)max within the range of formula III. For example, a copolyester is melt spun at >=5,000m/ min winding speed, passed through a heating zone kept at 150-300 deg.C for >=5cm length from the undersurface of a spinneret, and collected with a collecting guide provided in a zone at <=5cm below the point of completing the thinning of monofilaments under <=0.4g/denier tension at a position 5cm below the guide.

Description

【発明の詳細な説明】 本発明は易染性ポリエステル繊維に関する。更に詳しく
は、常圧沸騰状態で淡色に染色可能なポリエステル繊維
に係り、本来のポリエチレンテレフタレート繊維の持つ
優れた性質を保持したまま、易染性を付与した改質ポリ
エチレンテレフタレート繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to easily dyeable polyester fibers. More specifically, it relates to polyester fibers that can be dyed in light colors under normal pressure boiling conditions, and it relates to modified polyethylene terephthalate fibers that have been imparted with easy dyeability while retaining the excellent properties of original polyethylene terephthalate fibers.

ポリエステル繊維、特に、ポリエチレンテレフタレート
を主成分とするポリエステル繊維(以下PET繊維と略
記する。)は、高結晶性でありかつ高軟化点を有する為
、強度、伸度等の機械的特性はもとより、耐熱性、耐薬
品性等に優れた性能を示し、産秦資材、衣料用品分野に
幅広く利用されている。
Polyester fibers, especially polyester fibers whose main component is polyethylene terephthalate (hereinafter abbreviated as PET fibers), are highly crystalline and have a high softening point, so they have poor mechanical properties such as strength and elongation. It exhibits excellent heat resistance, chemical resistance, etc., and is widely used in the fields of industrial materials and clothing items.

一方、上述の長所とは別に、濃色に染色17がたい事、
ピリングが発生しやすい事、静電気を帯び易い事、吸湿
性が低い事等の短所も有している。
On the other hand, apart from the above-mentioned advantages, it is difficult to dye in dark colors,
It also has disadvantages such as being prone to pilling, being easily charged with static electricity, and having low hygroscopicity.

特に、濃色に染色する事が困難であるという点に代表さ
れる染色に関する種々の欠点により、ポリエステル繊維
の用途範囲は狭められている。
In particular, the range of uses for polyester fibers has been narrowed due to various drawbacks associated with dyeing, typified by the difficulty of dyeing them in deep colors.

一般に、PET繊維を染色する場合は、繊維構造中にあ
る疎水基の影響のために分散染料を使用して染色する。
Generally, when dyeing PET fibers, a disperse dye is used to dye the fibers due to the influence of hydrophobic groups in the fiber structure.

その際、PET繊維は、結晶性が高く、構造が緻密であ
る為、(1) 120〜130℃で高温高圧染色を行な
う。あるいは(2)キャリアーを用いて110℃前後の
温度か又は常圧沸騰状態で染色するなどのいずれかの方
法を用いている。
At that time, since PET fibers have high crystallinity and a dense structure, (1) high temperature and high pressure dyeing is performed at 120 to 130°C. Alternatively, (2) any method is used, such as dyeing using a carrier at a temperature of around 110° C. or under normal pressure boiling conditions.

しかし、上記(1)の高温高圧染色法では、染色に使用
される機械装置の操作が繁雑である事やエネルギーコス
ト的に高い事等の問題がある。更に、他種の繊維と混紡
する際、同浴染色を高温高圧染色法で行なうと、他種の
繊維(特に、アクリル、羊毛等)がへたり等の物性低下
の弊害を起してしまうという欠点を生じる為、実質的に
該方法を用いるのは困難である。又、(2)のキャリア
ーを用いる染色法では、染色助剤としてのキャリアーは
、一般に有害な物質が多い為、取扱いが難しく、従って
、排水処理等の面で実施が困難である。更に、キャリア
ーが繊維中の染料の染着座席をうばう為に、濃色に染色
する事が難しかったり、染料のマイグレーションが発生
しやすく、染色時の梁床を作る原因と々る等の欠点があ
る。
However, the high-temperature, high-pressure dyeing method (1) above has problems such as complicated operation of the mechanical equipment used for dyeing and high energy costs. Furthermore, when blending with other types of fibers, if the same bath dyeing is carried out using high-temperature and high-pressure dyeing, the other types of fibers (especially acrylic, wool, etc.) may suffer from deterioration of physical properties such as sagging. The method is practically difficult to use because of the disadvantages it produces. Furthermore, in the dyeing method using a carrier (2), the carrier as a dyeing aid generally contains many harmful substances and is therefore difficult to handle, making it difficult to implement in terms of wastewater treatment, etc. Furthermore, because the carrier takes up the dyeing area of the dye in the fiber, it is difficult to dye it in a deep color, dye migration is likely to occur, and it causes the formation of beams during dyeing. be.

従って、かかるPETm維の上述のごとき欠点を改良す
べく、多くの改良、改善方法が提案されている。その代
表的なものの1つに、PETポリマー中に共重合成分を
導入する方法がある1、例えば、特公昭34−1097
号公報、特開昭49−33766号公報などに開示され
ているように、(a)金属スルホネート基含有化合物を
共重合させる方法や、特公昭54−38159号公報に
見られるように、(b)アミン基含有化合物を共重合さ
せる方法が提案されている。上記(a) 、 (b>の
方法は、分散染料に対して馬乗化すると同時に、塩基性
染料や酸性染料でも染色可能にする事を特徴としている
。又、分散染料だけに限って染色性向上を狙った共重合
成分としては、(C)イソフタル酸、アジピン酸、等の
ジカルボン酸類、ポリエチレングリコール等のポリアル
キレングリコールlが周知である。
Therefore, many improvements and improvement methods have been proposed in order to improve the above-mentioned drawbacks of such PETm fibers. One of the representative methods is the method of introducing a copolymer component into PET polymer1, for example, Japanese Patent Publication No. 34-1097
As disclosed in Japanese Patent Publication No. 49-33766, etc., (a) a method of copolymerizing a metal sulfonate group-containing compound, and as disclosed in Japanese Patent Publication No. 54-38159, (b) ) A method of copolymerizing an amine group-containing compound has been proposed. The above methods (a) and (b) are characterized by being able to ride on disperse dyes and at the same time making it possible to dye with basic dyes and acidic dyes. (C) dicarboxylic acids such as isophthalic acid and adipic acid, and polyalkylene glycols such as polyethylene glycol are well known as copolymerization components aimed at improving the performance.

しかし、いづれの場合も欠点を有している。例えば、(
a)の方法では、原料の金属スルホネート基含有化合物
が高価なうえ、重合、紡糸時の安定性に欠ける等の問題
があり、(b)のアミノ基含有化合物の共重合PET線
維では、当該ポリマーの熱安定性に問題がある。しかも
、どちらの場合も、(C)の場合と同様に、キャリアー
無しで、常圧沸騰状態で、充分に濃色に染色する為には
、多重に共重合させることが必要で、その結果、PET
繊維本来の持っている優れた性質が著しく低下してしま
つ+7)である0更に、ポリエチレングリコール等ヲ共
重合させると、重合時の泡立ちや、ポリマーの変色等の
別な欠点も顕在化する0 染色性を向上させる別の方法として、特開昭55−10
7511号公報に見られるように、いわゆる高速紡糸を
利用する方法がある。この方法を用いれば確かに染色性
は向上するが、未だ、キャリアー無しで、常圧沸騰状態
で濃色に染色するには不十分である。さらには、潜水収
縮率が巻取多速度に従って極端に低下する等の欠点があ
る。又、金属スルホネート化合物を共重合したポリエス
テルを高速紡糸する事により、染色性の向上を意図した
方法も知られている(特開昭53−139820号公報
)。たしかに、染色性は向上するし、キャリアーなしで
常圧沸騰状態である程度濃色に染色する事が可能である
が、上述した如く、ポリマー自体の欠点は、依然として
存在し、かつ高速紡糸する事による潜水収縮率の低下と
いう欠点も解決されていない。
However, each case has drawbacks. for example,(
In method a), there are problems such as the metal sulfonate group-containing compound used as a raw material is expensive and lacks stability during polymerization and spinning. There is a problem with the thermal stability of Moreover, in both cases, as in case (C), multiple copolymerizations are required in order to dye sufficiently deep colors without a carrier and under normal pressure boiling conditions. PET
Furthermore, when polyethylene glycol is copolymerized, other disadvantages such as foaming during polymerization and discoloration of the polymer become apparent. 0 As another method for improving dyeability, JP-A-55-10
As seen in Japanese Patent No. 7511, there is a method using so-called high-speed spinning. Although dyeing properties are certainly improved by using this method, it is still insufficient to dye deep colors in a boiling state at normal pressure without a carrier. Furthermore, there is a drawback that the submerged shrinkage rate decreases extremely as the winding speed increases. Also known is a method intended to improve dyeability by spinning polyester copolymerized with a metal sulfonate compound at high speed (Japanese Unexamined Patent Publication No. 139820/1982). It is true that the dyeability is improved, and it is possible to dye a certain degree of deep color without a carrier under normal pressure boiling conditions, but as mentioned above, the disadvantages of the polymer itself still exist, and the problems caused by high-speed spinning The drawback of reduced diving shrinkage rate has also not been resolved.

一般に、ポリエステルを高速紡糸すると、染色性はある
程度改善される半面、巻取り速度の増加に伴う潜水収縮
率の低下が著しく、特に6000’/min以上の巻取
り速度域では、4%以下に低下してしまう事は、従来避
ける事が出来なかった。高速紡糸する事で染色性を向上
させ、かつ、強度、伸度のバランスを良くするには、5
ooom/min以上p巻取シ速度、好ましくは600
0fi/min以上の巻取多速度で紡糸することが必要
であシ、染色性を更に向上させる試みとして、一般の共
重合PETポリマーを用いても高速紡糸にともなう、潜
水収縮率の低下の改善までには至らなかつた0 本発明者は、上述のごとき欠点を解決すべく共重合ポリ
エステルの高速紡糸の研究検討の過程で、上記の潜水収
縮率の低下を防ぎ、かつ吸尽率を向上させるには共重合
ポリエステル繊維の結晶化度(Xc)と複屈折率(△n
)、及び測定周波数110Hzにおける力学的損失正接
(−δ)が最大を示す温度(Tmax )と論δの最大
値((論δ雇ax)が特定の関係にある事の必要性をみ
いだし、本発明に到達したものである。
In general, when polyester is spun at high speed, dyeability is improved to some extent, but as the winding speed increases, the submerged shrinkage rate decreases significantly, especially in the winding speed range of 6000'/min or more, it decreases to 4% or less. In the past, it was impossible to avoid doing this. In order to improve the dyeability by high-speed spinning and to achieve a good balance between strength and elongation, 5.
ooom/min or more p winding speed, preferably 600
It is necessary to spin at a winding speed of 0fi/min or higher, and in an attempt to further improve the dyeability, we have attempted to improve the decrease in submerged shrinkage that occurs with high-speed spinning even when using general copolymerized PET polymers. In order to solve the above-mentioned drawbacks, the inventor of the present invention, in the process of researching and considering high-speed spinning of copolymerized polyester, discovered a method to prevent the above-mentioned decrease in the submerged shrinkage rate and to improve the exhaustion rate. are the crystallinity (Xc) and birefringence (△n) of the copolymerized polyester fiber.
), and the temperature (Tmax) at which the mechanical loss tangent (-δ) at a measurement frequency of 110 Hz is at its maximum, and the maximum value of the theory δ ((the theory δ ax)) have found the need to have a specific relationship, This has led to the present invention.

すなわち、本発明の目的は、PET繊維の優れた物理化
学的性質、特に、潜水収縮率の値を、適当な状態に保持
しつつ、分散染料で染色する際に、キャリアーを用いず
に、常圧沸騰状態で、充分に濃色に染色する事の可能な
易染性ポリエステル繊維を提供する事にある。
That is, an object of the present invention is to maintain the excellent physicochemical properties of PET fibers, especially the value of submerged shrinkage ratio, at an appropriate level, and to dye the fibers with disperse dyes without using a carrier. To provide an easily dyeable polyester fiber which can be dyed in a sufficiently deep color under pressure boiling.

尚、本発明において、潜水収縮率の値の適当な状態とは
潜水収縮率の値が、好ましくは6〜13チの範囲にある
事であり、常圧沸騰状態で充分に濃色に染色するとは、
この明細書に記載するところの吸尽率が、常圧沸騰状態
における60分間の染色条件で、好ましくは約80チ以
上、さらに好ましくは85チ以上の値になる事をいう。
In addition, in the present invention, an appropriate state of the value of the diving shrinkage rate means that the value of the diving shrinkage rate is preferably in the range of 6 to 13 inches. teeth,
The exhaustion rate as described in this specification is preferably about 80 inches or more, more preferably about 85 inches or more, under dyeing conditions of 60 minutes under normal pressure boiling conditions.

本発明は、上記目的を達成する為に次の要旨からなる。The present invention consists of the following gist in order to achieve the above object.

すなわち、本発明は、繰返し単位の80〜98チがエチ
レンテレフタレートからなる共重合ポリエステル繊維で
あって、該繊維の結晶化度Xc と複屈折率△nとのあ
いだに、下記の(1)式の関係を満足し、更に測定周波
数110Hzにおける力学的損失正接−δが最大を示す
温度Tmax及び−δの最大値(−δ)maxが下記の
(2)式及び(3)式でされる範囲に存在することを特
徴とする易染性ポリエステル繊維である。
That is, the present invention provides a copolyester fiber in which 80 to 98 units of repeating units are ethylene terephthalate, and the following formula (1) is expressed between the crystallinity Xc and the birefringence Δn of the fiber. The temperature Tmax at which the mechanical loss tangent -δ at a measurement frequency of 110 Hz is at its maximum and the maximum value (-δ)max of -δ is the range defined by the following equations (2) and (3). It is an easily dyeable polyester fiber characterized by the presence of .

(1)  Xc(%il< −710X△n+ 110
(2)90℃(Tmax≦107℃ (3)  0.135 < (−δ)max≦0.30
0更に、これについて詳しく述べると、本発明の共重合
ポリエチレンテレフタレートの、共重合成分の比率は2
〜20モルチの範囲にある事が必要で、さらには、5〜
13モルチである事が好ましい。共重合比が、この範囲
外にあると以下に述べる(1) 、 (2)及び(3)
式を同時に満す繊維を得る事が困難であシ、そのため染
色性向上と繊維物性の、<ランスをとることができない
(1) Xc (%il< -710X△n+ 110
(2) 90℃ (Tmax≦107℃ (3) 0.135 < (-δ)max≦0.30
0 Furthermore, to explain this in detail, the ratio of the copolymerized components of the copolymerized polyethylene terephthalate of the present invention is 2.
It is necessary to be in the range of ~20 molti, and furthermore, it is necessary to be in the range of 5 ~
Preferably it is 13 molti. If the copolymerization ratio is outside this range, the following (1), (2) and (3)
It is difficult to obtain a fiber that satisfies the formula at the same time, and therefore it is not possible to achieve a balance between improved dyeability and fiber physical properties.

共重合成分としては、以下に述べる(1) 、 (2)
及び(3)式を満足するものであればいかなるものでも
よいが、1,4−シクロヘキサンジメタツール及改又は
2,2−ビス(:4−(2−ヒドロエトキシ)フェニル
〕プロパンが比較的少量で効果が大きいので好ましい。
The copolymerization components are (1) and (2) as described below.
Any substance may be used as long as it satisfies the formula (3), but 1,4-cyclohexane dimetatool and modified or 2,2-bis(:4-(2-hydroethoxy)phenyl)propane are relatively preferred. It is preferable because it has a large effect with a small amount.

本発明の共重合ポリエステル繊維においては、その結晶
化度(Xc)と複屈折率(△n)が次式を満足する事が
重要要件となる。
In the copolymerized polyester fiber of the present invention, it is an important requirement that its crystallinity (Xc) and birefringence (Δn) satisfy the following formula.

(1)  Xc(%)<−710X△ll+ 110X
 c (%)≧−710X△n+110でおると、以下
に述べる(2) 、 (3)式を同時に満したとしても
、該繊維の潜水収縮率の値が、極端に低下してしまうこ
とになる。例えば、特開昭53−139820号公報の
共重合ポリエステルの高速紡糸繊維等がこれにあたる。
(1) Xc (%) <-710X△ll+ 110X
If c (%)≧-710 . For example, high-speed spun fibers of copolyester disclosed in Japanese Patent Application Laid-open No. 139820/1982 fall under this category.

本発明において、共重合ポリエステル線維の測定周波数
110Hzにおける力学的損失正接−δ)が最大を示す
温度(Tmax)及び−δの最大値((−δ)max)
は下記の式で示される範囲に存在しなくてはならない。
In the present invention, the temperature (Tmax) at which the mechanical loss tangent -δ) of the copolymerized polyester fiber at a measurement frequency of 110 Hz is maximum and the maximum value of -δ ((-δ)max)
must exist within the range shown by the formula below.

(2)90℃< Tmax≦107℃ かつ(3)  
0. 135<(tanδ) max≦0.300上述
の範囲を図示すると第1図の斜線部となる。
(2) 90℃< Tmax≦107℃ and (3)
0. 135<(tan δ) max≦0.300 If the above range is illustrated, it becomes the shaded area in FIG.

Tmax) 120℃の範囲および107℃< Tma
x≦120℃でかつ0.11.0>(ta++δ)ma
xの範囲にある繊維は、染色性の改善が期待できない。
Tmax) 120℃ range and 107℃<Tma
x≦120℃ and 0.11.0>(ta++δ)ma
Fibers within the range of x cannot be expected to improve dyeability.

この値の範囲に存在する繊維は一般のポリエステルの延
伸糸に相当する。
Fibers within this value range correspond to general drawn polyester yarns.

Tmax≦107℃でかつ(knδ)maz≦0.13
5の範囲の共重合ポリエステル繊維は、染色性はよいが
、特別に粘度を低下させる等の操作を加えないと安定し
て製造する事がむずかしいので好ましくない。
Tmax≦107℃ and (knδ)maz≦0.13
Copolymerized polyester fibers in the range of 5 have good dyeability, but are difficult to produce stably unless special operations such as lowering the viscosity are performed, so they are not preferred.

Tmax≦90℃でかつ(−δ)max> 0.135
の範囲および90℃<Tmax≦120℃でかつ0.3
’00≦(−δ) maxの範囲の共重合ポリエステル
繊維は、共重合比が比較的大きく、そのために伸度、強
度、融点等の他の物性を低下させてしまう(共重合比2
0チ以上)。
Tmax≦90℃ and (-δ)max>0.135
and 90℃<Tmax≦120℃ and 0.3
The copolymerized polyester fiber in the range of '00≦(-δ)max has a relatively large copolymerization ratio, which reduces other physical properties such as elongation, strength, and melting point (copolymerization ratio 2
0chi or more).

107℃<Tmaz≦120℃でかつ0.110 <(
mnδ)max≦0.300の範囲の共重合ポリエステ
ル繊維は、物性的にバランスがよく、ある程度染色性も
向上するが、常圧沸騰状態で、充分に濃色に染色するに
はまだ不十分である(共重合比2%以下の高速紡糸ポリ
エステル繊維に相当する)。
107℃<Tmaz≦120℃ and 0.110<(
Copolymerized polyester fibers in the range of mnδ)max≦0.300 have well-balanced physical properties and have improved dyeability to some extent, but are still insufficient to dye sufficiently deep colors under normal pressure boiling conditions. (corresponds to high-speed spun polyester fiber with a copolymerization ratio of 2% or less).

本発明のポリエステル繊維は、例えば、次の様な方法で
製造する事が出来る。即ち、1,4−シクロヘキサンジ
メタツール及び/又は2.2−ビス[4−(2−ヒドロ
エトキシ)フェニル)7’t=パンを2〜20モルチ共
重合したポリエチレンテレフタレートを、複数の紡糸孔
を有する紡糸口金を通して、5000 m / min
以上の巻取速度で溶融紡糸するgその際、紡出されたモ
ノフィラメント群を該紡糸口金の下面より5crn以上
の長さにわたシ、150℃以上、300℃以下に維持さ
れた加熱域を通過せしめ、続いて、次のa、b、の両条
件を満足する位置に配置した集束用ガイドで該モノフィ
ラメント群を集束し、フィラメント束ヲ形成する。尚、
吐出量、フィラメントの断面形状および巻取速度を適宜
選ぶ事により製造可能である。
The polyester fiber of the present invention can be produced, for example, by the following method. That is, polyethylene terephthalate obtained by copolymerizing 2 to 20 moles of 1,4-cyclohexane dimetatool and/or 2,2-bis[4-(2-hydroethoxy)phenyl)7't=pan, is spun into a plurality of spinning holes. through a spinneret with 5000 m/min
At this time, the spun monofilaments are passed from the bottom surface of the spinneret to a length of 5 crn or more and passed through a heating zone maintained at a temperature of 150°C or higher and 300°C or lower. Then, the monofilament group is focused by a focusing guide placed at a position that satisfies both conditions a and b below to form a filament bundle. still,
It can be manufactured by appropriately selecting the discharge amount, cross-sectional shape of the filament, and winding speed.

a、モノフィラメント群の細化完了点よりも5百以上下
部域。
a, Area below the point at which thinning of the monofilament group is completed by 500 or more.

b、ガイド下の5c!nにおけるフィラメント束にかか
る張力が0.4f/デニール以下。
b, 5c below the guide! The tension applied to the filament bundle at n is 0.4 f/denier or less.

かくして得られる本発明の共重合ポリエステル繊維は、
PET繊維が本来持っている優れた機械的、熱的性質を
保持することに加えて、分散染料を用いて、キャリアー
無しで、常圧沸騰状態で、充分に濃色に染色できるとい
う染色性能を付与されるものである0さらに、本発明の
特徴は、従来考えられていた高速紡糸等で染色性を改善
する場合に、5000 nt/min以上の巻取シ速度
域で発生していた極端な潜水収縮率の値の低下の問題を
解決した事にある。これによシ、しは立ち等の後加工上
の問題を一挙に解決するに至った。さらには、本発明で
いう共重合成分のうち1.4−シクロヘキサンジメタツ
ールを共重合成分にl−だ場合は、優れた耐光堅牢性を
示すという特長も有する。
The copolymerized polyester fiber of the present invention thus obtained is
In addition to maintaining the excellent mechanical and thermal properties originally possessed by PET fibers, we have achieved the dyeing performance of being able to dye sufficiently deep colors using disperse dyes without a carrier and under normal pressure boiling conditions. Furthermore, a feature of the present invention is that when improving the dyeability by high-speed spinning, etc., which was conventionally considered, the extreme The problem lies in the decrease in the value of diving contraction rate. This has led to the solution of post-processing problems such as sagging and standing. Furthermore, among the copolymerization components referred to in the present invention, when 1,4-cyclohexane dimetatool is used as the copolymerization component, it also has the advantage of exhibiting excellent light fastness.

これにより、当該共重合ポリエステル繊維は、従来のP
ET繊維の各種用途にそのまま適用する事が可能であり
、かつ、優れた染色性の為他種類の繊維と混用が可能で
ある。
As a result, the copolymerized polyester fiber is different from the conventional P
It can be used as is for various uses of ET fibers, and because of its excellent dyeability, it can be mixed with other types of fibers.

以下、本発明を実施例をあげて具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

尚、本発明において使用される各種特性値の評価方法は
次の通りである。
The evaluation method of various characteristic values used in the present invention is as follows.

〔強度・伸度〕[Strength/Elongation]

高滓製作所、オートグラフDC8100型引張試験機に
よシ、初長20tyn、引張速度20cm/minで測
定する。
Measurement is performed using an Autograph DC8100 tensile testing machine manufactured by Takasu Seisakusho, with an initial length of 20 tyn and a tensile speed of 20 cm/min.

〔潜水収縮率(B、W、8)) 0.1f/デニールの荷重下での試料長をり。とじ、荷
重を取除き、沸騰水中で30分間処理した後、同じ荷重
下で5゛測定した長さをLとして、次式より、潜水収縮
率を定義し、求める。
[Diving shrinkage rate (B, W, 8)] Sample length under a load of 0.1 f/denier. After binding, removing the load, and treating in boiling water for 30 minutes, the length measured under the same load at 5° is defined as L, and the submergence shrinkage rate is defined and determined from the following formula.

〔吸尽率〕[Exhaustion rate]

染料: Re5olin Blue FBL (C,I
 、 DisperseBlue 56 、 Ba7e
r社)3%o 、w、 f。
Dye: Re5olin Blue FBL (C,I
, DisperseBlue 56, Ba7e
r company) 3% o, w, f.

分散剤: Disper  TL iy/を酸 度:p
H=6(酢酸にて調整) 浴比:1:100 上記条件にて、常圧沸騰状態で、所定時間染色した後の
染残液を、水とアセトンの1=1混合溶液で稀釈し、高
滓分光度計UV−200により、1crnのコレツクス
セルを用いて、波長λ=620mμ にて、吸光度(=
Uとする)を測定し、同様に稀釈した染料原液の吸光度
(−U。とする)より下記式で定義し、求める。
Dispersant: Disper TL iy/ Acidity: p
H = 6 (adjusted with acetic acid) Bath ratio: 1:100 Under the above conditions, the residual dye after dyeing at normal pressure and boiling for a predetermined time is diluted with a 1=1 mixed solution of water and acetone. Absorbance (=
It is defined and determined by the following formula from the absorbance (denoted as -U) of a similarly diluted dye stock solution.

〔耐光堅牢性〕 染色濃度を1%。、W、f9、染色時間を90分とする
以外は、吸尽率の測定と同様な方法で染色した試料を、
JISLO842に準じ、7工ドメーター中63℃で2
75時間露出したあと、耐光堅牢性を肉眼観察で、良い
順に○、△、×の3段階に分けて評価した。
[Light fastness] Dyeing density is 1%. , W, f9, A sample was stained in the same manner as in the measurement of the exhaustion rate, except that the staining time was 90 minutes.
According to JISLO842, 2 at 63℃ in a 7-dmeter
After being exposed for 75 hours, the light fastness was visually observed and evaluated in three grades: ◯, △, and ×.

〔融 点〕[melting point]

パーキンエルマ社製Differential Sca
nningCalorirneter −I B型を使
用し、試料7■、昇温速度16℃/minの条件で、N
2置換を行いながら測定し、得られたチャートの吸熱ピ
ークの頂点を融点とする。
Differential Sca manufactured by Perkin Elma
Using Nning Calorirneter-I B type, sample 7 was heated at a heating rate of 16°C/min.
Measurement is performed while performing two substitutions, and the apex of the endothermic peak in the obtained chart is taken as the melting point.

〔力学的損失正接(鋤δ)〕[Mechanical loss tangent (plow δ)]

東洋ボールドウィン社製、レオバイプロン(Reo V
ibron)DDV−、[I m動的粘弾性測定装置を
用い、試料約0.1 iF、測定周波数110Hz、昇
温速度5℃/minにおいて、乾燥空気中で各温度にお
けるーδおよびE/(動的弾性率)を測定する。その結
果、第2図に模式的に示すよりな−δ一温度曲線が得ら
れる。このグラフから−δが最大を示す温度Tmax 
(Qと−δの最大値(I71nδ) max  が得ら
れる。
Manufactured by Toyo Baldwin Co., Ltd., Reo Viplon (Reo V
-δ and E/ at each temperature in dry air at a sample temperature of approximately 0.1 iF, a measurement frequency of 110 Hz, and a heating rate of 5°C/min using a dynamic viscoelasticity measurement device. (dynamic modulus of elasticity). As a result, a −δ temperature curve as schematically shown in FIG. 2 is obtained. From this graph, the temperature Tmax at which −δ is maximum
(The maximum value (I71nδ) max of Q and −δ is obtained.

〔複屈折率(△n)) 繊維軸に対して直角に偏光している光に対する屈折率(
n±)と繊維軸に対して平行に偏光している光に対する
屈折率(nll)と1.即ち複屈折率(Δn) = n
ll −nLで表わされる。
[Birefringence (△n)] Refractive index for light polarized at right angles to the fiber axis (
n±), the refractive index (nll) for light polarized parallel to the fiber axis, and 1. That is, birefringence (Δn) = n
It is expressed as ll-nL.

ベレックコンベンセーターを装着した偏光顕微鏡を用い
、常法により測定した。但し、侵液としてシん酸トリク
レジルを使用した。
Measurement was performed using a polarizing microscope equipped with a Berek convensator using a conventional method. However, tricresyl phosphate was used as the immersion liquid.

〔結晶化度(Xc)) 赤道方向のX線回折強度を赤道反射法により測定する事
によシ結晶化度(Xc)を求める事ができる。
[Crystallinity (Xc)] The crystallinity (Xc) can be determined by measuring the X-ray diffraction intensity in the equatorial direction by an equatorial reflection method.

X線回折強度は、理学電機社製X線発生装置(R’U−
200PL)とゴニオメータ(SG−9R)、計数管に
はシンチレーションカウンター、計数部には波高分析器
を用い、ニッケルフィルターで単色化したCu−にα線
(波長λ−1,5418tで測定する。繊維試料の繊維
軸がX線回折面に対して垂直となるようにアルミニウム
製サンプルホルダーにセットする。この時、試料の厚み
は0.5鴎位になるようにセットする。50KV、10
0mA″′cX線発生装置を運転し、スキャニング速度
20/分、チャート速度20簡/分タイムコンスタント
0.5秒、タイバージエンスス!jット1/2°、レシ
ービングスリッ)0.3+m、スキャツタリングスリッ
ト1/2°において2θが380から7゜まで回折強度
を記録する。記録計のフルスケール内にはいるように設
定する。
The X-ray diffraction intensity was measured using an X-ray generator (R'U-
200PL) and a goniometer (SG-9R), a scintillation counter for the counter tube, and a pulse height analyzer for the counting section.Measurement is carried out at α-rays (wavelength λ-1,5418t) on Cu- monochromated with a nickel filter.Fiber Set the sample on an aluminum sample holder so that the fiber axis of the sample is perpendicular to the X-ray diffraction surface. At this time, set the sample so that the thickness is about 0.5 mm. 50 KV, 10
Operate the X-ray generator at 0 mA'''c, scanning speed 20/min, chart speed 20/min, time constant 0.5 seconds, tie vergeance 1/2°, receiving slip) 0.3+m, scan Record the diffraction intensity from 380 to 7 degrees in 2θ at a 1/2 degree slit.Set it so that it falls within the full scale of the recorder.

ポリエチレンテレフタレート繊維は一般に赤道方向の回
折で、回折角2θ=17°〜260の範囲に3つの主要
な反射を有する(低角度側から(010)、(110)
、(100)面)。第3図にポリエチレンテレフタレー
ト繊維のX線回折強度曲線の一例を示す(図中aは結晶
部、bは非晶部を示す)0 かくして得られたX線回折曲線より、2θ−70と20
−35°の間にある回折強度曲線を直線で結びベースラ
インとする。2θ=20o付近の谷を頂点とし、低角度
側及び高角度側のすそに沿つて直線で結び、結晶部と非
晶部に分離し、次式に従って面積法で求める。
Polyethylene terephthalate fibers generally have three main reflections in the range of diffraction angle 2θ = 17° to 260 in the equatorial direction (from the low angle side (010), (110)
, (100) plane). Figure 3 shows an example of the X-ray diffraction intensity curve of polyethylene terephthalate fiber (in the figure, a indicates the crystalline part and b indicates the amorphous part).
The diffraction intensity curves between -35° are connected with a straight line to form a baseline. The valley near 2θ=20o is set as the apex, connected by a straight line along the skirts of the low angle side and the high angle side, separated into crystalline portions and amorphous portions, and determined by the area method according to the following formula.

実施例1 通常の重合方法で1.4−シクロヘキサンジメタツール
を10モ)v%共重合させたPETポリマー(融点23
3℃、極限粘度0.6 s ) rz孔径0.23mm
、孔数24の紡糸口金及び長さ40Crnの加熱筒を装
着し、紡糸口金面から3m下の位置に高速巻取機を配置
した紡糸機を用いて溶融紡糸し、50デニール/24フ
イラメントの共重合ポリエステル繊維を得た。尚、この
時の巻取り速度は6000 m /min  であp1
紡ロヘッドの温度は285℃、加熱筒内温度は220℃
であり、紡口下110cTnには給油用ノズルガイドが
設けられていたO Tmax、(−δ) max及び結晶化1(Xc)と複
屈折率(△n)の値を測定し、第1表に示す通りそれぞ
れ本発明で規定する範囲に存在する事を確認した。
Example 1 A PET polymer (melting point 23
3℃, intrinsic viscosity 0.6 s) rz pore diameter 0.23 mm
A spinning machine equipped with a spinneret with 24 holes and a heating tube with a length of 40 Crn, and a high-speed winder placed 3 m below the spinneret surface was used to perform melt spinning to produce a 50 denier/24 filament co-fiber. Polymerized polyester fibers were obtained. The winding speed at this time was 6000 m/min and p1
The temperature of the spinning head is 285℃, and the temperature inside the heating cylinder is 220℃.
A refueling nozzle guide was provided at 110 cTn below the spinneret.The values of O Tmax, (-δ) max, crystallization 1 (Xc), and birefringence (Δn) were measured, and are shown in Table 1. As shown in the figure, it was confirmed that each of them existed within the range defined by the present invention.

物性測定の結果を@2表に示す。第2表よシ明らかな通
り、製水収縮率の値が高く、通常の延伸ポリエステル繊
維と同程度の範囲にあり、かつ強度、伸度とも充分な値
を示している。さらに、60分間沸騰状態の吸尽率の値
が、80%をはるかに上回9、常圧沸騰状態で充分濃色
に染色されている事がわかる。又、耐光堅牢性も良好で
あった。
The results of physical property measurements are shown in Table 2. As is clear from Table 2, the water production shrinkage rate is high and in the same range as ordinary drawn polyester fibers, and both strength and elongation are sufficient. Furthermore, the value of the exhaustion rate in boiling for 60 minutes is far more than 80%9, indicating that dyeing is sufficiently deep under normal pressure boiling. Moreover, the light fastness was also good.

実施例2 実施例1の共重合ポリマーを、巻取速度を8000 m
/minにした以外は、実施例1と同様な方法で紡糸し
た。Tmax、  (bnδ) max及び結晶化度(
Xc)と複屈折率(△n)の値を測定し、第1表に示す
通りそれぞれ本発明で規定する範囲に存在する事を確認
した。
Example 2 The copolymer of Example 1 was wound at a winding speed of 8000 m.
Spinning was carried out in the same manner as in Example 1, except that the spinning speed was changed to /min. Tmax, (bnδ) max and crystallinity (
The values of Xc) and birefringence (Δn) were measured, and as shown in Table 1, it was confirmed that each of them was within the range defined by the present invention.

物性測定の結果を第2表にあわせて示す。巻取り速度の
、増加にもかかわらず、製水収縮率の値は依然として高
く、伸度、染色性ともさらに好しい値である。
The results of physical property measurements are also shown in Table 2. Despite the increase in the winding speed, the water production shrinkage rate remains high, and both elongation and dyeability are more favorable values.

実施例3 通常の重合方法で、2,2−ビス(4−(2−ヒドロエ
トキシ)フェニル〕グロバンを10モルチ共重合させた
PETポリマー(融点235℃、極限粘度0.65)を
、実施例2に記載した方法のうち紡口ヘッドの温度を2
90℃と[7た以外は同様な方法で紡糸し、繊維とした
。Tmax、(−δ)m&X及び結晶化度(xc)と複
屈折率(△n)の値を測定し、それぞれ本発明で規定す
る範囲に存在する事を確認した(第1表参照)。
Example 3 A PET polymer (melting point 235°C, intrinsic viscosity 0.65) prepared by copolymerizing 10 mol of 2,2-bis(4-(2-hydroethoxy)phenyl)globan by a conventional polymerization method was used in Example 3. Among the methods described in 2, the temperature of the spindle head is set to 2.
Fibers were obtained by spinning in the same manner except at 90°C. The values of Tmax, (-δ)m&X, crystallinity (xc), and birefringence (Δn) were measured, and it was confirmed that each of them was within the range defined by the present invention (see Table 1).

物性測定の結果を第2表に示す。第2表より明らかな通
シ、製水収縮率の値が高く、通常の延伸ポリエステル繊
維と同程度の範囲にあシ、かつ強度、伸度とも充分な値
を示している。さらに、60分間沸騰状態の吸尽率の値
が、80%をはるかに上回り、常圧沸騰状態で充分濃色
に染色されている事がわかる。           
         、(実施例4 通常の重合方法で、1,4−シクロヘキサンジメタツー
ルと2,2−ビスC4−(2−ヒドロエトキシ)フェニ
ル〕プロパンを5モルチツつ共重合させたPETポリマ
ー(融点 230℃、極限粘度0.66)を得、当該ポ
リエステルを実施例2と同様な方法で紡糸し、繊維にし
た。Tmax、(tanδ) max  及び結晶化度
(Xc )と複屈折率(△n)の値を測定し、それぞれ
本発明で規定する範囲に存在する事を確認した(第1表
参照)。
The results of physical property measurements are shown in Table 2. It is clear from Table 2 that the values of throughput and water shrinkage are high, and the reeds are in the same range as ordinary drawn polyester fibers, and both strength and elongation are sufficient. Furthermore, the exhaustion rate in boiling for 60 minutes far exceeds 80%, indicating that dyeing is sufficiently deep under normal pressure boiling.
, (Example 4) A PET polymer (melting point: 230 °C , intrinsic viscosity 0.66), and the polyester was spun into fibers in the same manner as in Example 2. Tmax, (tan δ) max, crystallinity (Xc), and birefringence (Δn) The values were measured and it was confirmed that each of them was within the range defined by the present invention (see Table 1).

実施例1〜3の場合と同様に、製水収縮率の値が適当な
値であシ、かつ常圧沸騰状態で充分濃色に染色されてい
る事がわかる(第2表参照)。
As in Examples 1 to 3, it can be seen that the water production shrinkage rate is an appropriate value, and that the dyeing is sufficiently deep in the normal pressure boiling state (see Table 2).

実施例5 通常の重合方法で、1,4−シクロヘキサンジメタツー
ルを5モルチ共重合させたPETポリマー(融点238
℃、極限粘度0.68)を実施例2と同様な方法で紡糸
し、繊維にした。T rnax %(tIIIIδ) 
max及び結晶化度(Xc)と複屈折率(△n)の値を
測定し、第1表に示す通シそれぞれ本発明で規定する範
囲に存在する事を確認した。
Example 5 A PET polymer (melting point 238
°C, intrinsic viscosity 0.68) was spun into fibers in the same manner as in Example 2. Trnax% (tIIIδ)
The values of max, crystallinity (Xc), and birefringence (Δn) were measured, and it was confirmed that each of the values shown in Table 1 was within the range defined by the present invention.

物性測定の結果を第2表に示す。第2表よシ明らかな通
り、製水収縮率の値が高く、通常の延伸ポリエステル繊
維と同程度の範囲にあり、かつ強度、伸度とも充分な値
を示している。さらに、60分間沸騰状態の吸尽率の値
が、80%をはるかに上回り、常圧沸騰状態で充分濃色
に染色されている事がわかる。又、耐光堅牢性も良好で
あったO 実施例6 通常の重合方法で、1,4−シクロヘキサンジメタツー
ルを15モルチ共重合させたPETポリマー(融点22
8℃、極限粘度0.67)を実施例2と同様な方法で紡
糸し、繊維にした。Tmax、(鋤δ) max及び結
晶化度(Xc)と複屈折率(Δn)の値を測定し、それ
ぞれ本発明で規定する範囲に存在する事を確認した(第
1表参照)。
The results of physical property measurements are shown in Table 2. As is clear from Table 2, the water production shrinkage rate is high and in the same range as ordinary drawn polyester fibers, and both strength and elongation are sufficient. Furthermore, the exhaustion rate in boiling for 60 minutes far exceeds 80%, indicating that dyeing is sufficiently deep under normal pressure boiling. In addition, the light fastness was also good. Example 6 A PET polymer (melting point 22
(8°C, intrinsic viscosity 0.67) was spun into fibers in the same manner as in Example 2. The values of Tmax, (δ)max, crystallinity (Xc), and birefringence (Δn) were measured, and it was confirmed that each of them was within the range defined by the present invention (see Table 1).

物性測定の結果を第2表にあわせて示す。第2表より明
らかな通シ、製水収縮率の値が従来の高速紡糸では得ら
れなかった高い値を示し、かつ常圧沸騰状態で充分濃色
に染色されている事がゎかる0 比較例1 実施例1の共重合ポリマーを、溶融温度282℃で実施
例1に記載の紡口を用いて、溶融押し出し、冷却部を経
て800 m/minで巻取った。さらに該繊維を未延
伸糸とし、ただちに3.617倍に80℃の温度で延伸
した。
The results of physical property measurements are also shown in Table 2. It is clear from Table 2 that the water production shrinkage rate shows a high value that could not be obtained with conventional high-speed spinning, and that the dyeing is sufficiently deep under normal pressure boiling conditions.0 Comparative Example 1 The copolymer of Example 1 was melt-extruded using the spinneret described in Example 1 at a melting temperature of 282°C, passed through a cooling section, and wound up at 800 m/min. Further, the fiber was made into an undrawn yarn, and immediately drawn to a ratio of 3.617 times at a temperature of 80°C.

Tmax、(−δ) max の値を測定したところ本
発明で規定する範囲に存在しない事が分った(第1表参
照)。
When the values of Tmax and (-δ) max were measured, it was found that they were not within the range defined by the present invention (see Table 1).

物性測定の結果を第2表に示す。第2表よシあきらかな
ように染色性の向上は少なく、実用上、高圧染色かキャ
リアー染色法を用いる必要がある。
The results of physical property measurements are shown in Table 2. As is clear from Table 2, the improvement in dyeability is small, and in practice, it is necessary to use high-pressure dyeing or carrier dyeing.

比較例2 テレフタル酸とエーチレングリコールとから々るポリエ
チレンテレフタレート(融点250℃、極限粘度0.7
0)を、溶融温度を292℃とした以外は実施例1と同
様な方法で紡糸した。Tmax。
Comparative Example 2 Polyethylene terephthalate made from terephthalic acid and ethylene glycol (melting point 250°C, intrinsic viscosity 0.7
0) was spun in the same manner as in Example 1 except that the melting temperature was 292°C. Tmax.

(t、Inδ) ma x及び結晶化度(Xc)と複屈
折率(△n)の値を測定したところ本発明で規定する範
囲に存。
The values of (t, Inδ) max, crystallinity (Xc), and birefringence (Δn) were measured and found to be within the range specified by the present invention.

在しない事が分った(第1表参照)。It was found that there was no such thing (see Table 1).

物性測定の結果を第2表に示す。第2表よりあきらかな
ように染色性に関しては、まだ常圧沸騰状態で充分濃色
に染色されていない。さらに湧水収縮率の値が極端に低
い。
The results of physical property measurements are shown in Table 2. As is clear from Table 2, in terms of dyeability, it has not yet been dyed in a sufficiently deep color under normal pressure boiling conditions. Furthermore, the value of spring water contraction rate is extremely low.

比較例3 比較例2のポリマーを、巻取り速度をsooom/mi
nとする以外は、比較例2と同様な方法で紡糸した□ 
Tmax 、 (−δ)max及び結晶化度(Xc)と
複屈折率(△n)の値を測定したところ本発明で規定す
る範囲に存在しない事が分った(第1@参照)。
Comparative Example 3 The polymer of Comparative Example 2 was wound at a winding speed of sooom/mi.
□ Spun in the same manner as in Comparative Example 2 except for n.
When the values of Tmax, (-δ)max, crystallinity (Xc), and birefringence (Δn) were measured, it was found that they were not within the range specified by the present invention (see No. 1 @).

物性測定の結果を第2表に示す。第2表より明らかな通
シ、染色性に関しては、比較例2より若干向上するもの
の、まだ常圧沸騰状態で充分淡色に染色されていない。
The results of physical property measurements are shown in Table 2. As shown in Table 2, the dyeability and dyeability are slightly improved compared to Comparative Example 2, but the dyeing is still not light enough under normal pressure boiling conditions.

さらに、湧水収縮率の値が低下する等の欠点が顕在化す
る。
Furthermore, drawbacks such as a decrease in the spring water shrinkage rate become apparent.

比較例4 アジピン酸を10モルチ共重合させたポリエチレンテレ
フタレートを実施例2に示す方法で紡糸した(融点24
0℃、極限粘度0.67 ) □ Tmax、(−δ)
maxの値が本発明で規定する範囲に存在しく第1表参
照)、従って常圧沸騰状態で充分濃色に染色されている
が(第2表参照)、複屈折率(△n)と結晶化度(Xc
)の値が本発明で規定する範囲に存在せず(第1表参照
)、湧水収縮率の値が低い事がわかる(第2表参照)。
Comparative Example 4 Polyethylene terephthalate copolymerized with 10 mol of adipic acid was spun by the method shown in Example 2 (melting point 24
0°C, intrinsic viscosity 0.67) □ Tmax, (-δ)
The value of max is within the range specified by the present invention (see Table 1), and therefore the dyeing is sufficiently deep in the normal pressure boiling state (see Table 2), but the birefringence (△n) and crystal degree (Xc
) is not within the range defined by the present invention (see Table 1), and it can be seen that the spring water shrinkage rate is low (see Table 2).

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTmaxと(mδ)maxとの関係を示す図、
第2図は−δ一温度曲線を示すグラフ、第3図はポリエ
チレンテレフタレート繊維のX線回折強度曲線を示すグ
ラフである。 特許出願人 旭化成工業株式会社 特許出願代理人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士 吉 1)維 夫 弁理士 山  口 昭 之 第1図 90    100   110   120   1
30I。 Tmax(C) 手続補正書(自発) 紹和59年4月)弔日 特許庁長官若杉和夫殿 1、事件の表示 昭和58年特許願第068333号 2、発明の名称 易染性& リエステル繊維 3、補正をする者 事件との関係  特許出願人 名称 (003)旭化成工業株式会社 4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号5、
補正の対象 (1)  明細書の「特許請求の範囲」の欄6、補正の
内容 (1)特許請求の範囲を別紙の通9補正する。 (2)明細書第4頁、7行目、「特公昭34−1097
号」とあルヲ「特公昭34−10497号」に補正する
。 7、添附書類の目録 補正特許請求の範囲     1通 ′1 2、特許請求の範囲 1、繰返し単位の80〜98係がエチレンテレフタレー
トからなる共重合ポリエステル繊維であって、結晶化度
Xcと複屈折率Δnとのあいだに、下記の(1)式の関
係を満足し、更に測定周波数110Hzにおける力学的
損失正接−δが最大を示す温度Tmax及び−δの最大
値(−δ)maxが下記の(2)式及び(3)式で示さ
れる範囲に存在することを特徴とする易染性ポリエステ
ル繊維。 (1)Xc(%)<−710xΔn+110(2)  
90℃<Tmax≦107℃(3)  0.135<(
−δ)max≦0.3002、共重合成分が、1,4−
シクロヘキサンジメタツール及び/又は2.2−ビスC
4−C2−ヒドロエトキシ)フェニル〕ゾロノ々ンであ
る特許請求の範囲第1項記載のポリエステル繊維。
FIG. 1 is a diagram showing the relationship between Tmax and (mδ)max,
FIG. 2 is a graph showing a -δ temperature curve, and FIG. 3 is a graph showing an X-ray diffraction intensity curve of polyethylene terephthalate fiber. Patent Applicant: Asahi Kasei Kogyo Co., Ltd. Patent Attorney: Akira Aoki, Patent Attorney: Kazuyuki Nishidate, Patent Attorney: Yoshi 1) Io, Patent Attorney: Akira Yamaguchi, Figure 1: 90 100 110 120 1
30I. Tmax (C) Procedural Amendment (Spontaneous) April 1998) Memorial Day, Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case, Patent Application No. 068333, filed in 1982,2, Name of the invention, Easy dyeability & lyester fiber3 , Relationship with the person making the amendment Patent applicant name (003) Asahi Kasei Corporation 4, Agent address 5-8-10 Toranomon-chome, Minato-ku, Tokyo 105
Subject of amendment (1) Column 6 of "Claims" of the specification, contents of amendment (1) The scope of claims will be amended in Annex 9. (2) Page 4, line 7 of the specification, “Special Publication No. 34-1097
No. 10497” and “Special Publication No. 34-10497”. 7. Amended list of attached documents Claims 1 '1 2. Claim 1. A copolyester fiber in which the 80th to 98th repeating units are ethylene terephthalate, and the crystallinity Xc and birefringence are The temperature Tmax at which the mechanical loss tangent -δ at a measurement frequency of 110 Hz is maximum and the maximum value (-δ)max of -δ are as follows: An easily dyeable polyester fiber characterized by being present in the ranges shown by formulas (2) and (3). (1) Xc (%) <-710xΔn+110 (2)
90℃<Tmax≦107℃(3) 0.135<(
-δ)max≦0.3002, copolymerization component is 1,4-
Cyclohexane dimetatool and/or 2,2-bisC
The polyester fiber according to claim 1, which is 4-C2-hydroethoxy)phenyl]zolonone.

Claims (1)

【特許請求の範囲】 1、繰返し単位の80〜98%がエチレンテレフタレー
トからなる共重合ポリエステル繊維であって、結晶化夏
Xcと複屈折率△nとのあいだに、下記の(1)式の関
係を満足し、更に測定周波数110Hzにおける力学的
損失正接−δが最大を示す温度Tmax及び−δの最大
値(勉δ) ma xが下記の(2)式及び(3)式で
される範囲に存在すること’r%徴とする易染性ポリエ
ステル繊維。 (1)  Xc(%)<−710XΔn+ 110(2
)90℃< Tm&x≦107℃ (3)0.135<(ta++δ) max≦o、ao
。 2、共重合成分が、1,4−シクロヘキサンジメタツー
ル及び/又は2,2−ビスC4−<2−ヒドロエトキシ
)フェニル〕プロパンである特許請求の範囲第1項記載
のポリエステル繊維。
[Claims] 1. A copolymerized polyester fiber in which 80 to 98% of the repeating units are ethylene terephthalate, and the following formula (1) is present between the crystallization temperature Xc and the birefringence △n. The temperature Tmax that satisfies the relationship and also exhibits the maximum mechanical loss tangent -δ at a measurement frequency of 110 Hz and the range in which the maximum value of -δ (study δ) max is determined by the following equations (2) and (3). Easily dyeable polyester fiber with the presence of 'r% characteristic. (1) Xc(%)<-710XΔn+ 110(2
)90℃<Tm&x≦107℃ (3) 0.135<(ta++δ) max≦o, ao
. 2. The polyester fiber according to claim 1, wherein the copolymerization component is 1,4-cyclohexane dimetatool and/or 2,2-bisC4-<2-hydroethoxy)phenyl]propane.
JP6833383A 1982-11-18 1983-04-20 Easily dyeable polyester fiber Granted JPS59199814A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6833383A JPS59199814A (en) 1983-04-20 1983-04-20 Easily dyeable polyester fiber
EP83111427A EP0109647B2 (en) 1982-11-18 1983-11-15 Easily dyeable copolyester fiber and process for preparing the same
DE8383111427T DE3381318D1 (en) 1982-11-18 1983-11-15 EASILY COLORABLE COPOLYESTER FIBER AND METHOD FOR PRODUCING THE SAME.
KR1019830005452A KR870000362B1 (en) 1982-11-18 1983-11-17 Irregular dyeing polyester fiber and its producing method
US06/804,229 US4668764A (en) 1982-11-18 1985-12-02 Easily dyeable copolyester fiber and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6833383A JPS59199814A (en) 1983-04-20 1983-04-20 Easily dyeable polyester fiber

Publications (2)

Publication Number Publication Date
JPS59199814A true JPS59199814A (en) 1984-11-13
JPH0373654B2 JPH0373654B2 (en) 1991-11-22

Family

ID=13370801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6833383A Granted JPS59199814A (en) 1982-11-18 1983-04-20 Easily dyeable polyester fiber

Country Status (1)

Country Link
JP (1) JPS59199814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228436A (en) * 1985-07-29 1987-02-06 旭化成株式会社 Base cloth for adhesive tape excellent in tearing property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484948B2 (en) * 2014-07-30 2019-03-20 東レ株式会社 Sea-island composite fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832620A (en) * 1971-06-11 1973-05-01
JPS4843670A (en) * 1971-09-29 1973-06-23
JPS57121613A (en) * 1981-01-19 1982-07-29 Asahi Chem Ind Co Ltd Polyester fiber dyeable at normal pressure
JPS57161121A (en) * 1981-03-31 1982-10-04 Asahi Chem Ind Co Ltd Easily dyeable polyethylene terephthalate fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832620A (en) * 1971-06-11 1973-05-01
JPS4843670A (en) * 1971-09-29 1973-06-23
JPS57121613A (en) * 1981-01-19 1982-07-29 Asahi Chem Ind Co Ltd Polyester fiber dyeable at normal pressure
JPS57161121A (en) * 1981-03-31 1982-10-04 Asahi Chem Ind Co Ltd Easily dyeable polyethylene terephthalate fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228436A (en) * 1985-07-29 1987-02-06 旭化成株式会社 Base cloth for adhesive tape excellent in tearing property

Also Published As

Publication number Publication date
JPH0373654B2 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
KR101412284B1 (en) Liquid crystalline polyester fiber and process for production of the same
US4745142A (en) Stainproof polyester fiber
EP0056963B2 (en) Polyester fiber dyeable under normal pressure and process for the production thereof
EP0109647B1 (en) Easily dyeable copolyester fiber and process for preparing the same
US5567796A (en) Polyester fiber
JPWO2018147251A1 (en) Heat-adhesive core-sheath composite fiber and tricot knitted fabric
JPS59199814A (en) Easily dyeable polyester fiber
US3385831A (en) Textile fibers of polyethylene terephthalate/hexahydroterephthalate copolyester
JPS6028515A (en) Conjugated polyester filament
KR101976154B1 (en) Cationic-dyeable Polyester composite yarn with excellent elasticity and Method Preparing Same
JPS5928672B2 (en) modified polyester fiber
JP3128363B2 (en) Heat-fusible composite fiber
JP2973645B2 (en) Polyester fiber
JP3583402B2 (en) Polyester fiber
JPS60194114A (en) Polyester fiber dyeable under normal pressure
JP2682141B2 (en) High-strength modified polyester fiber and seat belt made of the same
JPH08269820A (en) Easily dyeable modified polyester fiber and its production
JP3069426B2 (en) Method for producing cationic dyeable polyester false twisted yarn
JP2005273115A (en) Easily dyeable polyester fiber and method for producing the same
JP2000355831A (en) Polyester fiber with improved dyeability and its production
JPH08113826A (en) Highly shrinkable fiber and its production
JPH02200811A (en) Fluorescent synthetic fiber
JPH0373653B2 (en)
JPS61245306A (en) Polyester raw material yarn for providing napped cloth
JPH06116813A (en) Production of modified polyester fiber capable of being dyed with basic dyestuff