JPS59197016A - Acoustooptic element - Google Patents

Acoustooptic element

Info

Publication number
JPS59197016A
JPS59197016A JP6406684A JP6406684A JPS59197016A JP S59197016 A JPS59197016 A JP S59197016A JP 6406684 A JP6406684 A JP 6406684A JP 6406684 A JP6406684 A JP 6406684A JP S59197016 A JPS59197016 A JP S59197016A
Authority
JP
Japan
Prior art keywords
electrode
transducer
electrodes
acousto
optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6406684A
Other languages
Japanese (ja)
Other versions
JPH0132489B2 (en
Inventor
Fumio Tanaka
文雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6406684A priority Critical patent/JPS59197016A/en
Publication of JPS59197016A publication Critical patent/JPS59197016A/en
Publication of JPH0132489B2 publication Critical patent/JPH0132489B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To simplify the constitution by providing the second electrode in a corresponding positon on a transducer provided on the first electrode and connecting both electrodes so that plural electrostatic capacities formed between both electrodes are connected in series. CONSTITUTION:An insulating layer 11 is provided on one-side face of an acoustooptic medium 1, and electrodes 5a and 5b which are divided equally are provided on this layer 11. A transducer 2 is fixed onto the insulating layer 11, and electrodes 4a and 4b are provided in positions corresponding to electrodes 5a and 5b on the transducer 2. The electrode 4a on the transducer 2 and the electrode 5b on the acoustooptic medium 1 are conneted electrically by a lead wire 10, and a high frequency electric signal is applied between the electrode 4b on the transducer 2 and the electrode 5a on the acoustooptic medium 1 through leads 6 and 7 for electric input. A sound absorbing body 3 is fixed to the bottom of the acoustooptic medium 1. When electrodes on the transducer are extended and the number of divisions of electrodes is increased, a large-diameter incident laser light can be used for the acoustooptic element operated by the high frequency electric signal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は音響光学素子に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an acousto-optic device.

従来例の構成とその問題点 従来例としてGeを音響光学媒体に用いた音響光学素子
を第1図に示す。同図において、1はGeからなる音響
光学媒体、2は音響光学媒体1に接着されたトランスデ
ユーサ(圧電変換素子)、3は吸音体、4はトランスデ
ユーサ2に設けられた電極、5は音響光学媒体1に設け
られた電極、6および7はそれぞれ電極4,5に接続さ
れた電気入力用のリード、8は高周波電気信号発生器、
9は音響光学媒体1に設けられた斜面である。
Configuration of a conventional example and its problems FIG. 1 shows an acousto-optic element using Ge as an acousto-optic medium as a conventional example. In the figure, 1 is an acousto-optic medium made of Ge, 2 is a transducer (piezoelectric transducer) adhered to the acousto-optic medium 1, 3 is a sound absorber, 4 is an electrode provided on the transducer 2, and 5 are electrodes provided on the acousto-optic medium 1; 6 and 7 are electrical input leads connected to the electrodes 4 and 5, respectively; 8 is a high-frequency electrical signal generator;
9 is a slope provided on the acousto-optic medium 1.

高周波電気信号発生器8より、電気入力用り−ド6,7
間に高周波電気信号を印加すると、トランスデユーサ2
において電気−機械変換が行なわれ、超音波信号がトラ
ンスデユーサ2から音響光学媒体1内に伝播する。
From the high-frequency electrical signal generator 8, electrical input ports 6 and 7
When a high frequency electrical signal is applied between the transducer 2
An electro-mechanical conversion takes place at , and the ultrasound signal propagates from the transducer 2 into the acousto-optic medium 1 .

この時、一定のブラッグ角度てレーザ光Aを入射させる
と、レーザ光Aは音響光学媒体1内を伝播する超音波信
号により回折され、非回折光Bと回折光Cに分離される
。ここで、高周波電気信号発生器8からの高1司波電気
信号の周波数により回折光Cの方向が決1す、同高周波
電気信号の振幅により回折光Cの強度が決まる。このよ
うにして、電気入力用リード6.7間に印加された高周
波電気信号を光の信号に変換する。一方、レーザ九人を
回折した超音波信号は音響光学媒体1の斜面って下方に
反射され吸音体3で吸収される。
At this time, when the laser beam A is made incident at a certain Bragg angle, the laser beam A is diffracted by the ultrasonic signal propagating within the acousto-optic medium 1 and separated into undiffracted light B and diffracted light C. Here, the direction of the diffracted light C is determined by the frequency of the high frequency electrical signal from the high frequency electrical signal generator 8, and the intensity of the diffracted light C is determined by the amplitude of the same high frequency electrical signal. In this way, the high frequency electrical signal applied between the electrical input leads 6 and 7 is converted into an optical signal. On the other hand, the ultrasonic signal diffracted by the laser beam is reflected downward from the slope of the acousto-optic medium 1 and absorbed by the sound absorber 3.

上記従来の音響光学素子において、口径の大きいレーザ
光Aを使用する場合には、トランスデユーサ2に設けら
れた電極4の横幅を大きくして、音響光学媒体1中を伝
播する超音波の幅をレーザ光Aの口径より太きくしなけ
れはならない。すなわち、第2図に示すように、トラン
スデユーサ2の厚さをT、電極4の横幅と縦の長さをそ
れぞれHおよびLとした場合、横幅Hの大きさをレーザ
九人の口径より大きく設定して、伝播する超音波がレー
ザ光Aの全体に当るようにしがければならない。
In the above-mentioned conventional acousto-optic device, when using the laser beam A with a large diameter, the width of the electrode 4 provided on the transducer 2 is increased to increase the width of the ultrasonic wave propagating in the acousto-optic medium 1. must be made larger than the aperture of laser beam A. That is, as shown in FIG. 2, if the thickness of the transducer 2 is T, and the width and length of the electrode 4 are H and L, respectively, then the width H is determined from the aperture of the nine lasers. It is necessary to set it large so that the propagating ultrasonic waves hit the entire laser beam A.

しかし従来、音響光学素子と高周波電気信号発生器8と
のインピーダンス整合のために電極4の横幅Hの大きさ
が制限されていた。以下、これを具体的に説明する。
However, conventionally, the width H of the electrode 4 has been limited due to impedance matching between the acousto-optic element and the high frequency electric signal generator 8. This will be explained in detail below.

一般によく知られているように、高周波電気信号発生器
から圧電変換素子に損失を生じさせずに電気信号を供給
するためには、圧電変換素子の入力インピーダンスと高
周波電気信号発生器の出力インピーダンスを整合させる
ととが必要である。
As is generally known, in order to supply electrical signals from a high-frequency electrical signal generator to a piezoelectric transducer without causing loss, the input impedance of the piezoelectric transducer and the output impedance of the high-frequency electrical signal generator must be adjusted. It is necessary to match.

第1図において、高周波電気信号発生器8の出力インピ
ーダンスZ。u ”+は約50Ωでアシ、一方圧電変換
素子の入力インピーダンスス工。は次式(2L)で衣わ
される。
In FIG. 1, the output impedance Z of the high frequency electrical signal generator 8. u''+ is approximately 50Ω, and the input impedance of the piezoelectric transducer is expressed by the following equation (2L).

Z:Lnヱ 1/2πra o−−(a)ここでfは高
周波電気信号の周波数、coは電極40部分で形成され
る静電容量(クランプ容量)である。
Z: Lnヱ 1/2πra o -- (a) Here, f is the frequency of the high-frequency electric signal, and co is the capacitance (clamp capacitance) formed at the electrode 40 portion.

さらに、上式(?L)において静電容量C6は電極4の
形状LXHおよびトランスデユーサ2の厚さTによって
変化し、次式(b>で表わされる。
Furthermore, in the above equation (?L), the capacitance C6 changes depending on the shape LXH of the electrode 4 and the thickness T of the transducer 2, and is expressed by the following equation (b>).

H Co oく □              ・・・・
・・(b戸式(b)とe)により次式を得る。
H Co ok □ ・・・・
...(b) Obtain the following equation using equations (b) and e).

上記式(C)よシ、Zinを高周波電気信号発生器8の
出力インピーダンスZ。ut (=50Ω)と等しくす
るためには、ある周波数fに対して電極4の縦の長さり
、横@H″!l:たけトランスデユーサ2の厚さTの値
を適切に定めればよいことになる。しかし、厚さTは周
波数fに対して制約されるものであり、長さLはブラッ
グ回折の理論において良く知られているに16in定数
Qの制約を受けるため自由なイ直をとることができない
According to the above formula (C), Zin is the output impedance Z of the high frequency electric signal generator 8. In order to make it equal to ut (=50Ω), the vertical length of the electrode 4, the width @H''!l: and the thickness T of the transducer 2 should be appropriately determined for a certain frequency f. However, the thickness T is constrained by the frequency f, and the length L is constrained by the 16 inch constant Q, which is well known in the theory of Bragg diffraction. I can't take it.

棟だ、第3図において横軸は高周波電気信号発生器8か
ら電極4を通して圧電変換素子に入力される電気入力p
を示しており、縦軸は超音波によって回折される回折光
Cの強度工。を示しているが、この図よp回折光Cの強
度工。を最大値IC,maXに設定するためには、高周
波電気信号発生器8から特定の大きさの電気人力Pπを
供給すれはよいことがわかる。しかし、電気入力Pπを
電極4から供給した場合、電極4の面積(LxH)が小
さいと単位面積あたりの電気入力が大きくなり、発熱等
による圧電変換素子の劣化が激しくなるため、電極40
面積(LXH)に制限が加わる。
In Fig. 3, the horizontal axis is the electrical input p input from the high frequency electrical signal generator 8 through the electrode 4 to the piezoelectric transducer.
The vertical axis is the intensity of the diffracted light C diffracted by the ultrasonic wave. This figure shows the intensity of the p-diffracted light C. It can be seen that in order to set IC,maX to the maximum value, it is better to supply electric power Pπ of a specific magnitude from the high frequency electric signal generator 8. However, when the electrical input Pπ is supplied from the electrode 4, if the area (LxH) of the electrode 4 is small, the electrical input per unit area becomes large and the piezoelectric transducer deteriorates rapidly due to heat generation.
A limit is added to the area (LXH).

以上のことを考−慮すると、入力インビーターンスzi
nと出力インピーダンス2゜ut(−6oΩ)の整合を
とるためには、横幅Hの大きさをある重包囲内で調節す
ればよいことになる。
Considering the above, the input input turns zi
In order to match n with the output impedance of 2.degree. ut (-60.OMEGA.), it is necessary to adjust the size of the width H within a certain heavy envelope.

次表は、高周波電気信号の周波数f=100MHz。The following table shows the frequency f of the high frequency electrical signal = 100MHz.

レーザ光Aの波長10.6μm(赤外線)の場合におい
て、横幅Hの大きさに対して入力インビーク。
In the case of laser beam A having a wavelength of 10.6 μm (infrared rays), the input inbeak is relative to the width H.

ンスがどのように変化するかを示している。It shows how the performance changes.

この表より入力インピーダンスZin 7!l二s o
Ωになって、出力インピーダンスZ。utと整合力;と
れるのは、1==3π肩、H−0,6ff1mの場合で
あり、レーザ光の口径は0.6 ”以上大きくできない
ことになる。また、周波数fがさらに高くなると、式(
C)よりわかるようにインピーダンス整合をとるために
、電極40面積(LxH)を小さくせねはならず、十分
な強度の回折光Cを得るだけの電気人力Pπを′電極4
に入力すると音響光学素子の劣化が激しくなる。
From this table, input impedance Zin 7! l2so
Ω, the output impedance Z. ut and matching force; it can be taken in the case of 1 = = 3π shoulder, H - 0, 6ff1m, and the aperture of the laser beam cannot be made larger than 0.6''. Also, if the frequency f becomes higher, formula(
As can be seen from C), in order to achieve impedance matching, the area (LxH) of the electrode 40 must not be made small, and the electric power Pπ sufficient to obtain the diffracted light C of sufficient intensity must be
If input to

上記従来の欠点を改菩するだめ、第4図に示すように、
トランステユーザ2上に二分割した電極4aと4bを設
け、これらの電極4aと4bに対応させて音響光学媒体
1上に二分割した電極5aと5bl設け、さらにトラン
ステユーザ2上の電極4aと音響光学媒体1上の電極5
bとをリード線10によって電気的に接続し、l・ラン
ヌテユーザ2−ヒの電極4bと音7111)光学媒体1
」−の電極Si2間に高周波電気信号を印加する音響光
学素子が発明されている。
In order to overcome the above conventional drawbacks, as shown in Figure 4,
Two-divided electrodes 4a and 4b are provided on the transsteuser 2, two-divided electrodes 5a and 5bl are provided on the acousto-optic medium 1 in correspondence with these electrodes 4a and 4b, and furthermore, an electrode 4a and 4b on the transsteuser 2 is provided. and electrode 5 on acousto-optic medium 1
b electrically connected with the lead wire 10, and the optical medium 1
An acousto-optic element has been invented which applies a high frequency electric signal between the electrodes Si2.

このように音響光学素子を構成すると、圧電変換素子の
入力側から見た静電容量C8′は、第5図に示すように
トランスデユーサ2上の電極4aと4bの部分でそれぞ
れ形成される静電容量C?LおよびCbの合成容量とな
るだめ、その容量値は小さくなる。このため、第4図に
示す電極4?Lと4bの横幅H′は、第1図の電極4よ
り大きく設定することができる。
When the acousto-optic element is configured in this way, the capacitance C8' seen from the input side of the piezoelectric transducer is formed at the electrodes 4a and 4b on the transducer 2, respectively, as shown in FIG. Capacitance C? As the capacitance becomes a composite capacitance of L and Cb, its capacitance value becomes smaller. For this reason, the electrode 4 shown in FIG. The width H' of L and 4b can be set larger than that of the electrode 4 in FIG.

これを具体的に説明すると次のように力る。This can be explained concretely as follows.

い才、電極4aと4bは等分に二分割されたものとして
、それぞれ縦の長さをL/、横幅をH′とし・トランス
デユーサ2の厚さをT′とすると、次式が成り立つ。
Assuming that the electrodes 4a and 4b are divided into two equal parts, and the vertical length is L/, the horizontal width is H', and the thickness of the transducer 2 is T', the following equation holds. .

1     1      1 □ニ□+□ Co′C2LCb T’    T′ ざ  □+−− L’ H’   L’ H’ 2T′ Cど   □ L’H’ い寸L’−−(第1図の電極40半分)、T′= T(
第1図のトランスデユーサと同じ厚さ)とすると LH’ C’ −□                    
・・・・ (6)T である。
1 1 1 □N□+□ Co'C2LCb T'T' Za □+-- L'H'L'H'2T' Cdo □ L'H'L'-- (Electrode 40 in Figure 1 half), T'= T(
If the thickness is the same as that of the transducer in Figure 1), then LH'C' -□
... (6) T.

第4図の圧電変換素子の入力側の静電名量が第1図のも
のと同じ値(すなわちC8−0,7)にするH′ ためには、式(b)と式(e)を比較して一−Hであれ
はよく、したがってH’:4Hとなり、第4図の電極4
aと4bの横幅H′は第1図の電極4の4倍にすること
ができる。
In order to make the electrostatic quantity on the input side of the piezoelectric transducer in Fig. 4 the same value as that in Fig. 1 (i.e., C8-0,7), equations (b) and (e) must be used. In comparison, 1-H is good, so H':4H, and electrode 4 in Figure 4.
The width H' of a and 4b can be made four times that of electrode 4 in FIG.

上記従来の音響光学素子の等価回路は、第5図に示すよ
うに、電極4aと5a間に形成された静電容量Ca  
と電極4bと5b間に形成された静電容量Cb  とが
直列接続され、静電容量Cユ とCbにはそれぞれ抵抗
へ とrb が並列接続されたものとなる。とこでr、
は電極5aと5b間の音響光学媒体1の抵抗であり、r
b は電極4aと4b間のトランスデユーサ2の抵抗で
ある。
As shown in FIG. 5, the equivalent circuit of the conventional acousto-optic element described above is a capacitance Ca formed between electrodes 4a and 5a.
and the capacitance Cb formed between the electrodes 4b and 5b are connected in series, and the capacitances Cyu and Cb are connected in parallel to resistors RB and RB, respectively. Tokode r,
is the resistance of the acousto-optic medium 1 between the electrodes 5a and 5b, and r
b is the resistance of the transducer 2 between electrodes 4a and 4b.

とこで、トランスデユーサ2の比抵抗は十分太きいため
rb は無限大に近く、問題はない。しかし、音響光学
媒体1の抵抗率は、たとえばG。から吸る場合は比抵抗
が1ΩOn前後であり、抵抗r2L亦小さくなり、電極
5aと5b間は短絡状態に近くなる。このため、第4図
の音響光学素子の入力インピーダンスZlnは所定の値
と相違し、高周波電気信号発生器8とのインピーダンス
整合かとれないという欠点があった。
Incidentally, since the specific resistance of the transducer 2 is sufficiently large, rb is close to infinity, so there is no problem. However, the resistivity of the acousto-optic medium 1 is, for example, G. When sucking from the air, the specific resistance is around 1ΩOn, and the resistance r2L becomes smaller, so that the electrodes 5a and 5b are almost in a short-circuited state. Therefore, the input impedance Zln of the acousto-optic element shown in FIG. 4 is different from a predetermined value, and there is a drawback that impedance matching with the high frequency electric signal generator 8 cannot be achieved.

発明の目的 不発明は上記従来例の欠点を除去した、大口径の入射光
の変調、偏向を可能にした音響光学素子を提供しようと
するものである。
SUMMARY OF THE INVENTION It is an object of the invention to provide an acousto-optic device which eliminates the drawbacks of the above-mentioned conventional examples and is capable of modulating and deflecting incident light with a large diameter.

発明の構成 本発明は、上記目的を達成するために、音響光学媒体の
一面に絶縁層を設け、この絶縁層上に複数個の第1の電
極を設け、この第1の電極上にトランスデ。−サを設け
、このトランスデユーサ上において第1のそれぞれの電
極に対応した位置に第2の電極を設け、第1の電極と第
2の電極間で形成される複数個の静電容量が直列接続し
たものである。
Structure of the Invention In order to achieve the above object, the present invention provides an insulating layer on one surface of an acousto-optic medium, a plurality of first electrodes on the insulating layer, and a transducer on the first electrode. - a second electrode is provided on the transducer at a position corresponding to each of the first electrodes, and a plurality of capacitances formed between the first electrode and the second electrode are provided. They are connected in series.

実施例の説明 第6図は本発明の一実施例における音響光学素子であり
、従来例を示す第4図と同一箇所には同一番号を付して
説明すると、音響光学媒体1の一側面に絶縁層11を設
け、この絶縁層11上に等分に2分割された電極5aと
5bを設けである。
DESCRIPTION OF EMBODIMENTS FIG. 6 shows an acousto-optic element according to an embodiment of the present invention, and the same parts as in FIG. 4 showing a conventional example are given the same numbers. An insulating layer 11 is provided, and electrodes 5a and 5b equally divided into two are provided on this insulating layer 11.

さらに、この絶縁層11上にトランスデユーサ2を固着
腰このトランスデユーサ2上には電極5aと5bに対応
する位置に電極4aと4bを設けている。′3.た、ト
ランスデユーサ2上の電極4aと音響光学媒体1上の電
極6bとをリード線10によって電気的に接続し、トラ
ンスデユーサ2上の電極4bと音響光学媒体1上の電極
5a間に電気入力用のり一ド6と7を通して高周波電気
信号を印加するものである。音響光学媒体1の底面には
吸音体3を固着している。
Further, the transducer 2 is fixed onto the insulating layer 11, and electrodes 4a and 4b are provided on the transducer 2 at positions corresponding to the electrodes 5a and 5b. '3. In addition, the electrode 4a on the transducer 2 and the electrode 6b on the acousto-optic medium 1 are electrically connected by a lead wire 10, and the electrode 4b on the transducer 2 and the electrode 5a on the acousto-optic medium 1 are connected electrically. A high-frequency electrical signal is applied through electrical input ports 6 and 7. A sound absorber 3 is fixed to the bottom surface of the acousto-optic medium 1.

なお、絶縁層11としては、フッ化マグネシウム等の光
学的反射防止膜を蒸着して用いることができる。本発明
の特徴は、音響光学媒体1と電極5a 、5b間に絶縁
き11を介在させていることであり、そのため第5図に
おける電極6aと5b間の抵抗r?Lk非常に大きくで
き、第6図の音響大学素子の入力側から見た等価回路は
第7図に示すように電極4aと5a問および電極4bと
5b間で形成される静電容量Ca およびCb が直列
接続されたものになる。
Note that as the insulating layer 11, an optical antireflection film such as magnesium fluoride can be deposited and used. A feature of the present invention is that an insulator 11 is interposed between the acousto-optic medium 1 and the electrodes 5a and 5b, so that the resistance r? between the electrodes 6a and 5b in FIG. Lk can be made very large, and the equivalent circuit seen from the input side of the acoustic wave element shown in Fig. 6 is the capacitance Ca and Cb formed between electrodes 4a and 5a and between electrodes 4b and 5b, as shown in Fig. 7. are connected in series.

本実施例では第4図の説明のときに示したように音響光
学素子の入力側から見た静電容量が十になるため、10
0MHzの高周波電気信号で音響光学素子を動作させる
場合、トランスデユーサ上の電極の縦の長さLを3πm
、横幅Hを2.4朋程度にすることができ、入射レーザ
光の口径を4倍にできる。
In this example, as shown in the explanation of FIG. 4, the capacitance seen from the input side of the acousto-optic element is 10.
When operating an acousto-optic device with a high frequency electric signal of 0 MHz, the vertical length L of the electrode on the transducer is 3πm.
, the width H can be made approximately 2.4 mm, and the aperture of the incident laser beam can be quadrupled.

さらに、トランスデユーサ上の電極の分割数を増加させ
ると、さらに高周波電気信号で動作させる音響光学素子
に大口径の入射レーザ光を使用できることになる。また
、トランスデユーサ上の電極の面積は、二分割した場合
は4倍に大きくできるため、高周波電気入力に対する音
響光学変換素子の耐久性を向上させることができる。
Furthermore, by increasing the number of electrode divisions on the transducer, it becomes possible to use a larger diameter incident laser beam for an acousto-optic element operated by an even higher frequency electrical signal. Further, since the area of the electrode on the transducer can be increased four times when divided into two, the durability of the acousto-optic transducer against high-frequency electrical input can be improved.

発明の詳細 な説明したように、本発明による音響光学素雰簡単な構
成にして効果が大きく、産業的価値が高いものである。
As described in detail, the acousto-optic element according to the present invention has a simple structure, is highly effective, and has high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の音響光学素子の斜視図、第2図は同音響
光学素子の要部拡大図、第3図は音響光学素子における
電気入力と回折光の強度との関係を示す図、第4図は他
の従来の音響光学素子の斜視図、第5図は同音響光学素
子の入力側から見た等価回路図、第6図は本発明の実施
例における音響光学素子の斜視図、第7図は同音響光学
素子の入力側から見た等価回路図である。 1・・・・・・音響光学媒体、2・・・・トランスデユ
ーサ、4a、4b−−(第2の)電極、i a 、 5
 b =、、、。 (第1の)電極、11・・・・・絶縁層。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第3図 第4図 h 6δ 第5図 5月
Fig. 1 is a perspective view of a conventional acousto-optic element, Fig. 2 is an enlarged view of the main parts of the acousto-optic element, Fig. 3 is a diagram showing the relationship between electrical input and the intensity of diffracted light in the acousto-optic element, 4 is a perspective view of another conventional acousto-optic device, FIG. 5 is an equivalent circuit diagram of the acousto-optic device seen from the input side, and FIG. 6 is a perspective view of an acousto-optic device according to an embodiment of the present invention. FIG. 7 is an equivalent circuit diagram of the acousto-optic device seen from the input side. 1...Acousto-optic medium, 2...Transducer, 4a, 4b--(second) electrode, ia, 5
b=,,,. (first) electrode, 11...insulating layer. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 3 Figure 4 h 6δ Figure 5 May

Claims (2)

【特許請求の範囲】[Claims] (1)音響光学媒体の一面に絶縁層を設け、この絶縁層
上に複数個の第1の電極を設け、この第1の電極上にト
ランスデユーサを設け、このトランスデユーサ上におい
て上記第1のそれぞれの電極に対応した位置に第2の電
極を設け、上記第1の電極と第2の電極間で形成される
複数個の静電容量が直列接続されるように接続した音響
光学素子。
(1) An insulating layer is provided on one surface of the acousto-optic medium, a plurality of first electrodes are provided on this insulating layer, a transducer is provided on this first electrode, and the above-mentioned an acousto-optic element in which a second electrode is provided at a position corresponding to each electrode of the first electrode, and a plurality of capacitances formed between the first electrode and the second electrode are connected in series. .
(2)音響光学媒体がGeよりなる特許請求の範囲第1
項記載の音響光学素子。
(2) Claim 1 in which the acousto-optic medium is made of Ge
The acousto-optic device described in .
JP6406684A 1984-03-30 1984-03-30 Acoustooptic element Granted JPS59197016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6406684A JPS59197016A (en) 1984-03-30 1984-03-30 Acoustooptic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6406684A JPS59197016A (en) 1984-03-30 1984-03-30 Acoustooptic element

Publications (2)

Publication Number Publication Date
JPS59197016A true JPS59197016A (en) 1984-11-08
JPH0132489B2 JPH0132489B2 (en) 1989-07-04

Family

ID=13247347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6406684A Granted JPS59197016A (en) 1984-03-30 1984-03-30 Acoustooptic element

Country Status (1)

Country Link
JP (1) JPS59197016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170917A (en) * 1989-06-07 1991-07-24 Codilaser Sa System for marking moving object by laser beam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047642A (en) * 1973-08-22 1975-04-28
JPS5194972A (en) * 1975-01-14 1976-08-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047642A (en) * 1973-08-22 1975-04-28
JPS5194972A (en) * 1975-01-14 1976-08-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170917A (en) * 1989-06-07 1991-07-24 Codilaser Sa System for marking moving object by laser beam

Also Published As

Publication number Publication date
JPH0132489B2 (en) 1989-07-04

Similar Documents

Publication Publication Date Title
US4162465A (en) Surface acoustic wave device with reflection suppression
EP0161040B1 (en) Surface acoustic wave spectrum analyzer
US4296348A (en) Interdigitated electrode ultrasonic transducer
US4322651A (en) Acoustic surface wave device
JPS607850B2 (en) acoustic surface wave transducer
JPS5835404B2 (en) Surface acoustic wave parametric device
JPS60261293A (en) Hydrophone
JPS6119172B2 (en)
JPS6250040B2 (en)
JPS59197016A (en) Acoustooptic element
US3697899A (en) Acoustic surface wave transmission device
US3771856A (en) Acousto-optical light diffraction device
JPS6072312A (en) Acoustic surface wave device
JPS598417A (en) Surface acoustic wave device
JPS5931246B2 (en) Hyomen Hasoshi
JPS59189834A (en) Appay type ultrasonic probe
JPS6150291B2 (en)
JPS63234949A (en) Ultrasonic transducer
JP2827125B2 (en) Acousto-optic element
JPS60242716A (en) Surface sound wave band pass filter
JP2681804B2 (en) Acousto-optic element
US5079642A (en) Electro-optic modulator with acoustic damping
JPS63304707A (en) Surface acoustic wave filter
JPS58145214A (en) Surface acoustic wave device
JPS5834975B2 (en) Surface acoustic wave filter device