JPS59199291A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS59199291A
JPS59199291A JP58074998A JP7499883A JPS59199291A JP S59199291 A JPS59199291 A JP S59199291A JP 58074998 A JP58074998 A JP 58074998A JP 7499883 A JP7499883 A JP 7499883A JP S59199291 A JPS59199291 A JP S59199291A
Authority
JP
Japan
Prior art keywords
film
optical recording
dye
recording medium
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58074998A
Other languages
Japanese (ja)
Inventor
Sotaro Edokoro
絵所 壮太郎
Masaki Ito
雅樹 伊藤
Masaru Matsuoka
賢 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58074998A priority Critical patent/JPS59199291A/en
Priority to US06/507,312 priority patent/US4504548A/en
Priority to EP19830106192 priority patent/EP0097929B1/en
Priority to DE8383106192T priority patent/DE3366578D1/en
Publication of JPS59199291A publication Critical patent/JPS59199291A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers

Abstract

PURPOSE:To provide an optical recording medium generating a high reproduction output with high sensitivity in a wavelength range of semiconductor laser, by a method wherein recording layer in an optical recording medium is constitued of at least two layers of a thin organic film comprising a naphthoquinone dye as a main constituent and a metallic reflective film. CONSTITUTION:In the optical recording medium of the type in which a recording layer is provided on one side of a base and information is recorded and read by a laser beam, the recording layer is constituted of at least two layers of the thin organic film comprising a naphthoquinone dye of the formula (wherein each of R and R' is an auxochrome) as a main constituent and the metallic reflective film. Since the optical recording medium is provided with a multilayer construction by introducing the metallic layer having a high reflectance, when an organic dye is used for a hole-forming layer, a large optical gradation quantity can be obtained by such a construction that the reflectance is enhanced after forming holes.

Description

【発明の詳細な説明】 本発明はレーザ光によって情報を記録再生することので
きる光学記録媒体に関し、さらに詳しくは有機色素を記
録層とする光学記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical recording medium on which information can be recorded and reproduced using a laser beam, and more particularly to an optical recording medium having an organic dye as a recording layer.

従来、この釉の記録層として多くの有機色素が用いられ
ているが、それらを大別すると、可視光に吸収を示す色
素と近赤外光域まで吸収を示す色素に分けられる。前者
は、これまで染色用として用いられてきた色素を光学記
録層に応用したものである。この場合、記録再生用のレ
ーザとして可視光で発振するガスレーザが用いられる。
Conventionally, many organic pigments have been used in the recording layer of this glaze, but they can be roughly divided into pigments that absorb visible light and pigments that absorb into the near-infrared region. The former is an application of dyes that have been used for dyeing to optical recording layers. In this case, a gas laser that oscillates with visible light is used as a recording/reproducing laser.

ガスレーザは、装置が大型であること、消費電力が大き
いこと等から、最近の光学記録装置には不適轟であシ、
これらを解決する半導体レーザの使用が望まれるように
なってさている。現有の半導体レーザの発振波長は約8
00nmの近赤外光域であるので、司親元吸収色素を記
録層とはできず、近赤外光域で吸収を示す色素を記録層
とする必要がある。
Gas lasers are unsuitable for modern optical recording devices due to their large size and high power consumption.
It has become desirable to use semiconductor lasers that solve these problems. The oscillation wavelength of existing semiconductor lasers is approximately 8
Since the wavelength is in the near-infrared light region of 00 nm, the recording layer cannot be made of a primary absorption dye, and the recording layer must be made of a dye that exhibits absorption in the near-infrared light region.

このような近赤外光吸収色素記録層として、これまで各
種金属フタロシアニン、スクアリリウム。
Until now, various metal phthalocyanines and squarylium have been used as near-infrared light-absorbing dye recording layers.

シアニン系色素が開発されている。金属フタロシアニン
は光堅ロウ性に優れているが、加熱によシ結晶状態が変
化するという問題を含んでいる。即ち、蒸着で形成され
た薄膜は非晶質状態であるが、この膜を数100℃に加
熱すると結晶化する。この結晶化に伴い光学特性も変化
し、通常反射率が増加する。したがってレーザ光で書き
込みを行うと、結晶状態の変化による反射率変化と、孔
形成による反射率変化が重なシ複雑な書き込み特性を与
え実用上問題である。
Cyanine dyes have been developed. Although metal phthalocyanine has excellent light hardening properties, it has the problem that its crystalline state changes when heated. That is, a thin film formed by vapor deposition is in an amorphous state, but when this film is heated to several hundred degrees Celsius, it becomes crystallized. Along with this crystallization, the optical properties also change, and the reflectance usually increases. Therefore, when writing is performed with a laser beam, changes in reflectance due to changes in the crystal state and changes in reflectance due to hole formation overlap, resulting in complex writing characteristics, which is a practical problem.

シアニン系色素は、分子共鳴構造の大きさを変えること
Kより、可視から近赤外まで幅広く吸収ピークを変化さ
せることができる。この色素を記録層とした場合、光吸
収による酸化反応で特性が劣化するという問題を有して
いる。スクアリリウムは、比戟的光堅ロウで、又吸収も
半導体レーザ光に近い所にあるので望ましい色素である
が、記録感度が低いという欠点を有している。
By changing the size of the molecular resonance structure of cyanine dyes, the absorption peak can be varied over a wide range from visible to near-infrared. When this dye is used as a recording layer, there is a problem that the characteristics deteriorate due to oxidation reaction caused by light absorption. Squarylium is a desirable dye because it has a relatively low optical hardness and its absorption is close to that of semiconductor laser light, but it has the drawback of low recording sensitivity.

このように、これまで公知の有機色素記録媒体は何らか
の欠点金有し、実用に供するには問題があった。そこで
、本発明者は有機色素記録媒体のこれら問題を解決すべ
く鋭意研究を重ねた結果、下記一般式で与えられるナフ
トキノン色素が光学記録媒体として優れていることを見
出した。
As described above, hitherto known organic dye recording media have some drawbacks, and there are problems in putting them into practical use. As a result of intensive research to solve these problems with organic dye recording media, the inventors of the present invention discovered that naphthoquinone dyes represented by the following general formula are excellent as optical recording media.

   0 11 R’   0 上記一般式中のR,R’は助色団を表わす。本色素は、
光堅ロウ性に優れ、記録感度が高いという優れた特性を
示す。
0 11 R' 0 R and R' in the above general formula represent an auxochrome. This dye is
It exhibits excellent properties such as excellent light hardness and high recording sensitivity.

光学記録媒体は、記録感度が高いことに加えて、再生の
S/Nが太きいという特性を具備する必要がある。一般
に有機色素媒体は金属に比軟して反射率が小さい。した
がって、孔形成前後の反射率変化、12+1ち光変調量
は金属媒体に比軟して有機色素媒体は小さい。このため
有機色素媒体の記録信号は小さく、再生のS/Nを大き
くするには記録前後の反射率変化を大きくする必要があ
る。
In addition to high recording sensitivity, an optical recording medium must have a high reproduction S/N ratio. In general, organic dye media are softer and have lower reflectance than metals. Therefore, the reflectance change before and after hole formation, 12+1, ie, the amount of light modulation, is smaller in the organic dye medium than in the metal medium. For this reason, the recording signal of the organic dye medium is small, and in order to increase the reproduction S/N, it is necessary to increase the change in reflectance before and after recording.

本発明の目的は、前述の従来技術の欠点を改良し、半導
体レーザの波長領域において筒感度で再生出力の大@な
光学記録媒体を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide an optical recording medium that has cylinder sensitivity and a large reproduction output in the wavelength region of a semiconductor laser.

すなわち本発明は、基板の片側または両側に記録層を設
け、情報をレーザ光線によって記録しかつ読み取る光学
記録媒体において、前記記録層として R’  0 (式中R,R’は助色団を示す)で表わされるナフトキ
ノン色素を主成分とする有機薄膜と金属の反射膜との少
なくとも2層を形成したことを特徴とする。
That is, the present invention provides an optical recording medium in which a recording layer is provided on one or both sides of a substrate, and information is recorded and read by a laser beam. It is characterized by forming at least two layers: an organic thin film containing naphthoquinone dye represented by () as a main component, and a metal reflective film.

上記の一般式で表わされるナフトキノン色素は、2.3
−ジシアノ−1,4−ナフトキノンと総称され、5,8
位の助色団の種類によって吸収ピーク波長が可視光領域
から近赤外光領域に変化する。
The naphthoquinone dye represented by the above general formula is 2.3
-Generally known as dicyano-1,4-naphthoquinone, 5,8
The absorption peak wavelength changes from the visible light region to the near-infrared light region depending on the type of auxochrome.

近赤外光領域に吸収ピーク波長がある助色団としては、
上記一般式中のRとしてアミン基(NH2)。
As an auxochrome that has an absorption peak wavelength in the near-infrared region,
R in the above general formula is an amine group (NH2).

R′として置換フェニルアミノ基(NH−(EjX、こ
こでXは置換基を表わす)であることが望ましい。
R' is preferably a substituted phenylamino group (NH-(EjX, where X represents a substituent).

置換フェニルアミノ基の置換基Xとしては、アルキル基
、アリル基、アミノ基、置換アミノ基あるいはアルコキ
シル基が使用される。このような色素は2,3−ジシア
ノ−5−アミノ−8−アリルアミノ−1,4−ナフトキ
ノンと総称され、次のような構造式で示される。
As the substituent X of the substituted phenylamino group, an alkyl group, an allyl group, an amino group, a substituted amino group or an alkoxyl group is used. Such dyes are collectively called 2,3-dicyano-5-amino-8-allylamino-1,4-naphthoquinone and are represented by the following structural formula.

媒体反射率は、媒体の複素屈折率(n−ik)で決まる
。大きな反射率を得るには、n又はkが大きいか、nが
1に比べて十分率さい媒体でなければならない。上記構
造式で与えられる有機色素の薄膜を蒸着によシガラス又
はアクリル樹脂基板上に形成して媒体とした場合媒体反
射率は膜厚に依存する。例えばエトキシル基がノくう位
に配位した色素(以下エトキシ色素と略称する)の場合
、膜厚が80nmの時に最大の反射率が得られるがその
値は30チでるり、これ以上大きな反射率を得ることは
できない。したがって、孔形成前後の光変調量は最大で
30チである。
The medium reflectance is determined by the complex refractive index (n-ik) of the medium. To obtain a large reflectance, n or k must be large, or the medium must be sufficiently small compared to 1. When a thin film of an organic dye given by the above structural formula is formed on a glass or acrylic resin substrate by vapor deposition and used as a medium, the medium reflectance depends on the film thickness. For example, in the case of a dye in which an ethoxyl group is coordinated at the cuboid position (hereinafter abbreviated as ethoxy dye), the maximum reflectance is obtained when the film thickness is 80 nm, but the value is 30 cm, and even larger reflectances are obtained. cannot be obtained. Therefore, the amount of light modulation before and after hole formation is at most 30 inches.

光変調量を高める有効な手段は、反射率の高い金属層を
導入して多層化することである。上記有機色素を孔形成
層として用いた場合、孔形成後の反射率が増大する構造
で大きな光変調量が得られることが分った。
An effective means of increasing the amount of light modulation is to introduce a metal layer with high reflectance to form a multilayer structure. It has been found that when the above organic dye is used as the pore-forming layer, a large amount of light modulation can be obtained with a structure in which the reflectance increases after the pores are formed.

以下図面を参照して本発明をより詳細に説明する。第1
図は厚さ1.2m7Bのアクリル円板10上に形成され
たAL膜20とエトキシ色素膜30とから成る媒体40
を示している。矢印50で示した方向から、波長830
nmのAAGaAs半導体レーザ光を光学系(図示せず
)で集光して媒体40に照射しエトキシ色素膜30に孔
60を形成する。孔が形成されていない部分からの反射
率R0のエトキシ色素膜30の厚さ依存を求めると第2
図に示す結果が得られる。この図では反射膜であるAL
膜20の厚さは1100nとし、波長830nmでの反
射率を示している。同図中、実線は各膜厚でのR8を示
している。
The present invention will be explained in more detail below with reference to the drawings. 1st
The figure shows a medium 40 consisting of an AL film 20 and an ethoxy dye film 30 formed on an acrylic disk 10 with a thickness of 1.2m7B.
It shows. From the direction indicated by arrow 50, wavelength 830
A nanometer AAGaAs semiconductor laser beam is focused by an optical system (not shown) and irradiated onto the medium 40 to form holes 60 in the ethoxy dye film 30. When determining the dependence of the reflectance R0 on the thickness of the ethoxy dye film 30 from the part where no holes are formed, the second
The results shown in the figure are obtained. In this figure, the reflective film AL
The thickness of the film 20 is 1100 nm, and the reflectance at a wavelength of 830 nm is shown. In the figure, the solid line indicates R8 at each film thickness.

孔が形成されている部分からの反射率はエトキシ色素膜
厚がゼロの時の反射率であるので、この場合約86饅で
ある。この結果よジェトキシ色素膜厚を60nmとす不
ことによシR8が15%であるから、孔形成前後で反射
率が15チから86係に変化し、単層媒体よシ大きな変
調量が得られることが分る。
The reflectance from the portion where the holes are formed is the reflectance when the ethoxy dye film thickness is zero, so in this case it is about 86 cm. As a result, since the jetoxy dye film thickness is 60 nm and the R8 is 15%, the reflectance changes from 15 to 86 before and after hole formation, resulting in a larger modulation amount than the single layer medium. I know that it will happen.

第3図はよシ望ましい実施例を示している。アクリル基
板100上にAt膜200.透明膜300゜エトキシ色
素膜400がこの順序で積層されている。
FIG. 3 shows a highly preferred embodiment. An At film 200 is formed on the acrylic substrate 100. A transparent film 300 and an ethoxy dye film 400 are laminated in this order.

At膜200とエトキシ色素膜400の間に透明膜30
0を挿入することによシ、第1図で示した実施例の媒体
より、記録感度が向上する。これは、透明膜として使用
される5i02. si、N、等の誘電体及びPMMA
(アクリルポリマー)等の桓j脂の熱伝導率が小さいの
で、エトキシ色素膜400に吸収された熱が熱伝導率の
高いAL膜200へ拡散することが少なくなることによ
る。第4図は透明膜300として5in2膜を使用した
時のエトキシ色素膜400の膜厚を変化させた時の反射
率を5i02膜厚20nmと60nmの場合について示
したものである。なお、AA膜200の膜厚は1100
nとした。これより、St、2膜厚が20nmの場合、
エトキシ色素膜厚を例えば4Qnmとすると、孔形成前
の反射率が17%、孔形成後の反射率が85係となシ、
光変調量として68%を得ることができる。同様に、5
i02換厚が60nmの場合、エトキシ色素膜厚を20
nmとすると、光変調量は67%となる。このように透
明膜300とエトキシ色素膜400の厚さを選択するこ
とにより、エトキシ色素膜単層媒体より2倍以上の光変
調量を得ることができる。
A transparent film 30 is placed between the At film 200 and the ethoxy dye film 400.
By inserting 0, the recording sensitivity is improved compared to the medium of the embodiment shown in FIG. This is 5i02. used as a transparent film. Dielectric materials such as Si, N, etc. and PMMA
Since the thermal conductivity of resin such as (acrylic polymer) is low, the heat absorbed by the ethoxy dye film 400 is less likely to diffuse into the AL film 200, which has a high thermal conductivity. FIG. 4 shows the reflectance when the thickness of the ethoxy dye film 400 is changed when a 5in2 film is used as the transparent film 300, and the 5i02 film thickness is 20 nm and 60 nm. Note that the thickness of the AA film 200 is 1100 mm.
It was set as n. From this, when the St,2 film thickness is 20 nm,
For example, if the ethoxy dye film thickness is 4Qnm, the reflectance before pore formation is 17% and the reflectance after pore formation is 85%.
A light modulation amount of 68% can be obtained. Similarly, 5
When the i02 thickness is 60 nm, the ethoxy dye film thickness is 20 nm.
If it is nm, the amount of optical modulation will be 67%. By selecting the thicknesses of the transparent film 300 and the ethoxy dye film 400 in this way, it is possible to obtain an amount of light modulation that is more than twice as large as that of a single-layer ethoxy dye film medium.

上記実施例から明らかなように、本発明により光変調量
の大きな光学記録媒体を得ることができる。なお、実施
例では、置換基がエトキシル基である有機色素を用いる
例を示したが、前述した有機色素及び類似誘導体を使用
してもほぼ実施例と等しい有効性が得られた。実施例で
は反射層としてAA膜を使用する場合を示したが、Ag
膜r Au膜。
As is clear from the above embodiments, an optical recording medium with a large amount of light modulation can be obtained by the present invention. In addition, in the example, an example was shown in which an organic dye having an ethoxyl group as a substituent was used, but almost the same effectiveness as in the example was obtained even when the above-mentioned organic dye and similar derivatives were used. In the example, the case where an AA film is used as the reflective layer is shown, but Ag
Membrane r Au membrane.

Cu膜等反射率の高い金属膜及び誘電体の多層干渉膜も
使用できる。又本媒体の最上層に公知の方法によシ、誘
電体、有機物、高融点金属等の保設膜を付与することも
できる。
A metal film with high reflectivity such as a Cu film and a dielectric multilayer interference film can also be used. Furthermore, a retention film of dielectric, organic material, high melting point metal, etc. may be applied to the uppermost layer of the medium by a known method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による光学記録媒体の断面図であシ図
中10は基板、20は反射膜、30は有機色素膜、60
は孔を示し、第2図は、第1図の光学記録媒体の反射率
の有慨色素膜厚債存を示すグラフである。 第3区1は、本発明による他の光学記録媒体の断面図で
あシ図中100は基板、200は反射膜、300は透明
膜、400は有機色素膜を示し、第4図は、第3図の光
学記録媒体の反射率の有機色素膜厚依存を示すグラフで
ある。 第1図 第2図 θ  200 40θ 乙DO8001000順厚(A
) 第3図 第4図 0   200 400  600 800 10θO
朦厚(A)
FIG. 1 is a sectional view of an optical recording medium according to the present invention, in which 10 is a substrate, 20 is a reflective film, 30 is an organic dye film, and 60
2 shows a hole, and FIG. 2 is a graph showing the reflectance of the optical recording medium shown in FIG. 1 as a function of dye film thickness. Section 3 1 is a sectional view of another optical recording medium according to the present invention. In the figure, 100 is a substrate, 200 is a reflective film, 300 is a transparent film, and 400 is an organic dye film. 4 is a graph showing the dependence of the reflectance of the optical recording medium of FIG. 3 on the organic dye film thickness. Figure 1 Figure 2 θ 200 40θ OtsuDO8001000 Normal thickness (A
) Figure 3 Figure 4 0 200 400 600 800 10θO
Atsushi (A)

Claims (1)

【特許請求の範囲】 基板の片側または両側に記録層を設け、情報をレーザ光
線によって記録しかつ読み取る光学記録装置において、
前記記録層として 一般式 (式中R,R’は助色団を示す)で表わされるナフトキ
ノン色素を主成分とする有機薄膜と金属の反射膜の少な
くとも2層からなることを特徴とする光学記録媒体。
[Claims] An optical recording device in which a recording layer is provided on one or both sides of a substrate, and information is recorded and read by a laser beam,
Optical recording characterized in that the recording layer is composed of at least two layers: an organic thin film mainly composed of a naphthoquinone dye represented by the general formula (wherein R and R' represent an auxochrome) and a metal reflective film. Medium.
JP58074998A 1982-06-25 1983-04-28 Optical recording medium Pending JPS59199291A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58074998A JPS59199291A (en) 1983-04-28 1983-04-28 Optical recording medium
US06/507,312 US4504548A (en) 1982-06-25 1983-06-23 Optical information recording medium for semiconductor laser
EP19830106192 EP0097929B1 (en) 1982-06-25 1983-06-24 Optical information recording medium for semiconductor laser
DE8383106192T DE3366578D1 (en) 1982-06-25 1983-06-24 Optical information recording medium for semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58074998A JPS59199291A (en) 1983-04-28 1983-04-28 Optical recording medium

Publications (1)

Publication Number Publication Date
JPS59199291A true JPS59199291A (en) 1984-11-12

Family

ID=13563444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58074998A Pending JPS59199291A (en) 1982-06-25 1983-04-28 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS59199291A (en)

Similar Documents

Publication Publication Date Title
KR960015455A (en) Optical information recording media
KR860004395A (en) How to record and delete information
KR940009986A (en) Recording and playback medium and recording and playback device
KR100930243B1 (en) A recording medium having a high melting point recording layer, an information recording method of the recording medium, and an information reproducing apparatus and an information reproducing method for reproducing information from the recording medium.
JPH08153339A (en) Optical disk
JPH03144938A (en) Optical memory element
US4578684A (en) Optical recording and information elements
JPS59199291A (en) Optical recording medium
JPH0568016B2 (en)
JP4065719B2 (en) Write-once optical recording medium and recording / reproducing method thereof
JPH0745259B2 (en) Optical information recording medium
JPH0477968B2 (en)
JPS595097A (en) Optical recording system
JPH0519205B2 (en)
JPS5922249A (en) Optical disc
JPS58166546A (en) Recording member and recording and reproducing method
JPS60151850A (en) Optical recording medium
JPH03169588A (en) Write-once optical disk
JPH04238086A (en) Optical information recording medium
JPS63172690A (en) Direct-read-after-write type optical recording medium
JPH07254154A (en) Method for reproducing signal of optical disk and optical disk used therefor
JPH0416857B2 (en)
JPH08203122A (en) Optical recording medium and reproducing method therefor
JPS6383932A (en) Optical recording medium
JPH04209340A (en) Information recording medium