JPS5919755A - Line pressure controller for belt drive type stepless speed change gear - Google Patents

Line pressure controller for belt drive type stepless speed change gear

Info

Publication number
JPS5919755A
JPS5919755A JP12887982A JP12887982A JPS5919755A JP S5919755 A JPS5919755 A JP S5919755A JP 12887982 A JP12887982 A JP 12887982A JP 12887982 A JP12887982 A JP 12887982A JP S5919755 A JPS5919755 A JP S5919755A
Authority
JP
Japan
Prior art keywords
line pressure
pressure
amplifier
vout
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12887982A
Other languages
Japanese (ja)
Inventor
Setsuo Tokoro
節夫 所
Takashi Shigematsu
重松 崇
Tomoyuki Watanabe
智之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12887982A priority Critical patent/JPS5919755A/en
Publication of JPS5919755A publication Critical patent/JPS5919755A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To improve the accuracy in controlling the line pressure of a CVT, by feed-back controlling the line pressure so as to reduce it when an actual value thereof is higher than a target value and raise it when the actual value is lower than the target value. CONSTITUTION:An amplifier 50 for a pressure-regulating valve 15 generates an output electric current which is a linear function of an input voltage Vout, and feeds the current to the valve 15. An output-side servo oil pressure Pout is detected by an oil pressure sensor 34, an output from which is amplified by an amplifier 51, and is fed to an adding point 53a through a processing circuit 52. The result of calculation at the adding point 53a is fed to an adding point 55a through a feed-back element 54a. The result of calculation at the adding point 55a is fed to the amplifier 50, and an input voltage to the amplifier 50 is varied in accordance with Vout*-Vout, based on Vout. Accordingly, when a target line pressure Pl* is higher than the actual line pressure Pl, the return flow rate through the valve 15 is reduced, thereby raising the line pressure Pl, and when the target line pressure Pl* is lower than the actual line pressure Pl, the flow rate is increased, thereby lowering the line pressure Pl.

Description

【発明の詳細な説明】 本発明は、例えば自動車用動力伝達装置として用いられ
るベルト駆動式無段変速機の油圧制御装置に関ずろ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydraulic control device for a belt-driven continuously variable transmission used, for example, as a power transmission device for an automobile.

本出願人は、先の特願昭57−40747号において、
無段変速機(以下「CVT」と記載する。)を用いた自
動車用動力伝達装置を開示した。この先願ではCVTは
、1対の入力側ディスクと1対の出力側ディスクとの間
に掛けられるベルトを備え、伝達トルクに関係して出力
側ディスクのサーボ油圧としてのライン圧が制御され、
入力側ティヌクのサーボ油圧により速度比が制御されて
いる。ライン圧は、調圧弁における戻し流量の制御によ
り増減され、CPUかも調圧弁用増幅器への出力電圧に
より間接的に制御されるが、前記先願ではライン圧は、
開ループ制御であり、調圧弁の特性のばらつき、および
外乱等により大きな影響を受け、制御精度が低かった。
In the earlier Japanese Patent Application No. 57-40747, the present applicant
An automobile power transmission device using a continuously variable transmission (hereinafter referred to as "CVT") has been disclosed. In this prior application, the CVT includes a belt that is stretched between a pair of input side disks and a pair of output side disks, and the line pressure as servo oil pressure of the output side disk is controlled in relation to the transmitted torque.
The speed ratio is controlled by the servo oil pressure of the input side Tinuku. The line pressure is increased or decreased by controlling the return flow rate in the pressure regulating valve, and is indirectly controlled by the CPU or the output voltage to the pressure regulating valve amplifier, but in the earlier application, the line pressure is
Since it was an open-loop control, it was greatly affected by variations in the characteristics of the pressure regulating valve and disturbances, resulting in low control accuracy.

本発明の目的は、CVTのライン圧の制御精度を改善で
きるベルト駆動式CVTのライン圧制御装置を提供する
ことである。
An object of the present invention is to provide a belt-driven CVT line pressure control device that can improve the control accuracy of CVT line pressure.

この目的を達成するために本発明のベルト駆動式CVT
によれば、ライン圧の実際値が目標値より大きい場合に
はライン圧を減少し、また、ライン圧の実際値が目標値
より小さい場合にはライン圧を増大させるようにライン
圧をフィードバック制御する。
To achieve this objective, the belt-driven CVT of the present invention
According to the method, line pressure is feedback-controlled so that when the actual value of line pressure is greater than the target value, the line pressure is decreased, and when the actual value of line pressure is less than the target value, the line pressure is increased. do.

図面を参照して本発明を説明ずろ。The invention will now be described with reference to the drawings.

最初に本発明が適用されろ車両用動力装置の全体を第1
図において説明する。機関1のクランク軸2はクラッチ
3を介してCVT 4の入力軸5へ接続されている。1
対の入力端ディスク6゜7は互いに対向して配置され、
一方の入力側ディスク6は入力軸5に軸線方向へ相対移
動可能に支持され、他方の入力側ディスク7は入力軸5
に固定されている。1対の出力側ディスク8゜9も互い
に対向して配置され、一方の出力側ティヌク8は出力軸
10に固定され、他方の出力側ディスク9は出力軸10
に軸線方向へ相対移動可能に支持されている。1対の入
力側ディスク6゜7および出力側ディスク8,9の対向
面は、半径方向外方へ向かって両者間の距離が増大する
ように形成されている。ベルト11は、断面を台形に形
成され、入力側ディスク6.7と出力側ディスク8,9
間に什けられている。調圧(リリーフ)弁15は、オイ
ルパン16からオイルポンプ17により油路18を介し
てオイルを送られ、油路19にライン圧を生成する。ラ
イン圧の調整のためにはドレン油路20へのオイルの戻
し流量を制御し、油路19は出力側ディスク90浦圧サ
ーボへ接続されている。流量制御弁24は、油路19、
ドレン油路25、および油路26へ接続されており、油
路26は入力側ディスク6の油圧サーボへ接続されてい
る。入力側ディスク6のサーボ油圧を増大ずろ場合には
流量制御弁24において油路26を41」路】9へ接続
し、また入力側ディスク6のサーボ油圧を減少する場合
には油路26をドレン油路25へ接続する。トルクセン
ザ29は磁界の方向の変化からそれぞれ入力軸5のトル
クTinを検出する。回転角センサ31,32は入力側
ディスク7および出力側ディスク8の回転速度Nin 
、 Noutを検出する。油圧センサ34は出力側サー
ボ油圧Pout(−ライン圧Pl )を検出する。スロ
ットルアクチュエータ35は吸気系スロットル弁の開度
を制御し、加速ペダルセンザ36は、運転席37近傍の
加速ペダル38の踏込み量を検出する。
First, the present invention is applied to the entire vehicle power system.
This will be explained in the figure. A crankshaft 2 of an engine 1 is connected to an input shaft 5 of a CVT 4 via a clutch 3. 1
The pair of input end disks 6°7 are arranged opposite each other,
One input side disk 6 is supported by the input shaft 5 so as to be relatively movable in the axial direction, and the other input side disk 7 is supported by the input shaft 5.
Fixed. A pair of output side disks 8°9 are also arranged opposite to each other, one output side tinuk 8 is fixed to the output shaft 10, and the other output side disk 9 is fixed to the output shaft 10.
is supported for relative movement in the axial direction. The opposing surfaces of the pair of input side disks 6.degree. 7 and output side disks 8, 9 are formed such that the distance between them increases radially outward. The belt 11 has a trapezoidal cross section and includes an input side disk 6.7 and output side disks 8, 9.
It is served in between. The pressure regulating (relief) valve 15 receives oil from an oil pan 16 by an oil pump 17 through an oil passage 18 and generates line pressure in an oil passage 19 . In order to adjust the line pressure, the flow rate of oil returned to the drain oil passage 20 is controlled, and the oil passage 19 is connected to an output side disk 90 pressure servo. The flow rate control valve 24 includes an oil passage 19,
It is connected to a drain oil passage 25 and an oil passage 26, and the oil passage 26 is connected to a hydraulic servo of the input side disk 6. If the servo oil pressure of the input side disc 6 is to be increased, the oil passage 26 is connected to path 41''9 in the flow control valve 24, and if the servo oil pressure of the input side disc 6 is to be decreased, the oil passage 26 is connected to the drain. Connect to oil line 25. The torque sensor 29 detects the torque Tin of the input shaft 5 from changes in the direction of the magnetic field. The rotation angle sensors 31 and 32 detect the rotational speed Nin of the input side disk 7 and the output side disk 8.
, detect Nout. The oil pressure sensor 34 detects the output side servo oil pressure Pout (-line pressure Pl). The throttle actuator 35 controls the opening degree of the intake system throttle valve, and the accelerator pedal sensor 36 detects the amount of depression of the accelerator pedal 38 near the driver's seat 37.

出力側ディスク9のサーボ油圧の増大に伴って出力側デ
ィスク9は出力側ディスク8の方へ押し付けられ、これ
に伴ってディスク8,9上におけるベルトIIの接触位
置は半径方向外方へ移動する。ライン圧はベルト11が
ディスク8.9に対して滑らないように制御される。ま
た、入力側ディスク6のサーボ油圧の増大に伴って入力
側ディスク6は入力側ディスク7の方へ押し付けられ、
これに伴ってティヌク6.7上におけるベルト】1の接
触位置は半径方向外方へ移動し、こhによりCVT 4
の速度比が制御されろ。入力1則テイスク6のサーボ油
圧Pin≦出力・1則ティヌク9のサーボ油圧Pout
であるが、入力端ディスク6の油圧サーボの受圧面積A
in≧出力側ティヌク9の油圧サーボの受圧面積Aou
tであるので、1未満の速度比も実現できろ。
As the servo oil pressure of the output side disk 9 increases, the output side disk 9 is pushed toward the output side disk 8, and accordingly, the contact position of the belt II on the disks 8, 9 moves radially outward. . The line pressure is controlled so that the belt 11 does not slip against the disc 8.9. Further, as the servo oil pressure of the input side disk 6 increases, the input side disk 6 is pressed toward the input side disk 7.
Along with this, the contact position of belt 1 on Tinuku 6.7 moves radially outward, and this causes CVT 4 to move outward in the radial direction.
The speed ratio of is controlled. Input 1 rule Task 6 servo oil pressure Pin ≦ Output 1 rule TINUK 9 servo oil pressure Pout
However, the pressure receiving area A of the hydraulic servo of the input end disk 6
in≧Pressure receiving area Aou of hydraulic servo of output side Tinuku 9
t, it is possible to realize a speed ratio of less than 1.

要求馬力が加速ペダル38の踏込み量の関数として設定
され、機関の目標トルクおよび目標回転速度が要求馬力
の関数として設定される。目標トルクの関数として吸気
系スロットル弁の開度が制御され、目標回転速度の関数
としてCVT4の速度比が制御されろ。機関のトルクT
eおよび回転速度Neの制御の詳細は前述の特願昭57
−40747号て記載されているとおりである。
The required horsepower is set as a function of the amount of depression of the accelerator pedal 38, and the target torque and target rotational speed of the engine are set as functions of the required horsepower. The opening degree of the intake system throttle valve is controlled as a function of the target torque, and the speed ratio of the CVT 4 is controlled as a function of the target rotational speed. Engine torque T
The details of the control of e and rotational speed Ne can be found in the above-mentioned Japanese Patent Application No. 57.
-40747.

第2図は本発明の第1の実施例のブロック線図であろう
この実施例ではフィードバック制御の偏差算出がアナロ
グ回路42aにおいて行なわれろ。マイクロコンピュー
タ43a内で目標ライン圧Pl  、すなわち出力側サ
ーボ油圧Poutの目標値Pout″が設定される。ブ
ロック44では調圧弁用増幅器500Å力電圧の初期値
Voutをpout”の関数f (Pout’ )とし
て算出する。Pout“およびV o u t、はD/
A(デジタル/アナログ変換器) 45a。
FIG. 2 is a block diagram of a first embodiment of the present invention. In this embodiment, deviation calculation for feedback control is performed in an analog circuit 42a. The target line pressure Pl, that is, the target value Pout'' of the output side servo oil pressure Pout is set in the microcomputer 43a. In block 44, the initial value Vout of the pressure voltage of the pressure regulating valve amplifier 500 Å is set as a function f (Pout') of pout''. Calculated as Pout” and Vout, are D/
A (digital/analog converter) 45a.

46a においてD/A変換されろ。調圧弁用増幅器5
0は、その入力電圧Voutの一次関数である出力電流
を発生し、その出力電流を調圧弁15へ送る。
D/A conversion is performed at 46a. Amplifier 5 for pressure regulating valve
0 generates an output current that is a linear function of its input voltage Vout, and sends the output current to the pressure regulating valve 15.

調圧弁15はその入力電流に関係して戻し流量全制御し
、CVT 4の出力側サーボ油圧Poutは調圧弁15
0入力端子の一次関数である。出力側ザーボ浦)−j−
Poutは油圧センザ34により検出さ」t、油Fトセ
ンサ34の出力は増幅器51により増幅され、処理回路
52を介して加え合せ点53aへ送られる。
The pressure regulating valve 15 fully controls the return flow rate in relation to its input current, and the output side servo oil pressure Pout of the CVT 4 is controlled by the pressure regulating valve 15.
It is a linear function of the 0 input terminal. Output side servo ura) −j−
Pout is detected by the oil pressure sensor 34, and the output of the oil pressure sensor 34 is amplified by the amplifier 51 and sent to the summing point 53a via the processing circuit 52.

処理回路52は、加え合せ点53aにおいてD/A45
aの出力と増幅器51の出力との整合を取るだめの増幅
器から成る。加え合せ点53aではD/A45aからの
人力Pout”かも、処理回路52からの入力Pout
を差し引く。加え合せ点53aの演算結果はフィードバ
ック素子54aを介して加え合せ点55aへ送られろ。
The processing circuit 52 outputs the D/A 45 at the summing point 53a.
It consists of an amplifier for matching the output of the amplifier 51 with the output of the amplifier 51. At the addition point 53a, it may be the manual input Pout from the D/A 45a, or the input Pout from the processing circuit 52.
Subtract. The calculation result at the summing point 53a is sent to the summing point 55a via the feedback element 54a.

フィードバック素子54aは加え合せ点55a におい
て加え合せ点53aからの人力とり、/A46からの入
力との整合を取るための増幅器から成る。加え合せ点5
5aではフィードバック素子54aからの入力とD/A
46aからの入力との和Vout”を取る。加え合せ点
55aの演算結果は調圧弁用増幅器50へ送られる。こ
の結果、調圧弁用増幅器50の入力電圧はVoutを基
礎に、Vout’−Voutに従って1曽誠する。した
がって目標ライン圧Pl  が実際のライン圧Plより
大きい場合には調圧弁15におけろ戻し流量が減少して
ライン圧Plは増太し、また、目標ライン圧Pl+が実
際のライン圧Plより小さい場合には調圧弁15におけ
る戻し流量が増大してライン圧Plは減少する。
Feedback element 54a consists of an amplifier for taking the input from summing point 53a at summing point 55a and matching it with the input from /A46. Addition point 5
5a, the input from the feedback element 54a and the D/A
46a. The calculation result at the addition point 55a is sent to the pressure regulating valve amplifier 50. As a result, the input voltage of the pressure regulating valve amplifier 50 is Vout'-Vout based on Vout. Therefore, when the target line pressure Pl is larger than the actual line pressure Pl, the return flow rate at the pressure regulating valve 15 decreases and the line pressure Pl increases, and the target line pressure Pl+ is larger than the actual line pressure Pl. When the line pressure Pl is smaller than the line pressure Pl, the return flow rate in the pressure regulating valve 15 increases and the line pressure Pl decreases.

第3図は本発明の他の実施例のブロック線図である。こ
の実施例ではフィードバック制御の偏差算出がマイクロ
コンピュータ43b内で行なわれる。同一のブロックは
第2図と同一の祠号で示し、修正された対応ブロックは
符号の数字部分のみを同一にして示している。
FIG. 3 is a block diagram of another embodiment of the invention. In this embodiment, deviation calculation for feedback control is performed within the microcomputer 43b. Identical blocks are indicated with the same symbols as in FIG. 2, and modified corresponding blocks are indicated with only the same numbers in the symbols.

第4図は本発明に従うアルゴリズムのフローチャートで
ある。ステップ61では出力側ザーボ油圧Poutの目
標値Pout” (= pl” )を算出する。
FIG. 4 is a flowchart of an algorithm according to the present invention. In step 61, a target value Pout''(=pl'') of the output side servo oil pressure Pout is calculated.

ステップ62では調圧弁用増幅器500入力端子の初期
値Voutを算出する。ステップ63では実際値として
の出力側ザーボ油圧Poutを読込む。ステップ64で
は目標値Pout  −実際値Poutを偏差ΔPとず
ろ。ステップ65では調圧弁用増幅器5oの入力端子V
outの修正量Δ■をK・ΔPとずろ。ただし。
In step 62, the initial value Vout of the input terminal of the pressure regulating valve amplifier 500 is calculated. In step 63, the output side servo oil pressure Pout is read as an actual value. In step 64, the target value Pout - the actual value Pout is shifted from the deviation ΔP. In step 65, the input terminal V of the pressure regulating valve amplifier 5o
Shift the out correction amount Δ■ to K・ΔP. however.

Kは定数である。ステップ66ではVout十ΔVou
tをVoutに代入する。ステップ67ではVoutを
調圧弁用増幅器50へ出力する。ステップ68てはPo
ut’の変更の有無を判別し、有ればステップ61へ、
無ければステップ63へそれぞれ戻る。こうして、fI
im差Pout’ −Poutに関係してP outが
フィードバック制御される。
K is a constant. In step 66, Vout +ΔVou
Assign t to Vout. In step 67, Vout is output to the pressure regulating valve amplifier 50. Step 68
Determine whether or not ut' has been changed, and if so, proceed to step 61.
If there is none, the process returns to step 63. Thus, fI
P out is feedback-controlled in relation to the im difference Pout' - Pout.

このように本発明によれば、ライン圧がフィードバック
制御されるので、調圧弁等の要素の特性のばらつき、お
よび外乱からの影響を回避してライン圧を正確に制御す
ることが可能となる。また、ライン圧を検出ずろので、
調圧弁等の油圧系の異常が速やかに検出できろ。
As described above, according to the present invention, since the line pressure is feedback-controlled, it is possible to accurately control the line pressure while avoiding variations in characteristics of elements such as pressure regulating valves and influences from disturbances. Also, since the line pressure is detected incorrectly,
Abnormalities in hydraulic systems such as pressure regulating valves should be detected promptly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される車両用動力伝達装置の全体
の概略図、第2図および第3図は本発明の実施例のブロ
ック線図、第4図は本発明に従うアルゴリズムのフロー
チャートである。 4・・・CVT、6,7・・入力端ディスク、8,9・
・・出力側ディスク、11−・ベルト、15・・調圧弁
、34・/11]圧センサ。
FIG. 1 is an overall schematic diagram of a vehicle power transmission device to which the present invention is applied, FIGS. 2 and 3 are block diagrams of embodiments of the present invention, and FIG. 4 is a flowchart of an algorithm according to the present invention. be. 4...CVT, 6,7...Input end disk, 8,9...
...Output side disk, 11-.Belt, 15..Pressure regulating valve, 34./11] Pressure sensor.

Claims (1)

【特許請求の範囲】[Claims] ベルト駆動式無段変速機が、1対の入力側ティヌクと1
対の出力側ディスクとの間に掛けられるベルトを備え、
伝達トルクに関係して出力側ディスクのサーボ油圧とし
てのライン圧が制御され、入力端ディスクのサーボ油圧
により速度比が制御されろベルト駆動式無段変速機の油
圧制御装置において、ライン圧の実際値が目標値より大
きい場合にはライン圧を減少し、また、ライン圧の実際
値が目標値より小さい場合にはライン圧を増大させるよ
うにライン圧をフィードバック制御することを特徴とず
ろ、ベルト駆動式無段変速機のライン圧制御装置。
A belt-driven continuously variable transmission has a pair of input side TINUK and one
Equipped with a belt that can be hung between the pair of output side disks,
The line pressure as servo oil pressure of the output side disk is controlled in relation to the transmitted torque, and the speed ratio is controlled by the servo oil pressure of the input end disk.In the hydraulic control system of a belt-driven continuously variable transmission, the actual line pressure is Feedback control of the line pressure is performed to reduce the line pressure when the line pressure is greater than the target value, and to increase the line pressure when the actual value of the line pressure is less than the target value. Line pressure control device for drive-type continuously variable transmission.
JP12887982A 1982-07-26 1982-07-26 Line pressure controller for belt drive type stepless speed change gear Pending JPS5919755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12887982A JPS5919755A (en) 1982-07-26 1982-07-26 Line pressure controller for belt drive type stepless speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12887982A JPS5919755A (en) 1982-07-26 1982-07-26 Line pressure controller for belt drive type stepless speed change gear

Publications (1)

Publication Number Publication Date
JPS5919755A true JPS5919755A (en) 1984-02-01

Family

ID=14995606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12887982A Pending JPS5919755A (en) 1982-07-26 1982-07-26 Line pressure controller for belt drive type stepless speed change gear

Country Status (1)

Country Link
JP (1) JPS5919755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194656U (en) * 1984-06-04 1985-12-25 日産自動車株式会社 Hydraulic control device for continuously variable transmission
JPS62147155A (en) * 1985-12-18 1987-07-01 ボ−グ・ワ−ナ−・オ−トモ−テイブ・インコ−ポレ−テツド Tension sensor
JPS63173731A (en) * 1987-01-09 1988-07-18 Toyota Motor Corp Hydraulic control device of belt type continuously variable transmission for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194656U (en) * 1984-06-04 1985-12-25 日産自動車株式会社 Hydraulic control device for continuously variable transmission
JPH0218852Y2 (en) * 1984-06-04 1990-05-25
JPS62147155A (en) * 1985-12-18 1987-07-01 ボ−グ・ワ−ナ−・オ−トモ−テイブ・インコ−ポレ−テツド Tension sensor
JPS63173731A (en) * 1987-01-09 1988-07-18 Toyota Motor Corp Hydraulic control device of belt type continuously variable transmission for vehicle

Similar Documents

Publication Publication Date Title
US4718306A (en) Power transmission for use in automobiles continuously variable transmission
US8002654B2 (en) Control system for belt-type continuously variable transmission
JP4849870B2 (en) Control device for continuously variable transmission for automobile
JPH066978B2 (en) Control device for continuously variable transmission for vehicle
JP3358381B2 (en) Control device for continuously variable automatic transmission
US20030149520A1 (en) Control apparatus for continuously variable transmission
JP3358435B2 (en) Transmission control device for continuously variable automatic transmission
JP4034148B2 (en) Belt type continuously variable transmission
JPH066977B2 (en) Control device for continuously variable transmission for vehicle
JPH11303758A (en) Control device for electric pump
EP0969230A2 (en) Method of transmission control for belt-type stepless transmission device
JP4590343B2 (en) Hydraulic control device for belt type continuously variable transmission for vehicle
US7192372B2 (en) Hydraulic pressure sensor failure control system for belt-type continuously variable transmission
JPS58214054A (en) Hydraulic controller for belt driving type stepless speed change gear
US7044873B2 (en) Belt-type continuously variable transmission
JP2001173770A (en) Control device for continuously variable transmission
JPS5919755A (en) Line pressure controller for belt drive type stepless speed change gear
JPH08285022A (en) Control device for continuously variable transmission
US6370468B1 (en) Speed ratio control device for vehicle
US6398691B1 (en) Speed ratio control device
JP4586433B2 (en) Shift control device for toroidal type continuously variable transmission
JP3427736B2 (en) Transmission control device for continuously variable transmission
JP4923999B2 (en) Shift control device
JPS62199534A (en) Control device for vehicle drive system
JPS58191358A (en) Oil hydraulic controller of belt type stepless speed changer