JPS59198351A - Moisture content measuring apparatus - Google Patents

Moisture content measuring apparatus

Info

Publication number
JPS59198351A
JPS59198351A JP7464883A JP7464883A JPS59198351A JP S59198351 A JPS59198351 A JP S59198351A JP 7464883 A JP7464883 A JP 7464883A JP 7464883 A JP7464883 A JP 7464883A JP S59198351 A JPS59198351 A JP S59198351A
Authority
JP
Japan
Prior art keywords
measured
measurement
circuit
frequency
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7464883A
Other languages
Japanese (ja)
Inventor
Kaoru Matsuno
松野 薫
Shigetada Matsushita
重忠 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7464883A priority Critical patent/JPS59198351A/en
Publication of JPS59198351A publication Critical patent/JPS59198351A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Abstract

PURPOSE:To perform moisture content measurement by online basis without exerting influence upon bulk density, by operating the ratio of an AC current having the same phase as applied voltages by applying AC voltages with difference frequencies between opposed electrodes through which an object to be measured flows. CONSTITUTION:AC voltage which are different in frequency but same in effective voltage are applied to the opposed electrodes 41, 42 of a detection part 4 through which an object to be measured such as grain flows and AC currents having the same phase as the applied voltages are detected by a detection circuit 6 to be respectively latched by a first and second hold circuits 7, 8 through a switch 9. This latch content is subtracted by a subtractor circuit 12 to determine a dielectric loss ratio uniquely change corresponding to a moisture percentage and moisture measurement is performed by online basis without exerting influence upon bulk density.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は穀物、砂、セメント等の粉体才たは粒状体(以
下穀物等と呼ぶことがある)の水分量または水分率(以
下水分と呼ぶことがある)を誘電損現象を利用してかざ
密度や水分分布の影響を受けることなくオンラインで測
定することのできる水分測定装置に関する。
Detailed Description of the Invention [Technical Field to which the Invention Pertains] The present invention relates to the moisture content or moisture content (hereinafter referred to as moisture This invention relates to a moisture measuring device that can measure water content (sometimes referred to as ``water vapor'') online using the dielectric loss phenomenon without being affected by the density or moisture distribution.

〔従来技術とその問題点〕[Prior art and its problems]

穀物等の水分はその経済的な品位や物性を左右する重要
な因子であるため従来色々な方法で測定されているが、
最近では大量の穀物等を連続的に処理するプロセスが増
加していてこのようなプロセスでは穀物等の水分をオン
ラインで的確に測定することが重要視されている。
The moisture content of grains, etc. is an important factor that affects their economic quality and physical properties, so it has traditionally been measured using various methods.
Recently, the number of processes that continuously process large amounts of grain, etc. has been increasing, and in such processes, it is important to accurately measure the moisture content of grain, etc. online.

一般に穀物等の水分は物質中の結合水と遊離自由水とか
らなっており、通常この遊離自由水が水分測定の目的と
されることが多いが、従来これら水分の測定に際しては
測定方式として電気抵抗式、誘電率式、janδ式、マ
イクロ波式が多く採用されている。
In general, the moisture in grains, etc. consists of bound water and free water in the substance, and this free water is often used as the purpose of moisture measurement. The resistance type, dielectric constant type, Janδ type, and microwave type are often used.

電気抵抗式、誘電率式、janδ式(以下電気抵抗式等
と呼ぶことがある)は穀物等の電気抵抗や誘電率あるい
はtanδが遊離自由水の量に依存するので試料を対向
電極間に充填してこれら諸量を測定して遊離自由水の量
を推定しようとするもので、いずれの方式においても穀
物等における粒子間の空隙の多少すなわち穀物等のかさ
密度が水分の測定値に影響を及ぼすことはその測定原理
から明らかである。したがってこの空隙の影響を極力避
けるために、電気抵抗式等の方式で水分を測定する際は
、通常粉体についてはこれをこのまま圧縮し、粒状体の
場合はこれを粉砕して圧縮して所定の対向電極間に試料
として充填して測定するようにしているが、このため電
気抵抗式等の測定方式には測定操作が間欠的で、かつ−
回の測定操作毎に試料の作成と電極の清掃とが必要であ
るため測定に時間がかかる上、試料が少量であるので正
確な測定ができないという欠点があり、この結果このよ
うな測定方式は連続プロセスにおけるオンライン測定に
適用できない方式である。マイクロ波式は水分子の固有
吸収波長である約1 cmのマイクロ波を穀物等に投射
すると、穀物中の水分子がその量に応じてマイクロ波の
エネルギーを吸収して透過マイクロ波の強度が変化する
ので、この強度を測定して穀物等の水分を測定する方式
で、この方式は上記の動作原理から明らかなように電気
的な非接触方式であるから連続プロセスにおけるオンラ
イン測定に使用できる上、1a′nの波長とは異なるマ
イクロ波吸収波長を鳴する水以外の成分の影響を受けな
いという利点もある。しかしながらこのマイクロ波式に
は、一方、透過マイクロ波の強度が電気抵抗式等と同様
にかさぞ度の影響を受けること、測定値が結合水と遊離
自由水との和に応じた値であること、穀物等の量が多く
なるとエネルギー吸収が多くなるのでマイクロ波が透過
し難くなることなどの欠点がある。
The electrical resistance formula, dielectric constant formula, and janδ formula (hereinafter sometimes referred to as the electrical resistance formula) require the sample to be filled between opposing electrodes because the electrical resistance, permittivity, or tanδ of grains, etc. depends on the amount of free water. The method attempts to estimate the amount of free water by measuring these quantities, and in both methods, the amount of voids between particles in grains, etc., that is, the bulk density of grains, etc., influences the measured value of moisture. It is clear from the measurement principle that the Therefore, in order to avoid the influence of these voids as much as possible, when measuring moisture using methods such as electrical resistance, powders are usually compressed as they are, and granules are crushed and compressed to a specified size. The sample is filled between opposing electrodes for measurement, but for this reason measurement methods such as the electrical resistance type require intermittent measurement operations and -
The disadvantage is that it takes time to measure because it is necessary to prepare a sample and clean the electrodes for each measurement operation, and accurate measurements cannot be made because the sample is small.As a result, this measurement method is This method cannot be applied to online measurements in continuous processes. In the microwave method, when microwaves of approximately 1 cm, which is the characteristic absorption wavelength of water molecules, are projected onto grains, etc., the water molecules in the grains absorb the energy of the microwaves in proportion to the amount, and the intensity of the transmitted microwaves increases. This method measures the moisture content of grains, etc. by measuring this intensity.As is clear from the above operating principle, this method is an electrical non-contact method, so it can be used for online measurement in continuous processes. , 1a'n has the advantage that it is not affected by components other than water that have microwave absorption wavelengths different from the wavelengths of 1a'n. However, in this microwave method, on the other hand, the intensity of the transmitted microwave is affected by the degree of umbrella, similar to the electric resistance method, and the measured value is a value that corresponds to the sum of bound water and free free water. However, as the amount of grain increases, energy absorption increases, making it difficult for microwaves to pass through.

〔発明の目的〕[Purpose of the invention]

本発明は上述のよ・うな従来の測定方式を用いた水分測
定装置の欠点を除去して、かさ密度の影響を受けること
なくオンラインで遊離自由水の量を測定することのでき
る穀物等の水分測定装置を提供すると七を目的とするも
のである。
The present invention eliminates the shortcomings of the moisture measuring device using the conventional measuring method as described above, and makes it possible to measure the amount of free water on-line without being affected by bulk density. Seven purposes are to provide a measuring device.

〔発明の要点〕[Key points of the invention]

本発明は水分測定装置を、対向電極を有してその電極間
に穀物等の被測定物を質流または集積させるようにした
極細部を設けてこの電極間に周波数の異なる二つの交流
電圧を交互に印加し、この時流れる交流電流の中の印加
電圧と同相な成分を検出して両回相電流の比を演算し、
この演算結果にもとずいて被測定物中の水分を測定する
ように構成したものであって、上記の演算結果が後に説
明する理由によって被測定物の遊離自由水の量に応じた
ものでかっかさ密贋の影響を受けない量であるため、水
分測定装置をこのように構成するとオンライン測定への
適用が可能となるのである。
The present invention provides a moisture measuring device which has opposing electrodes, and has a very small part between the electrodes that allows grains or other objects to be measured to flow or accumulate, and two alternating current voltages of different frequencies are applied between the electrodes. The voltage is applied alternately, and the component in the alternating current flowing at this time that is in phase with the applied voltage is detected and the ratio of the two phase currents is calculated.
The device is configured to measure the water content in the object to be measured based on this calculation result, and for reasons explained later, the above calculation result is based on the amount of free water in the object to be measured. Since the amount is not affected by falsification, if the moisture measuring device is configured in this way, it can be applied to online measurement.

〔発明の実施例〕[Embodiments of the invention]

次に本発明を図面を参照して説明する。第1図は本発明
による水分測定装置の一実施例のブロック図、第2図は
第1図における検知部4の斜視図である。両図において
1,2はそれぞれ異なる角周波数W1 、 W2で等し
い実効値Eの正弦波交流電圧を発生する第1および第2
電源部、3は前記画電源部1,2の発生電圧を切りかえ
て出方する第1スイツチ、4は穀物等の被測定物5が挿
入される円筒状の検知部、41.42はその円筒側面に
設けられた対向電極、41a、42aはそれぞれ対向電
極41.42の各端子である。検知部4は無底に形成さ
れて被測定物5がこれを連続的に貫流する場合もある[
7、検知部4が有底に形成されて被測定物5がその内部
に集積されることもある。
Next, the present invention will be explained with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the moisture measuring device according to the present invention, and FIG. 2 is a perspective view of the detection section 4 in FIG. 1. In both figures, 1 and 2 are first and second voltages that generate sinusoidal AC voltages of equal effective value E at different angular frequencies W1 and W2, respectively.
A power supply unit, 3 is a first switch that switches the voltage generated by the picture power supply units 1 and 2, 4 is a cylindrical detection unit into which the object to be measured 5 such as grain is inserted, and 41 and 42 are the cylinders thereof. The counter electrodes 41a and 42a provided on the side surfaces are terminals of the counter electrodes 41 and 42, respectively. In some cases, the detection part 4 is formed without a bottom, and the object to be measured 5 flows continuously through it [
7. The detection part 4 may be formed with a bottom, and the object to be measured 5 may be accumulated therein.

スイッチ3の出力側は検知部4に接続されていて対向電
極41.42間には電源部1または2の発生電圧が印加
されるようになっている。6は検知部4に接続された検
出回路で、この回路6は対向電極41.42間を流れる
電流の中の前記両電極間に印加された電圧と同相の電流
に応じた信号を出力する。7,8はそれぞれ動作信号1
0a 。
The output side of the switch 3 is connected to the detection section 4, and the voltage generated by the power supply section 1 or 2 is applied between the opposing electrodes 41 and 42. Reference numeral 6 denotes a detection circuit connected to the detection section 4, and this circuit 6 outputs a signal corresponding to a current flowing between the opposing electrodes 41 and 42 that is in phase with the voltage applied between the two electrodes. 7 and 8 are respectively operation signals 1
0a.

10bが入力されると入力信号9a、9bを保持して出
力する第1.第2保持回路、9は検出回路6の出力信号
を二つの信号路に切りかえてそれぞ10a、10bとし
て第1.第2保持回路7.8に与える動作信号発生回路
、11は第1.第2スイッチ3,9および動作信号発生
回路1oの各切りかえ動作を連動して所定の周期で繰り
返して行なうようにする切換動作駆動回路、12は第1
゜第2保持回路7,8の各出力信号が入力されて両者の
比を演算する除算回路、12aはその出力信号である。
10b is input, the first .10b holds and outputs the input signals 9a and 9b. The second holding circuit 9 switches the output signal of the detection circuit 6 into two signal paths 10a and 10b, respectively. Reference numeral 11 denotes an operation signal generating circuit for supplying the second holding circuit 7.8 to the first holding circuit 7.8. A switching operation drive circuit 12 is a switching operation drive circuit that repeatedly performs switching operations of the second switches 3 and 9 and the operation signal generation circuit 1o at a predetermined cycle;
12a is a division circuit to which each output signal of the second holding circuits 7 and 8 is input and calculates the ratio thereof; 12a is its output signal;

次に本例の作用を説明する。電栖4]、、42間に穀物
等を増大するとここには穀物等と粒子間等に起因する空
隙吉が共存する。したがってこの電極間のみかけの誘雷
率εは若干の仮定にもとづく簡単な割算によって(1)
式で表される。ここにVD 、 Vl、 V2はそれぞ
れ電極間の体積、VOの中の空隙の体積、vOO中の凱
1物等の体積で、Vo = V1十v2である。 ε1
.ε2はそれぞれ空気の誘電率、穀物等の誘電率である
Next, the operation of this example will be explained. When the amount of grain, etc. is increased between the grains and the grains, voids caused by the grains, etc. coexist here. Therefore, the apparent dielectric constant ε between the electrodes can be calculated by simple division based on some assumptions: (1)
Expressed by the formula. Here, VD, Vl, and V2 are the volume between the electrodes, the volume of the void in VO, the volume of the gas in vOO, etc., and Vo = V1 + v2. ε1
.. ε2 is the dielectric constant of air, grain, etc., respectively.

VI       V2 1?w・ε1−1−yy・ ε2 ・・・・・・・・・
 (1)誘電率は複素数で表され、空気の誘電損率は零
とみなされるので ε1=ε11、ε2=ε21−Jε
22と表すと(1)式は(2)式のように変形さ、れる
VI V2 1? w・ε1−1−yy・ε2 ・・・・・・・・・
(1) Dielectric constant is expressed as a complex number, and the dielectric loss factor of air is considered to be zero, so ε1=ε11, ε2=ε21−Jε
22, equation (1) is transformed into equation (2).

VI       V2        、  V2C
−(Vu・ff +1 +−H・62+)−3・W・6
22.・(2)したがって電極41.42間に穀物等が
挿入された状態でこの電板間に角周波数W%実効値Eの
正弦波交流電圧が印加されると(3)式で表される電流
工が流れる。ここにCOは電極間が真空の場合の静電容
量である。ε11.ε21.ε22は印加電圧の周波数
の関数である。
VI V2, V2C
−(Vu・ff +1 +−H・62+)−3・W・6
22.・(2) Therefore, when a sine wave AC voltage with an angular frequency W% effective value E is applied between these electric plates with grain etc. inserted between the electrodes 41 and 42, the current expressed by equation (3) The work is flowing. Here, CO is the capacitance when there is a vacuum between the electrodes. ε11. ε21. ε22 is a function of the frequency of the applied voltage.

28 wC0E■−22・・・・・・・・・(3)本実施例で
は上述したように電流工の中の印加電圧Eと同相の成分
すなわちw Co E (V2/VOν22が検出回路
6によって検出され、この成分電流に応じた信号が第2
スイツチ9を介して保持回路7または8で保持されて出
力される。すなわぢ本実施例ではスイッチ3,9および
動作信号発生回路10の各切換動作が連動するように構
成され、スイッチ3によって第1電源部の発生電圧Eが
電極間に印加された時は検出回路6の出力信号が保持回
路7で保持されて出力され、スイッチ3によって第21
!源部の発生電圧Eが電極間をこ印加された時は検出回
路6の出力信号が保持回路8で保持されて出力されるよ
うになっているので、保持回路7および8の各出力信号
はそれぞれWlCOE(V2/Vo)ε221. w2
coB’(V2/Vo)’g222に応じた信号となる
。ここに ε221.  ε222はそれぞれ電源部1
゜2の各発生電圧の角周波数Wi、W2に対応した穀物
等の誘電損率である。したがって除算回路12の出力信
号12aは(4)式で示されるRの値に応じた信号とな
る。ここにBt−ε221/ε222  である。
28 wC0E■-22 (3) In this embodiment, as mentioned above, the component in phase with the applied voltage E in the current generator, that is, w Co E (V2/VOν22 is detected by the detection circuit 6 is detected, and a signal corresponding to this component current is sent to the second
It is held in holding circuit 7 or 8 via switch 9 and output. In other words, in this embodiment, the switching operations of the switches 3 and 9 and the operation signal generating circuit 10 are configured to be linked, and when the voltage E generated by the first power supply section is applied between the electrodes by the switch 3, it is detected. The output signal of the circuit 6 is held in the holding circuit 7 and outputted, and the 21st signal is outputted by the switch 3.
! When the generated voltage E of the source section is applied between the electrodes, the output signal of the detection circuit 6 is held in the holding circuit 8 and outputted, so each output signal of the holding circuits 7 and 8 is WlCOE(V2/Vo)ε221. w2
The signal corresponds to coB'(V2/Vo)'g222. Here ε221. ε222 is the power supply section 1
This is the dielectric loss factor of grains, etc. corresponding to the angular frequency Wi, W2 of each generated voltage of °2. Therefore, the output signal 12a of the division circuit 12 becomes a signal corresponding to the value of R shown in equation (4). Here, Bt-ε221/ε222.

次に(4)式のRtの意義を本発明者等の実験結果にも
とづいて説明する。
Next, the significance of Rt in equation (4) will be explained based on the experimental results of the present inventors.

第3図は本発明者等が表面が乾燥した状聾にある籾に対
して行った誘電損率の測定結果の一例で、第4図は第3
図にもとづいて作成した籾の水分率とBtとの関係の一
例を示す図である。ここにH,tは測定周波数がIMH
lの場合の誘電損率と測定周波数が2 M Hzの場合
の誘電損率との比である。
Figure 3 shows an example of the dielectric loss factor measurement results conducted by the present inventors on dry rice grains with a dry surface.
It is a figure which shows an example of the relationship between the moisture content of paddy and Bt created based on the figure. Here, H and t are the measurement frequency IMH
It is the ratio of the dielectric loss factor when the measurement frequency is 2 MHz and the dielectric loss factor when the measurement frequency is 2 MHz.

第4図から明らかなようにこのRtは籾の水分率に一義
的に対応している。したがってこのR,tを測定するこ
とによって籾の水分率を知ることができる。このように
本発明者等の実験によれば、穀物等に対して角周波数W
1の電圧を印加して測定した誘電損率 ε221と同じ
穀物等に対して角周波数W2の電圧を印加して測定した
誘゛屯損率C222との比Btはその穀物等の水分率の
尺度となる。
As is clear from FIG. 4, this Rt uniquely corresponds to the moisture content of paddy. Therefore, by measuring R and t, the moisture content of paddy can be determined. According to the experiments conducted by the present inventors, the angular frequency W
The ratio Bt of the dielectric loss factor C222 measured by applying a voltage of angular frequency W2 to the same grain, etc. as ε221 is a measure of the moisture content of the grain, etc. becomes.

故tこ(4)式のRは穀物等の水分率に応じた量である
ので、本例の水分測定装置によれば出力信号12aにも
とづいて穀物等の水分を測定することができる。前述の
ようにε221.ε222は遊離自由水の量に依存した
ものであるからBtも遊離自由水の量に依存しており、
また(4)式から明ら力)なようにRにはV2/VOす
なわち穀物等の力1さ密度に関係する量が含まれていな
い。したがって本例の水分測定装置によれば穀物等の遊
離自由水の量をかさ密度の影響を受けることなく測定で
き、この測定がスイッチ3,9および動作信号発生回路
10の各切りかえ動作が連動して所定の短G)周期で繰
り返して行なわれるこさによって連続的こと実施される
ので、このような測定装置でGま穀物等力3検知部4内
を流動していてもある!/1は検知部4内に滞留してい
ても正確な測定ができ、この結果用)]定装置のオンラ
イン測定への適用ができるとG1う第5図は本発明者等
が第2図の検知部4内に籾を入れて行なった第3図とは
異なる誘電損率の測定結果で、この図は表面が乾燥状態
にある籾に、ある周波数の電圧を加えて四]定した誘電
損率Aで、その籾を所定時間密閉して籾の表面が蒸発水
分によってaれた状態になった時に同じ周波数の雪、圧
を加えて測定し、た誘電損率Bを除1,7たB/A、、
:測定周波数との関係を示している。本図から明らかな
ようにAとB吉は等しくない。すなわち同一の籾でも検
知部4で測定される読電措率の値は籾の表面が乾燥シ、
ているか潜れているかの籾の表面の乾燥度合いによって
異なる。また図から明らかなようにB/Aは測定周波数
によって変化している。
Therefore, since R in equation (4) is an amount corresponding to the moisture content of grains, etc., the moisture measuring device of this example can measure the moisture of grains, etc. based on the output signal 12a. As mentioned above, ε221. Since ε222 depends on the amount of free free water, Bt also depends on the amount of free free water.
Furthermore, as shown in equation (4), R does not include V2/VO, that is, a quantity related to the force density of grains, etc. Therefore, according to the moisture measuring device of this example, the amount of free water in grains, etc. can be measured without being affected by the bulk density, and this measurement is performed by interlocking the switching operations of the switches 3 and 9 and the operation signal generating circuit 10. Since the measurement is carried out continuously by repeatedly performing the gauging at a predetermined short G) period, it is possible to use such a measuring device to detect the G grain flowing inside the force 3 detection section 4! /1 can be accurately measured even if it remains in the detection part 4, and it can be applied to online measurement of the fixed device. The dielectric loss factor measurement result is different from that shown in Figure 3, which was carried out by placing rice inside the detection unit 4. This figure shows the dielectric loss measured by applying a voltage of a certain frequency to the rice whose surface is dry. The paddy was sealed for a predetermined period of time at rate A, and when the surface of the paddy was abraded by evaporated water, snow and pressure of the same frequency were applied and measured, and the dielectric loss factor B was subtracted by 1.7. B/A...
: Indicates the relationship with the measurement frequency. As is clear from this figure, A and B are not equal. In other words, even for the same paddy, the value of the reading rate measured by the detection unit 4 is determined by the fact that the surface of the paddy is dry.
It depends on the degree of dryness of the surface of the paddy, whether it is covered or submerged. Furthermore, as is clear from the figure, B/A changes depending on the measurement frequency.

すなイ〕ちこれは籾の表面が濡れた状態での該電損率の
乾燥した状態での誘電損率に対するr・(合いが測定周
波数によって異なることを丞している。したがって任意
の二つの測定周波数を設定し、て誘雷。
In other words, this means that the ratio of the electric loss factor when the surface of the rice is wet to the dielectric loss factor when the surface of the rice is dry differs depending on the measurement frequency. Therefore, any two Set one measurement frequency and use it to induce lightning.

損率を測定して得られたBtの値は、籾の表面が乾燥し
ている場合と濡れている場合とでは一般には異なる。こ
のためこのように設定した二つの屓11定周波数で得ら
れた(4)式のRを用G)ると、籾の水分の測定値は表
面の乾燥度合し1によって異った値となり測定誤差が発
生する。
The Bt value obtained by measuring the loss rate is generally different depending on whether the surface of the rice is dry or wet. Therefore, if we use R in equation (4) obtained with the two constant frequencies set in this way, the measured moisture value of the paddy will be a different value depending on the degree of dryness of the surface. An error occurs.

このため第1図の測定装置では、籾の水分演Ij定を行
なう際は二つの電源部1,2の周Mt@’1 Wl 、
W2をたとえば第5図のC,D点に対応した周波数をと
選定している。このC,D点はB/’Aの曲IUと交わ
る横軸に平行な直線とB/Aの曲線との二つの交点であ
る。点C,Dはこのようにし、て形成された点であるか
ら画点においては籾の表面力S濡れた状態での誘電率損
の乾燥した状態での誘電率損(こ対する割合いが等しい
。したがって籾ζこ対して点C,Dに対応した測定周波
数に等しシ)′It源周波数W1.W2を用いて(4)
式のRに応じたイシタ12aを第1図の測定装置によっ
て得ると、この信号ζま(4)式から明らかなように籾
の表面の乾燥度合いの影響を受けない信号となって(1
)る。すなわち定すると、このような水分測定装置ζま
徂(1定イ直力S穀物等の表面の乾燥度合いの影響を受
けな(,1とG)う効果がある。
Therefore, in the measuring device shown in FIG. 1, when determining the moisture content Ij of paddy, the circumferences Mt@'1 Wl of the two power supply units 1 and 2,
For example, the frequencies corresponding to points C and D in FIG. 5 are selected as W2. These points C and D are the two intersections of the straight line parallel to the horizontal axis that intersects the song IU of B/'A and the curve of B/A. Points C and D are formed in this way, so the surface force S of the rice grains is equal to the dielectric constant loss in the wet state and the dielectric constant loss in the dry state. .Therefore, for the paddy ζ, it is equal to the measurement frequency corresponding to points C and D.'It source frequency W1. Using W2 (4)
When the Ishita 12a corresponding to R in the equation is obtained using the measuring device shown in FIG.
). In other words, when the value is set, such a moisture measuring device ζ has the effect of being unaffected by the degree of dryness of the surface of the grain (1, 1, G).

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明にお(1)でCは水分ml
+l装定を、周波数が異なり大きさが等しt、)2つの
正弦波交流電圧を切りかえる第1スイ゛ンチと対向電極
を有する検知部き検出回路と第2スイ゛ンチと第1およ
び第2保持回路と切換動作駆動回路と除算回路とで構成
し、この装置において、大きさ力5等しく周波数がWl
 、w2のように異なる正弦波交流電圧を第1スイツチ
で切りかえて対向電極間をこ印加させ、この印加電圧に
よって対向電極間ζこ被測定物が挿入されている場合に
その電極間をこ流れる電流の中の印加電圧と同相の成分
を検出回路で検出させてこの成分電流に応じた信号を出
力させ、この出力信号を第2スイツチで切り力1えて第
1保持回路または第2保持回路のいずれかζこ保持させ
て出力させ、第1および第2スイ゛ンチtこおける各切
りかえ動作を切換動作駆動回路ζこよって連動して所定
の周期で連続的に繰り返して行なうようにさせ、第1お
よび第2保持回路の岡山力信号の比を除算回路で演算さ
せてその結果に応じた信号をその除算回路から出力させ
るようにしたので、この出力信号は被測定物が穀物等で
ある場合その遊離自由水の量に応じた信号でかつ穀物等
のかさ密度の影響を受けない信号となる。したがって本
発明によれば穀物等の遊離自由水の量をかさ密度の影響
を受けることなく測定できる効果がある上、この結果オ
ンラインでの測定もできるという効果がある。
As explained above, in the present invention (1), C is water ml
A first switch for switching between two sinusoidal AC voltages with different frequencies and equal magnitudes, a detection circuit with a detection section having a counter electrode, a second switch, and the first and second sine wave AC voltages. In this device, the magnitude and force are equal to 5 and the frequency is Wl.
, w2, different sinusoidal AC voltages are switched by the first switch and applied between the opposing electrodes, and this applied voltage causes a current to flow between the opposing electrodes when an object to be measured is inserted. A detection circuit detects a component in the current that is in phase with the applied voltage, outputs a signal corresponding to this component current, and the output signal is increased by 1 with a second switch to be used in the first holding circuit or the second holding circuit. Either one of the switches ζ is held and outputted, and each switching operation of the first and second switches is continuously repeated at a predetermined period in conjunction with the switching operation drive circuit ζ. The division circuit calculates the ratio of the Okayama force signals of the first and second holding circuits, and a signal corresponding to the result is output from the division circuit, so this output signal can be used when the object being measured is grain, etc. The signal corresponds to the amount of free water and is not affected by the bulk density of grains or the like. Therefore, according to the present invention, there is an effect that the amount of free water in grains, etc. can be measured without being affected by the bulk density, and as a result, online measurement is also possible.

さらにまた本発明においては、第1測定周波数で被測定
物の表面が濡れた状態になっている場合と乾燥した状態
になっている場合とのそれぞれの場合についてその被測
定物の誘電損率を測定して前者の場合の測定値と後者の
場合の測定値との比を求め、第2測定周波数で被測定物
の表面が濡れた状態になっている場合と乾燥した状態に
なっている場合とのそれぞれの場合についてその被測定
物の誘電損率を測定して前者の場合の測定値と後者の場
合の測定値との比を求め、第1測定周波数ζこおける比
の値と第2測定周波数における比の値とが等しくなるよ
うな前記第1および第2測定周波数に、第1および第2
i源部の各発生電圧の周波数を設定したので、このよう
な水分測定装置には測定値が被測定物の表面の乾燥度合
いの影響を受けないという効果がある。
Furthermore, in the present invention, the dielectric loss factor of the object to be measured is calculated at the first measurement frequency for both cases where the surface of the object to be measured is wet and dry. Measure and find the ratio between the measured value in the former case and the measured value in the latter case, and determine if the surface of the object to be measured is wet or dry at the second measurement frequency. Measure the dielectric loss factor of the measured object in each case, find the ratio between the measured value in the former case and the measured value in the latter case, and calculate the value of the ratio at the first measurement frequency ζ and the second The first and second measurement frequencies are set at the first and second measurement frequencies such that the ratio values at the measurement frequencies are equal to each other.
Since the frequency of each voltage generated by the i-source is set, such a moisture measuring device has the advantage that the measured value is not affected by the degree of dryness of the surface of the object to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水分測定装置の一実施例のブロッ
ク図、第2図は第1図における検知部4の斜視図、第3
図は籾の誘眠損率の測定結果の一例、第4図は第3図に
もとづいて作成した籾の水分率とRtとの関係の一例、
第5図は籾の誘電損率の測定結果の他の例である。 各図において、1・・・・・・第1電源部、2・・・・
・・第2電源部、3・・・・・・第1スイツチ、4・・
・・・・検知部、5・・・・・・被測定物、6・・・・
・・検出回路、7・・・・・・第1保持回路、8・・・
・・・第2保持回路、9・・・・・・第2スイツチ、9
a・・・・・・第1保持回路7の入力信号、9b・・・
・・・第2保持回路8の入力信号、10・・・・・・動
作信号発生回路、10a・・・・・・第1保持回路7の
動作信号、10b・・・・・・第2保持回路8の動作信
号、11・・・・・・ 切換動作駆動回路、12・・・
・・・除算回路、12a・・・・・・除算回路12の出
力信号、41.42・・・・・・対向電極。 イモ埋入弁理士 山 口       (第1図 @ 2 口
FIG. 1 is a block diagram of an embodiment of the moisture measuring device according to the present invention, FIG. 2 is a perspective view of the detection unit 4 in FIG. 1, and FIG.
The figure shows an example of the measurement results of the sleep loss rate of paddy, and Fig. 4 is an example of the relationship between the moisture content of paddy and Rt, which was created based on Fig. 3.
FIG. 5 shows another example of the measurement results of the dielectric loss factor of rice. In each figure, 1...first power supply section, 2...
...Second power supply section, 3...First switch, 4...
...Detection unit, 5...Measurement object, 6...
...Detection circuit, 7...First holding circuit, 8...
...Second holding circuit, 9...Second switch, 9
a... Input signal of the first holding circuit 7, 9b...
...Input signal for second holding circuit 8, 10...Operating signal generation circuit, 10a...Operating signal for first holding circuit 7, 10b...Second holding Operation signal of circuit 8, 11... Switching operation drive circuit, 12...
. . . Division circuit, 12a . . . Output signal of division circuit 12, 41.42 . . . Counter electrode. Patent Attorney Yamaguchi (Fig. 1 @ 2)

Claims (1)

【特許請求の範囲】 周波数が異なり大きさが等しい2つの正弦波交流電圧を
切りかえて出力する第1スイツチと、前記第1スイツチ
の出力電圧が印加される対向Ngを有してその′電極間
に被測定物が挿入される検知部と、前記検知部に接続さ
れて前記電極間に流れる電流の中の前記印加された電圧
と同相の電流を検出してその電流に応じた信号を出力す
る検出回路と、前記検出回路の出力信号を切りかえて出
力する第2スイツチと、前記哨2スイッチの出力信乙 号をそれぞれ保持する第1および第2保持回路券、各 前tl’r2 第1 :r6よびv、2スイツチにおけ
る#切りかえ動作を、11!拗して所定の周期で、売り
返して行なわせるようにした切換動作廊勅回路吉、前記
第1保持回路の出刃信号と前記哨21父持回路の出力信
号との比を演算する除算回路とを備え、¥IJ記除泣回
路の出力信号を前記被測定物中の水分の尺虻とすること
を特徴とする水分測定装置 2、特許請求の範囲第1項に記載の装置において、前記
各正弦波交流電圧の周波数を、第1測定周波数で測定し
た被測定物の表面が濡れた状態での誘電損率の、前記第
1測定周波数で測定した前記被測定物の表面が乾燥した
状態での誘電損率に対する割合と、第2測定周波数で測
定した前記被測定物の表面が濡れた状態での誘電損率の
、前記第2測定周波数で測定した前記被測定物の表面が
乾燥した状態での誘電損率に対する割合とが等しくなる
ような、前記第1および第2測定周波数に等しい周波数
としたことを特徴とする水分測定装置。
[Scope of Claims] A first switch that switches and outputs two sinusoidal AC voltages having different frequencies and equal magnitudes, and an opposing Ng to which the output voltage of the first switch is applied, between the electrodes thereof. a detection section into which an object to be measured is inserted; and a detection section connected to the detection section that detects a current in phase with the applied voltage among the currents flowing between the electrodes and outputs a signal corresponding to the current. A detection circuit, a second switch that switches and outputs the output signal of the detection circuit, first and second holding circuits that respectively hold the output signal No. of the second sentry switch, and each front tl'r2 first: #Switching operation in r6 and v, 2 switches, 11! A dividing circuit calculates the ratio between the output signal of the first holding circuit and the output signal of the second holding circuit. A moisture measuring device 2, characterized in that the output signal of the weeping circuit described in IJ is a measure of moisture in the object to be measured, the device according to claim 1, wherein each of the The frequency of the sine wave AC voltage is measured at a first measurement frequency when the surface of the object to be measured is wet, and when the surface of the object to be measured is dry when measured at the first measurement frequency. of the dielectric loss factor measured at the second measurement frequency when the surface of the object to be measured is wet, and when the surface of the object to be measured is dry when measured at the second measurement frequency. A moisture measuring device characterized in that the frequency is set to be equal to the first and second measurement frequencies such that the ratio of the frequency to the dielectric loss factor is equal.
JP7464883A 1983-04-27 1983-04-27 Moisture content measuring apparatus Pending JPS59198351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7464883A JPS59198351A (en) 1983-04-27 1983-04-27 Moisture content measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7464883A JPS59198351A (en) 1983-04-27 1983-04-27 Moisture content measuring apparatus

Publications (1)

Publication Number Publication Date
JPS59198351A true JPS59198351A (en) 1984-11-10

Family

ID=13553254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7464883A Pending JPS59198351A (en) 1983-04-27 1983-04-27 Moisture content measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59198351A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277426A (en) * 2001-03-21 2002-09-25 Kawata Mfg Co Ltd Dielectric physical property measuring instrument
JP2003139765A (en) * 2001-07-06 2003-05-14 Sakae Shibusawa Device for observing characteristic of soil
JP2013253827A (en) * 2012-06-06 2013-12-19 Fujitsu Ltd Device and method for measuring dielectric constant
JP2021103130A (en) * 2019-12-25 2021-07-15 国立研究開発法人理化学研究所 Free water measuring method and free water measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277426A (en) * 2001-03-21 2002-09-25 Kawata Mfg Co Ltd Dielectric physical property measuring instrument
JP2003139765A (en) * 2001-07-06 2003-05-14 Sakae Shibusawa Device for observing characteristic of soil
JP2013253827A (en) * 2012-06-06 2013-12-19 Fujitsu Ltd Device and method for measuring dielectric constant
JP2021103130A (en) * 2019-12-25 2021-07-15 国立研究開発法人理化学研究所 Free water measuring method and free water measuring apparatus

Similar Documents

Publication Publication Date Title
Kraszewski et al. An improved microwave method of moisture content measurement and control
Schwan et al. On the low-frequency dielectric dispersion of colloidal particles in electrolyte solution1
WO1996042014A1 (en) Method for determining the degree of hardening of a material
WO1997044660A1 (en) Method and apparatus for ratiometric measurement of hematocrit
JPS59198351A (en) Moisture content measuring apparatus
JP2001099802A (en) Apparatus for monitoring adhesion of liquid or paste-like medium onto substrate
Chao et al. The use of optics for understanding the electrochemical interface
WO1997001090A1 (en) Method for measuring the water content of growing substrates
Kruise et al. Detection of charged proteins by means of impedance measurements
US3155899A (en) Method and apparatus for determining moisture content and other variables utilizing a capacitor test cell at two different frequencies
JPH06109710A (en) Surface acoustic wave device for measuring liquid characteristics
JP3705024B2 (en) Capacitive moisture sensor
Flaschke et al. Dielectric soil water content measurements independent of soil properties
JPS593250A (en) Method and apparatus for measuring moisture content
SU771524A1 (en) Method of determining time constant of relaxation of three-dimensional charge and three-dimensional electroconduction of dielectrics
SU1733989A1 (en) Method of determining a sea water salt level and device thereof
RU2216726C2 (en) Facility measuring specific resistance of liquid media and ground
RU2316113C2 (en) Method for measuring parameters of an underlying environment and device for realization of the method
SU851243A1 (en) Substance concentration measuring method
McAllister et al. A direct method for phase-angle recording in AC polarography with a commercial lock-in amplifier: Analytical utility of phase-angle measurements
Wright et al. The surface conductivity at the polystyrene-latex particle/electrolyte interface
Van Beek et al. Dielectric behavior of aqueous solutions of sodium polyphosphates of low degree of polymerization
JPH04278449A (en) Apparatus for measuring concentration of liquid component
Dazhong et al. A new type of piezoelectric detector in liquid: Part 2. Computation of the equivalent circuit parameters of a piezoelectric crystal with a separated electrode and of series piezoelectric sensors in a non-electrolyte solution
Kosovskii et al. A method of reducing the effect of the gap in eddy-current measurements of conductivity