JPS5919969B2 - Online cooling method for thick steel plates - Google Patents

Online cooling method for thick steel plates

Info

Publication number
JPS5919969B2
JPS5919969B2 JP51002126A JP212676A JPS5919969B2 JP S5919969 B2 JPS5919969 B2 JP S5919969B2 JP 51002126 A JP51002126 A JP 51002126A JP 212676 A JP212676 A JP 212676A JP S5919969 B2 JPS5919969 B2 JP S5919969B2
Authority
JP
Japan
Prior art keywords
cooling
steel plate
deformation
plate
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51002126A
Other languages
Japanese (ja)
Other versions
JPS5285909A (en
Inventor
計夫 国岡
峻一 杉山
寛 神尾
克之 菅
千秋 大内
高司 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP51002126A priority Critical patent/JPS5919969B2/en
Publication of JPS5285909A publication Critical patent/JPS5285909A/en
Publication of JPS5919969B2 publication Critical patent/JPS5919969B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 この発明は、厚鋼板の熱間圧延における最終圧延直後、
即ち厚鋼板が相当高温にある状態からこの鋼板を5〜2
0°C/SeCg)冷却速度で加速冷却するに際して鋼
板の冷却歪を最小にするような厚鋼板のオンライン冷却
方法に関する。
[Detailed Description of the Invention] This invention provides the following features: Immediately after final rolling in hot rolling of thick steel plates,
In other words, from a state where the thick steel plate is at a fairly high temperature, this steel plate is
The present invention relates to an online cooling method for a thick steel plate that minimizes cooling distortion of the steel plate during accelerated cooling at a cooling rate of 0°C/SeCg).

従来から鋼を強靭にする目的で、変態点以上に加熱され
た状態の鋼を急冷すること(含焼入れ)が行われている
が、その多くはオフラインのもので、即ち、鋼の性質を
改善する目的で鋼を加熱炉で一定温度に加熱後急冷する
もので、熱間圧延直後、鋼板が未だ高温状態にあるとこ
ろから急冷するオンラインでの急冷が開発されてからは
日も未だ浅い。
For the purpose of making steel tougher, quenching (quenching) of heated steel above its transformation point has traditionally been carried out, but most of this is offline, that is, it improves the properties of steel. In order to do this, the steel is heated to a constant temperature in a heating furnace and then rapidly cooled.On-line quenching, which rapidly cools the steel sheet while it is still at a high temperature immediately after hot rolling, has only recently been developed.

このオンラインでの冷却で考えねばならぬことの1つに
は、熱間圧延機で圧延され圧延ラインを流れる鋼板には
急冷すべきものもあり、急冷はせず通常の空冷でよいも
のもあるので後者が圧延ラインを通過するに際して冷却
用ヘッダーが鋼板の走行に邪魔にならないような冷却方
法を採用しなければならないことである。
One thing to consider when using online cooling is that some steel plates that are rolled in a hot rolling mill and flow through a rolling line should be rapidly cooled, while others may be cooled by normal air cooling without rapid cooling. When the latter passes through the rolling line, a cooling method must be adopted in which the cooling header does not interfere with the running of the steel plate.

特に厚板圧延機で圧延される熱間圧延鋼板のうちには、
所謂コントロールトローリングしたもので代表されるよ
うに、大きく変形した形状で圧延ラインを通るものがあ
り、そのためオンラインでの厚鋼板の冷却では鋼板の上
面の冷却方法が問題となる。
In particular, hot-rolled steel plates rolled by plate rolling mills are
As typified by so-called controlled trawling, some rolls pass through the rolling line in a greatly deformed shape, and for this reason, when cooling thick steel plates online, the method of cooling the top surface of the steel plate becomes an issue.

即ち、上面冷却用ヘッダーを冷却すべき鋼板が通るとき
だけ鋼板表面から所定の高さのところまで下ろし、そう
でない鋼板が通るときには鋼板の走行に邪魔にならぬ位
置へと移動させることは作業が極めて繁雑になるばかり
でなく設備の保守も大変である。
That is, it is difficult to lower the top cooling header to a predetermined height from the surface of the steel plate only when the steel plate to be cooled passes, and to move it to a position where it does not interfere with the running of the steel plate when other steel plates are passing. Not only is it extremely complicated, but the maintenance of the equipment is also difficult.

また、鋼板上面冷却用ヘッダーを常時定位置に位置させ
、オンラインで冷却すべき鋼板が通過するときだけこれ
を作動させようとする場合には、上面冷却用ヘッダーと
鋼板との距離を充分にとる必要があることなどから、鋼
板の上面冷却に関しては冷却方法及び冷却能力に大きな
制約があった。
In addition, if the header for cooling the top surface of a steel plate is always located in a fixed position and is to be activated only when a steel plate to be cooled online passes, a sufficient distance should be maintained between the header for cooling the top surface of the steel plate and the steel plate. Due to this necessity, there have been major restrictions on the cooling method and cooling capacity for cooling the top surface of the steel plate.

このようなことから実質上オンラインでの微細な冷却能
力コントロールをすることは出来ず、鋼板の冷却歪また
は鋼板内機械値のバラツキを最小にするような冷却コン
トロールは不可能であった。
For these reasons, it is virtually impossible to perform fine cooling capacity control online, and it has been impossible to perform cooling control that minimizes the cooling distortion of the steel plate or the variation in mechanical values within the steel plate.

しかしながら、オンラインでの急冷は、鋼板の再加熱が
不用であるとともに、生産性の向上、工程の簡素化とい
った多大な利点があるので、オンラインで微細な冷却能
力コントロールが出来る冷却方法の開発が望まれている
However, online rapid cooling does not require reheating the steel plate, and has many advantages such as improved productivity and simplified processes, so it is desirable to develop a cooling method that can finely control cooling capacity online. It is rare.

なお、現在ホットストリップミルでは、ランナウトテー
ブルでラミナーフロー冷却が行われているが、テンショ
ンがかかった状態での冷却が大部分であること、仕上り
温度が高いこと、更に、冷却後巻取りを行うため冷却に
よる板変形はほとんど問題とならない。
Currently, hot strip mills use laminar flow cooling on a runout table, but most of the cooling is done under tension, the finishing temperature is high, and winding is required after cooling. Therefore, plate deformation due to cooling is hardly a problem.

また、厚板圧延後の冷却は、現在シャワーで行っており
、その冷却能力は通常高々2〜3 ”C/Sec程度で
材質の向上というよりもむしろ冷却時間の短縮を計るた
めに使われているのが現状である。
In addition, cooling after rolling thick plates is currently performed using showers, and the cooling capacity is usually around 2 to 3"C/Sec at most, and it is used to shorten the cooling time rather than to improve material quality. The current situation is that

オンラインでの急冷(含焼入れ)は、前述のように圧延
ラインを通るあらゆる鋼板のうち最も変形量の大きなも
のを考慮に入れて上面冷却用ヘッダーの高さを充分高く
とるか、または、圧延による板変形を強制的に例えばピ
ンチロールによりおさえて冷却しなければならないなど
の制約条件がある。
On-line quenching (quenching) can be achieved either by setting the height of the top cooling header sufficiently high, taking into account the steel plate with the largest amount of deformation among all the steel plates passing through the rolling line, or by rolling it. There are constraints such as the need to cool the plate by forcibly suppressing the plate deformation using, for example, pinch rolls.

圧延ラインではオンライン冷却を行う熱処理材と、冷却
を行わない普通材の両方が通るので圧延による板変形を
強制的におさえて冷却する方法は、上面冷却用ヘッダー
の高さを充分高くとっておく方法にくらべて、コスト面
でも操業面でも不利であるので、オンラインで急冷を行
う場合には、圧延ラインを通る鋼板の変形量以上の高さ
に上面冷却用ヘッダーを設置して冷却しなければならな
いが、従来厚板用熱間圧延機で製造される鋼板の変形量
は大きいものでローラーレベルから上方に1000〜1
500mmにも達することから被冷却鋼板の」二面は、
ラミナーフローで冷却するのが適切である。
In the rolling line, both heat-treated material that undergoes online cooling and ordinary material that does not undergo cooling pass through it, so the method of cooling the material by forcibly suppressing plate deformation due to rolling is to keep the height of the top cooling header sufficiently high. Compared to other methods, it is disadvantageous in terms of cost and operation, so when performing online rapid cooling, a top cooling header must be installed at a height that is higher than the amount of deformation of the steel plate passing through the rolling line. However, the amount of deformation of steel plates produced by conventional thick plate hot rolling mills is large, and the amount of deformation is 1000 to 1
Since the thickness reaches 500 mm, the two sides of the steel plate to be cooled are
Cooling by laminar flow is appropriate.

なお、この場合、他の冷却方法として、例えばスプレー
、ミストといったものが考えられるが、被冷却鋼板との
距離が1000〜1500mmもあると極端に冷却能力
が低下するので被冷却鋼板の上面冷却には実質上使用で
きない。
In this case, other cooling methods such as spraying or misting can be considered, but if the distance from the steel plate to be cooled is 1000 to 1500 mm, the cooling capacity will be extremely reduced, so it is not recommended to use the top surface cooling method of the steel plate to be cooled. is practically unusable.

一方、鋼板下面の冷却については、冷却水が所謂層流を
なして流れるラミナーフローでは重力の作用に打勝って
鋼板下方に位置する下面冷却用ヘッダーから鋼板下面に
水を衝突せしめることは不可能であるので、鋼板下面冷
却方法としては、ヘッダーに相当圧力をかけ、水滴の形
で水を鋼板下面に衝突させる冷却方法、即ち、スプレー
又はミスト冷却方法をとる必要がある。
On the other hand, regarding cooling of the lower surface of the steel plate, in the so-called laminar flow where cooling water flows, it is impossible to overcome the action of gravity and cause water to collide with the lower surface of the steel plate from the lower surface cooling header located below the steel plate. Therefore, as a method for cooling the lower surface of the steel plate, it is necessary to use a cooling method in which a considerable pressure is applied to the header and water in the form of water drops collides with the lower surface of the steel plate, that is, a spray or mist cooling method.

この発明は、上述のような点に鑑みなされたもので、熱
間圧延に引続いて高温状態にある厚鋼板を制御冷却する
オンライン冷却方法において、前記厚鋼板上面をラミナ
ーフローで冷却し、前記厚鋼板下面をスプレー又はミス
トで冷却し、前記厚鋼板下面と厚鋼板上面の冷却に用い
る冷却水の水量比を1.5〜4,0とするとともに、前
記ラミナーフローのヘッダー圧力を0.5 kg/i
G以下とし、しかも、冷却停止温度を400℃以上とす
ることに特徴を有する。
The present invention has been made in view of the above points, and includes an online cooling method for controllingly cooling a thick steel plate that is in a high temperature state following hot rolling, in which the upper surface of the thick steel plate is cooled by laminar flow, and the upper surface of the thick steel plate is cooled by laminar flow. The lower surface of the thick steel plate is cooled by spray or mist, and the water ratio of the cooling water used for cooling the lower surface of the thick steel plate and the upper surface of the thick steel plate is set to 1.5 to 4.0, and the header pressure of the laminar flow is set to 0.5. kg/i
G or less, and the cooling stop temperature is 400° C. or more.

この発明を実施例により更に詳しく説明する。This invention will be explained in more detail with reference to Examples.

冷却後の板の変形量(以下本明細書では冷却後の鋼板の
変形を長さ1m当りの変形量として定量・ 的に表現す
るものとする。
Amount of deformation of the steel plate after cooling (Hereinafter, in this specification, the deformation of the steel plate after cooling will be quantitatively expressed as the amount of deformation per 1 m of length.

)が5mrn/m以下であれば、レベラーでの歪矯正は
必要ない。
) is 5 mrn/m or less, distortion correction using a leveler is not necessary.

しかし変形量がこれより大きい場合には、レベラーでの
矯正が必要となり、更に変形量が大きくなるとレベラー
での矯正量が増え、加工硬化にもとづく材質劣下と板肉
各部における機械的性質のバラツキ増加を招くばかりで
なく、矯正しきれなくなる場合も生じる。
However, if the amount of deformation is larger than this, it will be necessary to correct it with a leveler, and if the amount of deformation increases further, the amount of correction with a leveler will increase, resulting in material deterioration due to work hardening and variations in mechanical properties in each part of the plate. Not only does this result in an increase, but it may also become impossible to correct.

従って、鋼板の変形量を小さくすることは、板肉での機
械値のバラツキを小さくすることにもなる。
Therefore, reducing the amount of deformation of the steel plate also reduces the variation in mechanical values in the plate thickness.

第1図には、19關X1500miX’3000mmの
鋼板をオンライン冷却後無矯正の状態における変形量と
、機械的性質のうち引張り強さのバラツキとの関係が示
されている。
FIG. 1 shows the relationship between the amount of deformation of a 19 x 1500 mi x 3000 mm steel plate in an unstraightened state after online cooling and the variation in tensile strength among mechanical properties.

第1図から明らかなように、鋼板の変形量を小さくする
ことは、レベラー矯正を必要とせず、たとえ必要と1
してもその矯正量を極く小さくすることができるのであ
る。
As is clear from Figure 1, reducing the amount of deformation of the steel plate does not require leveler correction;
However, the amount of correction can be made extremely small.

また、板肉での引張り強さのバラツキを小さくすること
ができ、安定した製品とすることができるという利点が
ある。
Further, there is an advantage that the variation in tensile strength of the plate thickness can be reduced, and a stable product can be obtained.

鋼板の冷却による変形は、鋼板の上面及び下面)の冷却
能力差から生じる。
Deformation due to cooling of a steel plate is caused by the difference in cooling capacity between the upper and lower surfaces of the steel plate.

この鋼板上下面冷却能力を支配する要因はいろいろ考え
られるが影響力が大きいものとしては鋼板の上下面水量
比が挙げられる。
There are various factors that can be considered to control the cooling capacity of the upper and lower surfaces of the steel plate, but one that has a large influence is the water volume ratio of the upper and lower surfaces of the steel plate.

第2図には、オンライン冷却で鋼板の変形が問題となら
ない程度で冷却しうると考えられる最小板厚10mmの
鋼板について常温まで急冷を行ったときの鋼板の上下面
水量比、即ち、鋼板下面側全冷却水量/鋼板上面側全冷
却水量(以下この比をRと云う)と板変形量との関係が
示されている。
Figure 2 shows the water volume ratio of the upper and lower surfaces of the steel plate when rapidly cooling the steel plate to room temperature with a minimum thickness of 10 mm, which is thought to be able to be cooled to the extent that deformation of the steel plate does not become a problem during online cooling, that is, the lower surface of the steel plate. The relationship between the total amount of cooling water on the side/total amount of cooling water on the top side of the steel plate (hereinafter this ratio will be referred to as R) and the amount of plate deformation is shown.

なお、第5図の冷却停止温度と板変形量の関係図で示さ
れるように、板厚が厚くなるほど同一条件で冷却した場
合得られる鋼板の変形量は少くなる。
As shown in the relationship between the cooling stop temperature and the amount of plate deformation in FIG. 5, the thicker the plate, the smaller the amount of deformation of the steel plate obtained when cooling under the same conditions.

第2図から明らかなように、変形量が5mm/m以下の
範囲を満足するのは、板厚10間以上では、1.5≦R
≦4.0の範囲であり、この範囲の変形量であれば前述
のようにレベラー矯正は不要となる。
As is clear from Figure 2, the amount of deformation that satisfies the range of 5 mm/m or less is 1.5≦R for plate thicknesses of 10 mm or more.
≦4.0, and if the amount of deformation is within this range, leveler correction is not necessary as described above.

従って、鋼板の上下面水量比は1.5〜4.0とするの
が良い。
Therefore, it is preferable that the water ratio between the upper and lower surfaces of the steel plate is 1.5 to 4.0.

冷却水量を増すと冷却能力が上がるが、水量を増してい
くにしたがって冷却能力が飽和してくることが知られて
いる。
It is known that increasing the amount of cooling water increases the cooling capacity, but as the amount of water increases, the cooling capacity becomes saturated.

このように冷却水量を増すということは、ヘッダー圧力
を上げるということであるが、ラミナーフローヘッダー
の圧力は、従来はラミナーフローとはサクション、即ち
ヘッダー圧力0.0 kg/air Gで流れるものだ
という考え方であったが、近年ラミナーフローの水量を
コントロールして冷却能力をコントロールすることが考
えられ始め、このためにヘッダー圧力を高めるようなヘ
ッダー構造が開発され、同じヘッダーで広い水量範囲に
渡ってラミナーフローの維持コントロールができるよう
になってきている。
Increasing the amount of cooling water in this way means increasing the header pressure, but the pressure in the laminar flow header was conventionally known as laminar flow, which is a suction flow, that is, a header pressure of 0.0 kg/air G. However, in recent years, people have begun to consider controlling the cooling capacity by controlling the amount of water in laminar flow, and for this purpose header structures that increase header pressure have been developed, making it possible to use the same header over a wide range of water amounts. It has become possible to maintain and control laminar flow.

例えば、同一出願人が特願昭49−109586号とし
て提案した、ノズル途中に絞りを入れたものがある。
For example, there is a nozzle in which an aperture is inserted in the middle, which was proposed by the same applicant in Japanese Patent Application No. 109586/1986.

このようにノズル途中に絞りを入れると、広範囲に渡っ
てラミナーフローの維持が可能になるとともに、ヘッダ
ー圧力を高めることができ、しかも、ヘッダー長手方向
に渡って水量を均一に噴射することができる。
Inserting a restriction in the middle of the nozzle in this way makes it possible to maintain laminar flow over a wide range, increase header pressure, and spray water evenly across the length of the header. .

第3図には、ノズル径/絞り径−1,5〜3.0の範囲
でヘッダー圧力を変えて片面冷却を行い、このときのヘ
ッダー圧力と冷却速度との関係が示されている。
FIG. 3 shows the relationship between the header pressure and the cooling rate when single-sided cooling is performed by changing the header pressure in the range of nozzle diameter/aperture diameter -1.5 to 3.0.

第3図から明らかなように、ヘッダー圧力は、0.4k
y/iG以上では、冷却速度はほぼ飽和し、多少安全を
見込んでも0.5kg/critG以上圧力を上げても
実質上効果はかわらない。
As is clear from Figure 3, the header pressure is 0.4k
At y/iG or more, the cooling rate is almost saturated, and even if the pressure is increased by 0.5 kg/critG or more, the effect does not change substantially even if some safety is considered.

従って、ラミナーフロー冷却の場合のヘッダー圧力P
J、は、PI7≦0.5 (kg/Cr?tG )好ま
しくは0.4以下の範囲で冷却するのが適切である。
Therefore, header pressure P in case of laminar flow cooling
It is appropriate that cooling is performed in the range of PI7≦0.5 (kg/Cr?tG), preferably 0.4 or less.

材質向上を目的としてラミナーフローで急冷を行う場合
、板厚が10關以下では局所的に大きな歪を生じること
があること、及び板肉の機械値のバラツキが急激に大き
くなり始めることが実験により確められた。
Experiments have shown that when rapid cooling is performed using laminar flow for the purpose of improving material quality, large local distortions may occur when the plate thickness is less than 10 mm, and the variation in the mechanical values of the plate begins to increase rapidly. Confirmed.

第4図には、冷却速度5〜6℃/SeCにおける板厚と
板肉引張り強さのバラツキとの関係が示されている。
FIG. 4 shows the relationship between plate thickness and variation in plate wall tensile strength at a cooling rate of 5 to 6° C./SeC.

第4図かられかるように板厚が10mm以上では板肉引
張り強さのバラツキは極く少なく安定してくることがわ
かる。
As can be seen from FIG. 4, when the plate thickness is 10 mm or more, the variation in plate tensile strength is extremely small and becomes stable.

一方、冷却停止温度を高くすると鋼板の変形量は小さく
なる。
On the other hand, when the cooling stop temperature is increased, the amount of deformation of the steel plate becomes smaller.

また、1.5≦R≦4.0の範囲で実験した結果、鋼板
の変形量は次式で良く近似できることがわかった。
Further, as a result of experiments in the range of 1.5≦R≦4.0, it was found that the amount of deformation of the steel plate can be well approximated by the following equation.

第5図に示されるように冷却停止温度が400℃以下に
なると急激に鋼板の変形量が大きくなること及び板厚1
0mmで冷却停止温度400°Cとしたときの変形量が
ほぼ5mm/mであることがらt≧10(朋)及びT≧
400 CC) とすることが好ましい。
As shown in Figure 5, when the cooling stop temperature becomes 400°C or lower, the amount of deformation of the steel plate suddenly increases and the plate thickness
Since the amount of deformation is approximately 5 mm/m when the cooling stop temperature is 400°C at 0 mm, t≧10 (tomo) and T≧
400 CC) is preferable.

以上説明したように、この発明によれば、鋼板上面をラ
ミナーフローで、鋼板下面をスプレー又はミストで冷却
し、前記鋼板下面と上面の冷却に用いる冷却水の水量比
、即ち、上下面水量比を1.5〜4.0とするとともに
、前記ラミナーフローのヘッダー圧力を0.5 kg/
i G以下とし、さらに冷却停止温度を400℃以上す
ることにより、冷却中に何ら鋼板を拘束せずして変形の
少ない優れた機械的性質を有する加速冷却鋼板が得られ
るだけでなく、冷却中に厚鋼板の変形が少ないので、鋼
板の変形にもとづく冷却能力の変動も最小限に抑えられ
る結果、得られた原調板肉各部分における機械的性質を
示す特性値のバラツキも極めて少ないものとなるなど工
業上有用な効果がもたらされる。
As explained above, according to the present invention, the upper surface of the steel plate is cooled by laminar flow, the lower surface of the steel plate is cooled by spray or mist, and the ratio of the amount of cooling water used for cooling the lower surface and the upper surface of the steel plate, that is, the water amount ratio of the upper and lower surfaces. is set to 1.5 to 4.0, and the header pressure of the laminar flow is set to 0.5 kg/
i G or less, and by setting the cooling stop temperature to 400°C or higher, not only can an accelerated cooling steel sheet with excellent mechanical properties with less deformation be obtained without restraining the steel sheet during cooling, but also Since there is little deformation of the thick steel plate, fluctuations in the cooling capacity due to the deformation of the steel plate can be minimized, and as a result, there is extremely little variation in the characteristic values that indicate the mechanical properties of each part of the obtained pre-conditioned plate thickness. Industrially useful effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、板変形量と板肉引張り強さのバラツキの関係
を示す図、第2図は、上下水量比と板変形量の関係を示
す図、第3図は、ラミナーフローの場合のヘッダー圧力
と冷却速度との関係を示す図、第4図は、板厚と板肉引
張り強さのパラツキとめ関係を示す図、第5図は、冷却
停止温度と板変形量の関係を示す図である。
Figure 1 is a diagram showing the relationship between the amount of plate deformation and the variation in plate tensile strength, Figure 2 is a diagram showing the relationship between the water and sewage flow ratio and the amount of plate deformation, and Figure 3 is a diagram showing the relationship between the amount of plate deformation and the variation in plate thickness tensile strength. Figure 4 is a diagram showing the relationship between header pressure and cooling rate, Figure 4 is a diagram showing the relationship between plate thickness and plate wall tensile strength, and Figure 5 is a diagram showing the relationship between cooling stop temperature and plate deformation amount. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 熱間圧延に引続いて高温状態にある厚鋼板を制御冷
却するオンライン冷却方法において、前記厚鋼板上面を
ラミナーフローで冷却し、前記厚鋼板下面をスプレー又
はミストで冷却し、前記厚鋼板下面と厚鋼板上面の冷却
に用いる冷却水の水量比を1.5〜4.0とするととも
に、前記ラミナーフローのヘッダー圧力を0.5 kg
/criY G以下とし、しかも、冷却停止温度を40
.0℃以上とすることを特徴とする厚鋼板のオンライン
冷却方法。
1. In an online cooling method for controlled cooling of a thick steel plate in a high temperature state following hot rolling, the upper surface of the thick steel plate is cooled by laminar flow, the lower surface of the thick steel plate is cooled by spray or mist, and the lower surface of the thick steel plate is cooled. The water volume ratio of the cooling water used for cooling the upper surface of the thick steel plate is set to 1.5 to 4.0, and the header pressure of the laminar flow is set to 0.5 kg.
/criY G or less, and the cooling stop temperature is 40
.. An online cooling method for thick steel plates characterized by cooling the steel plate to 0°C or higher.
JP51002126A 1976-01-12 1976-01-12 Online cooling method for thick steel plates Expired JPS5919969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51002126A JPS5919969B2 (en) 1976-01-12 1976-01-12 Online cooling method for thick steel plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51002126A JPS5919969B2 (en) 1976-01-12 1976-01-12 Online cooling method for thick steel plates

Publications (2)

Publication Number Publication Date
JPS5285909A JPS5285909A (en) 1977-07-16
JPS5919969B2 true JPS5919969B2 (en) 1984-05-10

Family

ID=11520638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51002126A Expired JPS5919969B2 (en) 1976-01-12 1976-01-12 Online cooling method for thick steel plates

Country Status (1)

Country Link
JP (1) JPS5919969B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895925A (en) * 1972-03-22 1973-12-08
JPS5021282A (en) * 1973-05-30 1975-03-06
JPS50142409A (en) * 1974-05-04 1975-11-17

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895925A (en) * 1972-03-22 1973-12-08
JPS5021282A (en) * 1973-05-30 1975-03-06
JPS50142409A (en) * 1974-05-04 1975-11-17

Also Published As

Publication number Publication date
JPS5285909A (en) 1977-07-16

Similar Documents

Publication Publication Date Title
EP2465620B1 (en) Method for cooling hot-rolled steel strip
JPS5919969B2 (en) Online cooling method for thick steel plates
GB2081150A (en) Method of producing steel strip
JPS6254373B2 (en)
JPH11129015A (en) Method of producing thin-scale steel sheet
JP2698305B2 (en) Cooling method of steel plate
US2283109A (en) Bluing steel
JP2000233266A (en) Production of steel plate having good surface characteristic
JPH0431762B2 (en)
JPS6049801A (en) Manufacture of hot rolling steel sheet having shaped cross section
KR100417699B1 (en) Method for Manufacturing Dull Finish Stainless Steel Strip
JPH10113713A (en) Production of steel plate of controlled cooling
JPS59136427A (en) Method for cooling thin steel plate by rolling
JP2604518B2 (en) Steel plate straightening method
JP3413180B2 (en) Continuous hot rolling method and rolling equipment
JPS5993826A (en) Manufacture of soft sheet for tinning
JPH024373B2 (en)
JP2819984B2 (en) Steel strip cooling method
JP4712203B2 (en) Manufacturing method of continuous hot dipped galvanized steel sheet without hip fracture defect
JPS583916A (en) Online cooler for material to be cooled
JPH11319945A (en) Manufacture of steel plate and its device
JP2005074480A (en) Facility for producing hot-rolled steel plate, and its production method
JPS60210313A (en) Cooling method of steel sheet
JPH06330155A (en) Method for cooling thick steel plate
JPS60221529A (en) Method for subjecting steel plate to controlled cooling