JPS591979B2 - Measuring method for glutamic acid and glutamine - Google Patents
Measuring method for glutamic acid and glutamineInfo
- Publication number
- JPS591979B2 JPS591979B2 JP53035906A JP3590678A JPS591979B2 JP S591979 B2 JPS591979 B2 JP S591979B2 JP 53035906 A JP53035906 A JP 53035906A JP 3590678 A JP3590678 A JP 3590678A JP S591979 B2 JPS591979 B2 JP S591979B2
- Authority
- JP
- Japan
- Prior art keywords
- glutamic acid
- electrode
- glutamine
- microbial
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【発明の詳細な説明】
本発明は微生物電極を用いるL−グルタミン酸及びL−
グルタミンの測定法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of L-glutamic acid and L-glutamic acid using microbial electrodes.
Concerning a method for measuring glutamine.
L−グルタミン酸の定量法としては従来からカボチャあ
るいはエシエリシア・コリのL−グルタミン酸脱炭酸酵
素(glutamatedecarboxylase)
3を用いて(1)式glutamate
decarboxylase
(1)L−グルタミン酸 に−アミノ酪EC02の反応
により発生するC02ガスの量をワールブルグ法等で測
定する酵素法が用いられて来ている。Conventionally, L-glutamate decarboxylase from pumpkin or Escherichia coli has been used as a method for quantifying L-glutamic acid.
An enzymatic method has been used in which the amount of CO2 gas generated by the reaction of aminobutyric EC02 with L-glutamic acid is measured by the Warburg method or the like using the formula (1) glutamate decarboxylase (1) using the formula 3.
酵素法は正確ですぐれた方法であるが、酵素の連続的使
用が困難なため高価な酵素を測定の毎に新たに使用しな
ければならず経済的でない。又、発生C02ガスを比色
定量するオートアナライザーも実際に使用されているが
上記欠点はまぬがれず、装置も複雑化している。酵素を
固定化して連続的に使用する方法も考えられるが実用化
されるに至つていない。Although the enzymatic method is accurate and excellent, it is difficult to use enzymes continuously, and expensive enzymes must be used anew for each measurement, making it uneconomical. Furthermore, autoanalyzers for colorimetric determination of generated CO2 gas are actually used, but they still suffer from the above-mentioned drawbacks and the equipment is complicated. A method of immobilizing the enzyme and using it continuously is also considered, but it has not yet been put to practical use.
そこで本発明者等は簡便で正確なグルタミン酸の測定法
を開発すべく鋭意研究を重ねた結果、エシエリシア・コ
リに属する細菌々体を溶存炭酸ガス電極に取わ付けた微
生物電極を嫌気的条件下で被験液と接触せしめることを
骨子とする新しいグルタミン酸及びグルタミンの測定法
を開発することができた。即ち本発明の方法は微生物菌
体を用いて(1)式の反応を嫌気的条件下で行わしめ、
生成されるCO2ガスを炭酸ガス電極で定1することを
特徴とするものである。以下本発明について詳細に説明
する。本発明で使用する微生物はエシエリシア・コリ(
Escherichiacoli)に属し、glut
amatedecarboxylase活生の強い菌株
が用いられ、例えがエシエリシア・コリATCC873
9等が好適である。その他クロストリデユーム・ウエル
チ等の細菌も使用することができる。細菌々体の調製は
通常の栄養培地で培養し、得られる細菌々体をそのまま
用いても良く、これを凍結乾燥したものも長期間(1年
以上)使用することができるので便利である。Therefore, the present inventors conducted extensive research to develop a simple and accurate method for measuring glutamic acid, and as a result, we used a microbial electrode in which bacterial cells belonging to Escherichia coli were attached to a dissolved carbon dioxide gas electrode under anaerobic conditions. We were able to develop a new method for measuring glutamic acid and glutamine, which involves contacting the sample with the test solution. That is, the method of the present invention uses microbial cells to carry out the reaction of formula (1) under anaerobic conditions,
This method is characterized in that the generated CO2 gas is regulated using a carbon dioxide gas electrode. The present invention will be explained in detail below. The microorganism used in the present invention is Escherichia coli (
Escherichiacoli), glut
A strain with strong amatedecarboxylase activity is used, an example being Escherichia coli ATCC873.
9 etc. is suitable. Other bacteria such as Clostridium welchii can also be used. Bacterial cells can be prepared by culturing them in a conventional nutrient medium, and the obtained bacterial cells can be used as they are, or they can be lyophilized and used for a long period of time (one year or more), which is convenient.
本発明の微生物電極は、通常の溶存炭酸ガス電極(市販
品)の隔膜に上記微生物菌体を取わつけたもので、微生
物菌体をナイロンネット、ミワポアフイルター、口紙片
等のスペーサーに塗布しこれをセロフアン膜等微生物を
透過しない程度の微細孔を有する膜でもつて第1図の如
く隔膜に取りつけることによつて容易に作製することが
できる。The microbial electrode of the present invention is an ordinary dissolved carbon dioxide electrode (commercially available) with the above-mentioned microbial cells attached to the diaphragm, and the microbial cells are applied to a spacer such as a nylon net, a Miwapore filter, or a piece of paper. However, this can be easily produced by attaching a membrane such as a cellophane membrane having micropores that are impermeable to microorganisms to a diaphragm as shown in FIG.
また、コラーゲン、アクリルアミドゲル等で固定化した
微生物を用いることもできる。 5第1図に
於て、1は炭酸ガス電極の隔膜(シリコーン膜)、2は
微生物層、3はスペーサー、4は透析膜(セロフアン膜
)、5はPH電極、6は内部液(NaHCO3−NaC
l混液)を示す。この微生物電極を通常の状態で発酵液
などの被11験液に接触さぜると、隔膜近傍の微生物は
被験液中の栄養物(糖、アミノ酸)を資化し、又は呼吸
し多量の炭酸ガスを放出するためグルタミン酸の測定は
困難である。本発明者等は微生物電極と被験液を嫌気的
条件下で接触させれば、上記の微生13物の生命活動に
よる炭酸ガスの生成が完全に抑制され、従つて(1)式
の反応が定量的に進行するということを発見し、これに
基づいて本発明を完成したものである。第2図に示す測
定システムは本発明の実施態様2の1つである、第2図
の1は微生物電極、2はフローセル、3,32はゴムパ
ツキング、4はN2ガス吹込口、5はキャリヤー注入口
、6はサンプル注入口、7はPH計又はイオンメーター
、8はレコーダを夫々示す。Furthermore, microorganisms immobilized with collagen, acrylamide gel, etc. can also be used. 5 In Figure 1, 1 is the carbon dioxide gas electrode diaphragm (silicone membrane), 2 is the microorganism layer, 3 is the spacer, 4 is the dialysis membrane (cellophane membrane), 5 is the PH electrode, and 6 is the internal solution (NaHCO3- NaC
1 mixed liquid). When this microbial electrode is brought into contact with a test liquid such as a fermentation liquid under normal conditions, the microorganisms near the diaphragm assimilate or respire the nutrients (sugars, amino acids) in the test liquid, producing a large amount of carbon dioxide. It is difficult to measure glutamate because it releases The present inventors have found that when the microbial electrode and the test solution are brought into contact with each other under anaerobic conditions, the production of carbon dioxide gas due to the life activities of the 13 microorganisms mentioned above is completely suppressed, and therefore the reaction of equation (1) is suppressed. The present invention was completed based on the discovery that the process progresses quantitatively. The measurement system shown in FIG. 2 is one of the second embodiments of the present invention. In FIG. 2, 1 is a microbial electrode, 2 is a flow cell, 3 and 32 are rubber packings, 4 is an N2 gas inlet, and 5 is a carrier injection port. 6 is a sample injection port, 7 is a PH meter or ion meter, and 8 is a recorder.
この第2図のシステムに従つて本2発明の測定法を以下
に説明する。まず最初にキャリヤー液を5から一定の流
量で、4からN2ガスを吹込みながらフローセル内に流
し、電極電圧出力をレコーダー8に記録する(ベースラ
イン)ベースラインが安定した後(1時間以内)、5サ
ンプルを6からパルスタイム0.5〜3分間で10〜3
0分間隔を置いて順次注入する、このサンプル液はキャ
リヤー液で適当に希釈されフローセル内に達する。The measuring method of the second invention will be explained below according to the system shown in FIG. First, flow the carrier liquid into the flow cell at a constant flow rate from 5 and while blowing N2 gas from 4, and record the electrode voltage output on recorder 8 (baseline). After the baseline is stabilized (within 1 hour) , 5 samples from 6 to 10 to 3 with a pulse time of 0.5 to 3 minutes.
This sample solution, which is sequentially injected at 0 minute intervals, is appropriately diluted with a carrier solution and reaches the flow cell.
フローセル内ではサンプル中のグルタミン酸が微生物の
酵素により(1)式の反応にJより分解されCO2ガス
が発生する。このCO2ガスは隔膜を通つて内部液のP
Hを変化させる。PH変化はPH電極を経てPHメータ
ー又はイオンメーター7によつて測定され、レコーダー
8に記録される。電極の出力値と基質の濃度の対数(】
0gC)との間には第4図のような関係が見られ、ネル
ンストの式(2)が成立する。(2)式のE。は非対称
電位差、Rはガス定数、Tは絶対温度、Fはフアラデ一
定数を示す。In the flow cell, glutamic acid in the sample is decomposed by microbial enzymes according to the reaction of equation (1), and CO2 gas is generated. This CO2 gas passes through the diaphragm and P of the internal liquid.
Change H. The PH change is measured by a PH meter or ion meter 7 via a PH electrode, and recorded on a recorder 8. Logarithm of electrode output value and substrate concentration (】
0gC), a relationship as shown in FIG. 4 is observed, and Nernst's equation (2) holds true. (2) E in formula. is the asymmetric potential difference, R is the gas constant, T is the absolute temperature, and F is the Farade constant.
この(2)式を用いて被験液の基質濃度を求めることが
できる。測定時の条件については、測定のρHは3.5
〜5.5、温度は20〜40℃の範囲が良く、サンプル
と電極との接触時間は0.5〜5分間で充分であり、通
常3分でほぼ飽和値に達する。Using this equation (2), the substrate concentration of the test solution can be determined. Regarding the conditions at the time of measurement, the measurement ρH is 3.5
~5.5, the temperature is preferably in the range of 20 to 40°C, the contact time between the sample and the electrode is sufficient for 0.5 to 5 minutes, and the saturation value is usually reached in 3 minutes.
基質の測定濃度範囲は10−1〜10−4Mであり、広
い範囲の測定が可能である。使用するキャリヤー液とし
ては、クエン酸、フマル酸、コハク酸等の有機酸バツフ
ア一、又はピリンジン一塩酸バツフア一が用いられる。The measurement concentration range of the substrate is 10-1 to 10-4M, making it possible to measure a wide range. The carrier liquid used is an organic acid buffer such as citric acid, fumaric acid, or succinic acid, or a pyringine monohydrochloric acid buffer.
特にNaClとKH2PO2を含有(0.59/dl)
したピリジン一塩酸バツフア一は望ましいものである。
第2図では嫌気的条件にするためN2ガスを用いている
が、別にN2ガスに限定されず、要は溶存酸素が共存し
なければ良いのであつて、他の不活性ガスで置換しても
良く又溶存酸素を含まないキャリヤーを用いても良い。
以上の条件で使用した場合連続使用で2週間以上活性が
持続さnる。本発明の方法は微生物菌体を用いているの
で酵素法と比較してアミノ酸、糖等の不純物の影響を受
け易いように考えられるが、基質特異性について調べて
見ると第1表の如くであり、グルタミン酸100に対し
てグルタミン以外に570以上示すものは見られない。
第1表に示すように本発明の方法ではグルタミンもグル
タミン酸と同様に測定できる。Especially contains NaCl and KH2PO2 (0.59/dl)
A pyridine monohydrochloride buffer is preferred.
In Figure 2, N2 gas is used to create an anaerobic condition, but it is not limited to N2 gas, as long as dissolved oxygen does not coexist, and replacement with other inert gases is also acceptable. Alternatively, a carrier containing no dissolved oxygen may be used.
When used under the above conditions, the activity will last for more than two weeks with continuous use. Since the method of the present invention uses microbial cells, it seems to be more susceptible to the effects of impurities such as amino acids and sugars than the enzymatic method, but when examining the substrate specificity, Table 1 shows that There is no substance other than glutamine that shows 570 or more for 100 glutamic acid.
As shown in Table 1, glutamine can also be measured in the same manner as glutamic acid using the method of the present invention.
これは、エシエリシア・コリがグルタミノーゼ(Glu
taml一Nase)を有し、(3)式によつてグルタ
ミンからグルタミン酸を生成し、(2)式の反応により
CO2ガスを生成することに基くものである。第1表に
記載されていない他のL−アミノ酸即ちMet,His
,Lys,PrO,Ser,Ileu,Phe,Leu
,Asp(NH2),Val,Thr,Ornl及びリ
ンゴ酸、ビルピン酸、グルコース、尿素等は全く影響が
見られない。This is because E. coli produces glutaminose (Glu).
This method is based on the fact that glutamic acid is produced from glutamine by the reaction of equation (3), and CO2 gas is produced by the reaction of equation (2). Other L-amino acids not listed in Table 1, i.e. Met, His
,Lys,PrO,Ser,Ileu,Phe,Leu
, Asp(NH2), Val, Thr, Ornl, malic acid, virupic acid, glucose, urea, etc. have no effect at all.
これに対し、凍結乾燥したエシエリシア・コリを用いる
酸素法(ワールブルグ法)ではグルタミン酸100に対
し、 Tyr45%、Arg8O%、Try25%、リ
ンゴ酸40%とかなり影響を受ける。又カボチヤの酵素
は尿素の影響が大きく、尿素を用いるグルタミン、又は
グルタミン発酵プロスの測定は不可能である。基質特異
性の点に於ても本発明の方法は優れている。上述の如く
本発明は酵素法に比べてより簡便で正確なグルタミン酸
及びグルタ6ンの測定法を提供するものである。On the other hand, in the oxygen method (Warburg method) using freeze-dried Escherichia coli, Tyr is 45%, Arg is 80%, Try is 25%, and malic acid is 40%, relative to 100 glutamic acid, which is considerably affected. Pumpkin enzymes are greatly influenced by urea, making it impossible to measure glutamine or glutamine fermentation process using urea. The method of the present invention is also superior in terms of substrate specificity. As described above, the present invention provides a method for measuring glutamic acid and glutamate-6 which is simpler and more accurate than the enzymatic method.
実施例 1
エシエリシア・コリ(EscherichiacOli
)ATCC8739を第2表の培地を用いても30℃で
フラスコ振蓋培養した。Example 1 Escherichia coli (Escherichia coli)
) ATCC8739 was cultured in a flask at 30°C using the medium shown in Table 2.
20時間培養後培養液50meを遠心分離して湿菌体を
得た。After culturing for 20 hours, 50me of the culture solution was centrifuged to obtain wet bacterial cells.
これを0.1MKC1溶液50meで良く洗浄し凍結乾
燥して0.69菌体を得た。5qの凍結乾燥菌体を少量
の水に、懸濁(ペースト状)し、径10?のナイロンネ
ツトに塗布し、これをセロフアン膜を用いて第1図のよ
うに炭酸ガス電極(E5O37型、ラジオメーター社、
デンマーク)のシリコーン隔膜近傍に取りつけた。This was thoroughly washed with 0.1M KC1 solution 50me and lyophilized to obtain 0.69 bacterial cells. Suspend (paste-like) 5q of freeze-dried bacterial cells in a small amount of water to a size of 10? A carbon dioxide gas electrode (Model E5O37, manufactured by Radiometer Co., Ltd.,
(Denmark) near the silicone diaphragm.
この微生物炭酸ガス電極を用いて第2図に示すフローセ
ル(容量0.5mt)にゴムパツキングを介して挿入し
第2図のような測定システムを組立てた。キャリヤー液
としてPH4.4、0.1Mピリジン一塩酸バツフア一
(0.59/DlONaCl及びKH2PO4を含む)
を第2図の5から5艷/勉nの流速で流入させ、4から
N2ガスを11/7It′Itの流量で吹込んでフロー
セル内を通し、この時の電圧出力をレコーダー8に記録
させた(ベースライン)。This microbial carbon dioxide electrode was inserted into a flow cell (capacity 0.5 mt) shown in FIG. 2 via rubber packing to assemble a measurement system as shown in FIG. PH4.4, 0.1 M pyridine monohydrochloric acid buffer (0.59/containing DlONaCl and KH2PO4) as carrier liquid.
was introduced at a flow rate of 5 to 5 in Figure 2, and N2 gas was blown in from 4 to 11/7 It'It through the flow cell, and the voltage output at this time was recorded on recorder 8. (Base line).
測定中、フローセル内の温度は3『Cに保つた。1時間
後、465醒のグルタミン酸水溶液及びその希釈液を順
次1d/融の速度でパルス巾3分で6から注入した。During the measurement, the temperature inside the flow cell was maintained at 3'C. After 1 hour, an aqueous solution of 465 glutamic acid and its diluted solution were sequentially injected from 6 to 6 at a rate of 1 d/melt with a pulse width of 3 minutes.
このサンプルはバツフア一により希釈され、フローセル
に流入すると微生物電極は数秒で指示を出し、3分後に
は指示の飽和レベルに達し、第3図のようなピークがレ
コーダに記録された。第3図中、縦軸は電極の電圧出力
(m入横軸は時間を示す。第3図中の各ピークの高さと
フローセル中のグルタミン酸濃度の対数(10gC)の
間には第4図の関係が見られ、その傾き60mV/PC
GHは式(2)に卦けるネルンスト項の係数に一致した
(理論値:60.16mV)。−方、プレビバクテリユ
ーム・ラクトフエルメンタムATCCl3896を第3
表の培地を用いて30℃で通気攪拌培養を行つた。When this sample was diluted with a buffer and flowed into the flow cell, the microbial electrode gave an indication within a few seconds, and after 3 minutes, the indicated saturation level was reached, and a peak as shown in Figure 3 was recorded on the recorder. In Figure 3, the vertical axis shows the voltage output of the electrode (in m), and the horizontal axis shows time. A relationship is observed, with a slope of 60mV/PC
GH matched the coefficient of the Nernst term in equation (2) (theoretical value: 60.16 mV). - On the other hand, Previbacterium lactofermentum ATCCl3896 was added to the third
Aerated agitation culture was performed at 30°C using the medium shown in the table.
得られる培養液を遠心分離し、上清液を100倍希釈し
サンプルAとした。The resulting culture solution was centrifuged, and the supernatant was diluted 100 times to obtain sample A.
これに試薬のグルタミン酸を一定量づつ添加し、サンプ
ルB,C,Dを調製した。これらのサンプルを第2図の
システムに従つて測定し得られるピークの高さから(2
)式に従つて各サンプルのグルタミン酸の濃度を求めた
。A fixed amount of glutamic acid as a reagent was added thereto to prepare samples B, C, and D. These samples were measured according to the system shown in Figure 2, and from the peak heights obtained (2
) The concentration of glutamic acid in each sample was determined according to the formula.
その結果は第4表に示す如くであり、各サンプルについ
て従来の酵素法(オートアナライザー法)で測定した値
と良く一致していた。実施例 2
ブレビバクテリユームフラバンAJ34O9(FERM
−Pl684)を第5表の培地を用いて30℃で通気攪
拌培養を行つた。The results are shown in Table 4, and were in good agreement with the values measured by the conventional enzyme method (autoanalyzer method) for each sample. Example 2 Brevibacterium flavan AJ34O9 (FERM
-Pl684) was cultured with aeration and stirring at 30°C using the medium shown in Table 5.
50時間培養後、遠心分離し、得られる上清液を100
倍希釈して実施例1の方法に従つて測定し(3)式から
上清液の基質濃度を求めたところ5.069/dlであ
つた。After 50 hours of culture, centrifugation is performed, and the resulting supernatant is
It was diluted twice and measured according to the method of Example 1, and the substrate concentration of the supernatant was determined from equation (3) and was found to be 5.069/dl.
この内のグルタミンの量はこの値からカボチヤの酵素を
用いる酵素法で測定したグルタミン酸の量0.129/
dlを差引いた値、4.949/91であり、エシエリ
シア・コリ卦よびカボチャの酵素を用いる従来の酵素法
(オートアナライザー法)で得られた値、4.939/
dlと良く一致していた。From this value, the amount of glutamine is determined by the amount of glutamic acid measured by an enzymatic method using pumpkin enzyme, which is 0.129/
The value obtained by subtracting dl is 4.949/91, and the value obtained by the conventional enzyme method (autoanalyzer method) using Escherichia coli and pumpkin enzymes is 4.939/
It was in good agreement with dl.
第1図は本発明の微生物電極の概略図、第2図は測定シ
ステムの略図、第3図は微生物電極の電圧出力のチヤー
ト、第4図は基質濃度と電圧出力の関係を示すグラフで
ある。Fig. 1 is a schematic diagram of the microbial electrode of the present invention, Fig. 2 is a schematic diagram of the measurement system, Fig. 3 is a chart of voltage output of the microbial electrode, and Fig. 4 is a graph showing the relationship between substrate concentration and voltage output. .
Claims (1)
する細菌々体を取りつけた微生物電極を嫌気的条件下で
被験液と接触せしめ、基質濃度の対数(logC)と該
微生物電極の電圧出力との間の比例関係を利用して基質
濃度を求めることからなるL−グルタミン酸及びL−グ
ルタミンの測定法。1. A microbial electrode with bacteria belonging to Escherichia coli attached near the diaphragm of the carbon dioxide electrode is brought into contact with the test solution under anaerobic conditions, and the difference between the logarithm of the substrate concentration (logC) and the voltage output of the microbial electrode is A method for measuring L-glutamic acid and L-glutamine, which comprises determining the substrate concentration using the proportional relationship.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53035906A JPS591979B2 (en) | 1978-03-28 | 1978-03-28 | Measuring method for glutamic acid and glutamine |
GB7910367A GB2029025B (en) | 1978-03-28 | 1979-03-23 | Method and apparatus for determining the concentration of a carbon source or of an l-amino acid |
ES478969A ES478969A1 (en) | 1978-03-28 | 1979-03-27 | Method for determining the concentration of an L-amino acid in fermentation |
US06/024,330 US4299669A (en) | 1978-03-28 | 1979-03-27 | Method for determining the concentration of an L-amino acid in fermentation |
FR7907818A FR2421380A1 (en) | 1978-03-28 | 1979-03-28 | METHOD AND APPARATUS FOR DETERMINING THE CONCENTRATION OF A SOURCE OF CARBON AND OF AN L-AMINOACID IN A FERMENTATION MEDIUM |
US06/237,668 US4384936A (en) | 1978-03-28 | 1981-02-24 | System for determining the concentration of an L-amino acid in fermentation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53035906A JPS591979B2 (en) | 1978-03-28 | 1978-03-28 | Measuring method for glutamic acid and glutamine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54128394A JPS54128394A (en) | 1979-10-04 |
JPS591979B2 true JPS591979B2 (en) | 1984-01-14 |
Family
ID=12455062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53035906A Expired JPS591979B2 (en) | 1978-03-28 | 1978-03-28 | Measuring method for glutamic acid and glutamine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS591979B2 (en) |
-
1978
- 1978-03-28 JP JP53035906A patent/JPS591979B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS54128394A (en) | 1979-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kuriyama et al. | Plant tissue-based bioselective membrane electrode for glutamate | |
US5387109A (en) | Fructosylamine deglycase and a method of producing it | |
Hikuma et al. | A potentiometric microbial sensor based on immobilized Escherichia coli for glutamic acid | |
US4780191A (en) | L-glutamine sensor | |
JPH0533997B2 (en) | ||
Sirotnak et al. | Amino acid metabolism of bovine rumen bacteria | |
US4384936A (en) | System for determining the concentration of an L-amino acid in fermentation | |
Riedel et al. | An electrochemical method for determination of cell respiration | |
Chien-Yuan et al. | Amperometric L-glutamate sensor using a novel L-glutamate oxidase from Streptomyces platensis NTU 3304 | |
Kobos | Microbe-based electrochemical sensing systems | |
Vrbova et al. | Biosensor for the determination of L-lysine | |
Simonian et al. | A flow-through enzyme analyzer for determination of L-lysine concentration | |
Kobos et al. | Application of microbial cells as multistep catalysts in potentiometric biosensing electrodes | |
Moody et al. | The analytical role of ion-selective and gas-sensing electrodes in enzymology. A review | |
Ye et al. | L-Glutamate biosensor using a novel L-glutamate oxidase and its application to flow injection analysis system | |
JPS591979B2 (en) | Measuring method for glutamic acid and glutamine | |
Pfeiffer et al. | Amperometric amino acid electrodes | |
Degn et al. | The occurrence of a stepwise-decreasing respiration rate during oxidative assimilation of different substrates by resting Klebsiella aerogenes in a system open to oxygen | |
Basu et al. | Development of biosensor based on immobilized L-glutamate oxidase for determination of monosodium glutamate in food | |
Liu et al. | Studies on microbial biosensor for DL-phenylalanine and its dynamic response process | |
Corcoran et al. | Selectivity enhancement of a bacterial arginine electrode | |
Najjar | [75A] Determination of amino acids by specific bacterial decarboxylases in the Warburg apparatus: RCHNH2COOH→ RCH2NH2+ CO2 | |
Kawashima et al. | A microbial sensor for uric acid | |
JPS6042911B2 (en) | Assay method for L-lysine | |
Hikuma et al. | [10] Microbial sensors for estimation of biochemical oxygen demand and determination of glutamate |