JPS5919618A - Laminated-blade milling cutter - Google Patents

Laminated-blade milling cutter

Info

Publication number
JPS5919618A
JPS5919618A JP12803982A JP12803982A JPS5919618A JP S5919618 A JPS5919618 A JP S5919618A JP 12803982 A JP12803982 A JP 12803982A JP 12803982 A JP12803982 A JP 12803982A JP S5919618 A JPS5919618 A JP S5919618A
Authority
JP
Japan
Prior art keywords
force difference
cutter
cutting edge
pitch interval
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12803982A
Other languages
Japanese (ja)
Inventor
Toshifumi Takeya
大貫賢二
Kenji Onuki
竹谷利文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12803982A priority Critical patent/JPS5919618A/en
Publication of JPS5919618A publication Critical patent/JPS5919618A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/088Cutting edges with a wave form

Abstract

PURPOSE:To improve the cutting performance and the accuracy of finished surface by using a laminated-blade milling cutter available for both rough work and finishing work. CONSTITUTION:The captioned cutter is constituted so that a slit band (a) having a same width is surely formed at the symmetrical position on contiguous blade base with respect to the position where an overlap band (b) is formed on a blade base 3a and a cutting blade does not exist in the slit band (a). Therefore, when a cutter revolves in the direction R and is sent to the direction H, the cutting blade which advances in the direction R of revolution of the cutter during overlap with a pitch interval three times wider than the pitch interval between cutting blades which is overlapped acts as flat drag after one revolution, even if a worked hardened layer is formed on the overlap band (b), and the accuracy of the finished surface is markedly improved.

Description

【発明の詳細な説明】 本願出願者が先に出願した積層刃フライスカッター(特
願56−132935)は従来の直刃型フライスカッタ
ーや捻れ刃型フライスカッターの欠点を矯正し長所を活
用して全く新しい型式の刃型を創り出したものであって
数々の優れた特性を有するカッターであるが唯一つその
構成上避けられない欠点が残っていた。その詳細は後に
述べるとして本発明は此の構造的欠陥を取除き更に積極
的に性能の向上を加えて積層刃フライスカッターという
新しい型式のカッターの確立を遂げたものなる第1実施
例である。
DETAILED DESCRIPTION OF THE INVENTION The laminated blade milling cutter (Patent Application No. 56-132935), which was previously filed by the applicant of the present application, corrects the shortcomings of conventional straight blade type milling cutters and twisted blade type milling cutters, and utilizes their advantages. Although it was a cutter that created a completely new type of blade and had many excellent properties, it still had one unavoidable drawback due to its construction. The details will be described later, but the present invention is the first embodiment in which this structural defect has been removed and the performance has been positively improved to establish a new type of cutter called a laminated blade milling cutter.

1はカッタ一本体であって当初は円柱状乃至は円筒状に
作られている。2は軸方向切屑溝であって第2図に示さ
れているようにカッタ一本体1の外周から1対軸方向に
削溝せられて1対の力差3a、3bを形成している弦に
軸方向とは軸心AXから軸心Axと直交する半径方向と
軸心AXとの分界線即ち軸心A、 Xに対する45度の
角度までの範囲を意味するが本例では軸方向切屑溝2が
軸心AXと平行な場合を例示しである。
Reference numeral 1 denotes a cutter body, which is initially formed into a columnar or cylindrical shape. Reference numeral 2 denotes an axial chip groove, and as shown in FIG. 2, a pair of string grooves are cut in the axial direction from the outer periphery of the cutter body 1 to form a pair of force differences 3a and 3b. The axial direction refers to the range from the axial center AX to the demarcation line between the radial direction orthogonal to the axial center AX and the 45 degree angle with respect to the axial centers A and X. In this example, the axial chip groove 2 is parallel to the axis AX.

力差3a、3bのカッター円周上の位置は、カッターの
回転方向Rに向く、それぞれの力差の前縁面fがカッタ
ーの円周を等分する位置にあるようにしてあり本例の場
合力差の数が2基であるからそれぞれの力差の前縁面f
は同一直径上に位置している。
The positions of the force differences 3a and 3b on the circumference of the cutter are such that the leading edge surface f of each force difference facing in the rotational direction R of the cutter is located at a position that equally divides the circumference of the cutter. In this case, since there are two force differences, the front edge surface f of each force difference
are located on the same diameter.

さて今、一方の力差3aをA刃基と称することとし、隣
シ合せた力差6b一本例の場合は力差が2基であるから
対向している−をB刃基と称することとし、併せてカッ
タ〜の円周を分割割り出しする分割刃数を力差の総数よ
り多い任意の数で選定して、該刃数をNとしカッターの
直径をDとして、第4図に見られる如くカッターの円周
4を上−αの短縮ピッチ間隔P1と、等分ピ、チ間隔P
該力差の前縁面7fのカッタ一端面6側の先端を基準位
置として前記KD−αの短縮ピッチ間隔P1π と−D十〇の延長ピッチ間隔P2とがカッターの回転方
向Rに向けてPl、B2、Pl、B2・・・・・・と交
互に円周上に並ぶ如く不等ピッチに割出し分割し乍らそ
れぞれβの捻れ一角で螺旋状に捻れ刃切すし、A力差5
a上に外周切れ刃A1、A2、A5、A4・・・・・を
、狭い積層間隔S1と広い積層間隔S2とを81、B2
の順に交互に挾んで軸方向に不等間隔に積層して削設し
である。但し此の捻れ刃切り加工に際し同図に2点鎖線
で示しであるB力差3bを工作用カッターが点線で示し
た個所に傷をつけないようにせねばならないことは勿論
であるが、これは工作上のノウハウの問題であるので、
ここでは特に取り上げない。5は力差の円弧の長さであ
り第2図に示すように力差の後縁面eを調整して、Dの
等分ピッチ間隔POと等しい長さにしである。2′は軸
方向切屑溝2と力差の後縁面eとがなす空間部である。
Now, one side of the force difference 3a will be referred to as the A blade base, and in the case of one adjacent force difference 6b, there are two force differences, so the opposing - will be referred to as the B blade base. In addition, the number of dividing blades for dividing the circumference of the cutter ~ is selected to be an arbitrary number greater than the total number of force differences, and the number of blades is N and the diameter of the cutter is D, as shown in Figure 4. Similarly, the circumference 4 of the cutter is divided into a shortened pitch interval P1 of -α, and an equal interval P,
The shortened pitch interval P1π of KD-α and the extended pitch interval P2 of -D10 are set as Pl in the rotational direction R of the cutter, with the tip of the leading edge surface 7f of the force difference on the side of the cutter end face 6 as a reference position. , B2, Pl, B2, etc. are indexed and divided at uneven pitches so that they are arranged alternately on the circumference, and each blade is twisted spirally at one twist angle of β, and the A force difference is 5.
The outer cutting edges A1, A2, A5, A4, etc. are placed on a, and the narrow lamination interval S1 and the wide lamination interval S2 are 81, B2.
They are stacked and cut at unequal intervals in the axial direction by sandwiching them alternately in this order. However, when performing this twisted blade cutting process, it goes without saying that the B force difference 3b shown by the two-dot chain line in the same figure must be prevented from damaging the part shown by the dotted line with the work cutter. Since it is a matter of work know-how,
I will not specifically discuss it here. 5 is the length of the circular arc of the force difference, and as shown in FIG. 2, the trailing edge surface e of the force difference is adjusted to have a length equal to the equal pitch interval PO of D. 2' is a space formed by the axial chip groove 2 and the trailing edge surface e of the force difference.

此の結果外周切れ刃A1、A2、A6、A4・・・・・
・の間にカッターの回転方向Rにオーバーラツプするオ
ーツ(−ラップ帯アと間隔が開いて隙間ができる隙間帯
イができて、これらが軸方向に交互に位置する。又オー
ツく一うップ帯アと隙間帯イの幅は等しい。
As a result, the outer peripheral cutting edges A1, A2, A6, A4...
・Oats that overlap in the rotational direction R of the cutter (- A gap band A is formed with a gap between the wrap band A and the gap band A, and these are located alternately in the axial direction. The widths of band A and gap band B are equal.

一方B力差3bには第5図の如く該力差の前縁面fのカ
ッタ一端面6側の先端を基準位置としてB2とが最初に
POが位置し、以下カッターの回転方向Rに向けてPl
、B2、Pl・・・・・・と交互に円周上に並ぶ如く不
等ピッチに割出し分割し乍らA力差5aに適用しだのと
同じβの捻れ角でそれぞれ螺旋状に捻れ刃切りし、B力
差6b上に外周切れ刃B、1、B2、B!I、B4・・
・・・・を均等積層間隔SOを最下段として以下狭い積
層間隔S1と広い積層間隔S2とをSl、、82め順に
交互に挾んで軸方向に不等間隔に積層して削設しである
。捻れ刃切り加工をするに際し同図に2点鎖線で示した
A力差6aの点線部を傷つけないようにせねばならない
ことは先に述べたところと同じである。
On the other hand, in the B force difference 3b, as shown in Fig. 5, B2 and PO are located first, with the tip of the front edge surface f of the force difference on the side of the cutter end face 6 as the reference position, and then PO is positioned in the direction of rotation direction R of the cutter. TePl
, B2, Pl... are indexed and divided into uneven pitches so that they are arranged alternately on the circumference, and each is twisted spirally with the same twist angle of β as applied to the A force difference 5a. The outer cutting edge B, 1, B2, B! I, B4...
. . . are stacked at uneven intervals in the axial direction, with the even stacking interval SO at the bottom, and the narrow stacking interval S1 and the wide stacking interval S2 are alternately sandwiched in the order of 82nd and cut. . As mentioned above, when performing the twist edge cutting process, it is necessary to avoid damaging the dotted line portion of the A force difference 6a shown by the two-dot chain line in the figure.

B刃基の円弧の長さ5を該力差の後縁面eを調整してK
Dの等分ピッチ間隔POと等しい長さにしてちることは
A力差6aの場合と同じであるがB力差3bの場合は更
に第2図の如くe′面を調整して最下段の外周切れ刃B
1の後縁側を前記αの値だけ削除しである。此の結果外
周切れ刃B1、B21.B5、B4・・・・・・の間に
カッターの回転方向Rにオーバーラツプするオーバーラ
ツプ帯アと間隔が開いて隙間が生じる隙間帯イができて
、これらが軸方向に交互に位置するが此の交互の関係は
A力差6aの場合と順序が逆である。又オーバーラツプ
帯アと隙間帯イの幅は等しく且つA力差3aのそれらと
それぞれ等しい。
Adjust the arc length 5 of the B blade base to the trailing edge surface e of the force difference and
Making the length equal to the equal pitch interval PO of D is the same as in the case of A force difference 6a, but in the case of B force difference 3b, the e' plane is further adjusted as shown in Fig. 2. Outer cutting edge B
The trailing edge side of 1 is deleted by the value of α. As a result, the outer peripheral cutting edges B1, B21. Between B5 and B4, there is an overlap band A that overlaps in the rotational direction R of the cutter and a gap band A that is spaced apart and creates a gap, and these are located alternately in the axial direction. The order of the alternating relationship is opposite to that of the A force difference 6a. Also, the widths of the overlap zone A and the gap zone B are equal and equal to those of the force difference A 3a, respectively.

此のように力差ごとに各別に削設されだA力差3aの外
周切れ刃A1、A2、A3、A4・・・・・・とB力差
3bの、外周切れ刃B1、B2、B3、B4・・・・・
・との相互の関係位置はカッターの刃部全体の展開図で
ある第6図に見られるようにA力差3a上にオーバーラ
ツプ帯アが形成されている位置に対してはB力差6b上
の対称位置に隙間帯イが形成されており、逆にB力差6
b上にオーバーラツプ帯アが形成されている位置に対し
てはA力差6a上の対称位置に隙間帯イが形成されてい
て、且つその関係がA力差6aとB力差5b相互の間で
各層ごとに交互にガっていて力差間に切削抵抗の不均衡
が生じないようになっている。
In this way, the peripheral cutting edges A1, A2, A3, A4 are cut separately for each force difference. , B4...
As shown in Fig. 6, which is a developed view of the entire blade of the cutter, the position of the overlap band A is located above the A force difference 3a, and the position is above the B force difference 6b. A gap zone A is formed at a symmetrical position, and conversely, a force difference B is 6.
With respect to the position where the overlap band A is formed on b, a gap band A is formed at a symmetrical position on the A force difference 6a, and the relationship is between the A force difference 6a and the B force difference 5b. This is done alternately for each layer to prevent imbalance in cutting resistance between force differences.

尚、斜上におけるαの値は不特定であり製作上はインデ
ックスハンドルの1回転(9度)程度をαの目安とする
と便利である。又円周の分割ピッチ間隔PO1P1、B
2は積層間隔So、、S1、B2とそれぞれ対応してお
り、その対応関係はPO×cotβ=SO1PIXco
tβ=Sj、P 2 X c、o tβ=82であり本
例の場合はβを45度に設定しであるのでcot45°
=1であるからP[1=SO1P1=S1、P 2=8
2となっている。捻れ角βの角度を変更した場合cot
βの値が変るだけでそれに比例して積層間隔5O1S1
、B2の値はそれぞれ変化するが全体の配置構成が変る
ことは々い。
It should be noted that the value of α at the upper slant is unspecified, and it is convenient for manufacturing purposes to use approximately one rotation (9 degrees) of the index handle as a guide for α. Also, the division pitch interval of the circumference PO1P1, B
2 corresponds to the stacking spacing So, S1, and B2, respectively, and the correspondence relationship is PO×cotβ=SO1PIXco
tβ=Sj, P 2 X c, o tβ=82, and in this example β is set to 45 degrees, so cot45
= 1, so P[1=SO1P1=S1, P2=8
2. If you change the twist angle β, cot
Just by changing the value of β, the stacking spacing is 5O1S1 in proportion to it.
, B2 vary, but the overall arrangement often changes.

又斜上において円周を分割する分割刃数Nを4枚として
例示しだが、これは力差の円弧の長さ5がカッターの円
周を等分する等分ピッチ間隔PO向切屑溝2と力差の後
縁面eとがなす空間部2′も同じ〒Dのピッチ間隔とな
るので切−削のバランスが好くなるだめの配慮であって
、分割刃数Nの選択は前記の通り力差の総数より多い数
の刃数でありさえすればよい訳であるが、上記の観点か
らすれば力差の総数の2倍の刃数を選ぶことが望ましい
In addition, the number of divided blades N that divides the circumference at the top of the diagonal is 4 blades, but this means that the arc length 5 of the force difference is equal to the chip groove 2 in the PO direction at equal pitch intervals that equally divides the circumference of the cutter. Since the space 2' formed by the trailing edge surface e of the force difference has the same pitch interval of 〒D, this is a consideration to improve the balance of cutting, and the number of divided blades N is selected as described above. The number of blades need only be greater than the total number of force differences, but from the above point of view, it is desirable to select a number of blades that is twice the total number of force differences.

更に又叙」二の例示において円周を分割する分割刃数N
を4枚とし外周切れ刃の積層段数をA1乃至A4、B1
乃至B4の如く4段としたのは作図と説明の便宜上カッ
ターの円周分割割り出しの1サイクル目までを画いたも
のであって短縮ピッチ間隔P1と延長ピッチ間隔P2と
の交互配置の関係を継続して2サイクル目の分割側9出
しを続行して刃切りすれば5段目から8段目まで積層で
きろサイクル、4サイクルといくらでも続行できる性質
のものであって分割刃数Nと積層段数は必ず合致しなけ
ればならないものではないから希望する有効切削刃長り
に応じて積層段数を増減することは自由である。因みに
第6図には5段目に来る外周切れ刃の位置を点線、で示
しくA5 ) (B5 )の符号を付しである。
Furthermore, in the second example, the number of dividing blades N that divides the circumference
4 pieces, and the number of laminated stages of the outer peripheral cutting edge is A1 to A4, B1
The four stages shown in B4 to B4 are drawn up to the first cycle of circumferential division indexing of the cutter for convenience of drawing and explanation, and continue the relationship of alternating arrangement of shortened pitch interval P1 and extended pitch interval P2. Then, if you continue the 9th part on the dividing side in the second cycle and cut the blades, you can stack from the 5th to the 8th stage.The cycle can be continued as many times as you want, such as 4 cycles, and the number of divided blades N and the number of stacked stages. Since these do not necessarily have to match, the number of laminated stages can be increased or decreased according to the desired effective cutting edge length. Incidentally, in FIG. 6, the position of the outer circumferential cutting edge at the fifth stage is indicated by a dotted line and is designated by the symbol A5) (B5).

以上が本願発明の積層刃フライスカッターの外周切れ刃
の基本拍配置構成であるが、本出願者が先に出願した積
層刃フライスカッター(特願56−132935号。以
下先願という。)は第11図に示す如く力差ろa、、3
bの円弧の長さ5は分割刃数Nでカッターの円周4を等
分したNDの等分ピ、チ間隔POを若干α延長したND
+αの長さとし、外周切れ刃は等分ピンチ間隔POで等
分に分割刃切りしAl−B5、B1−A3、A2−B4
、B2−A4と刃基5B、5b上をβの捻れ角で間欠的
に連もなる条列として削設され、カッターの回転方向R
にα1、α2、α5のオーバーラップ部を作って削り残
しが出ないようにする構成を採っていた。
The above is the basic arrangement of the outer peripheral cutting edge of the laminated blade milling cutter of the present invention, but the laminated blade milling cutter (Japanese Patent Application No. 56-132935, hereinafter referred to as the earlier application) previously filed by the present applicant is the As shown in Figure 11, the force difference is a, 3
The arc length 5 of b is the equal division of ND which equally divided the circumference 4 of the cutter by the number of divided blades N, and the ND which slightly extended the interval PO by α.
The length is +α, and the outer cutting edge is divided into equal parts with equal pinch intervals PO.Al-B5, B1-A3, A2-B4
, B2-A4 and the blade bases 5B, 5b are cut in an intermittently continuous row with a twist angle of β, and the cutter rotation direction R
The structure was such that an overlapping part of α1, α2, and α5 was created in order to avoid leaving uncut parts.

積層刃フライスカッター自体は従来の直刃型フライスカ
ッターに較べて切削開始時の衝撃が少く且つ積層してい
る外周切れ刃が捻れ刃であるだめ切削−抵抗が少く、捻
れ刃型フライスカッターに較べて外周切れ刃それぞれの
刃長が短いため切削位相のずれが少く、又切削抵抗によ
る捻れ戻し撓みや力、ター全体に及ぶ歪変形が少い上に
切れ刃の滑りも少くて、カッターの軸心に対する切削仕
上り面の真直度(仕上面精度)が極めて優れ且つ又切屑
が細分されるため切屑排出がよく、切削送りも大きくと
れて比切削抵抗も減少するという従来既存のカッターで
は望むべくもなかった数々の特性を生む比類のない着想
であった。しかし乍らその構成が前記の通りであったか
らオーパーラ、プ部α1、α2、α6以外の個所にあっ
てはA1−B1、A2−B2の如く刃部の数と等しい2
枚の外周切れ刃が−Dのピッチ間隔で交互に交代して切
削するのに対し、オーバーラツプ部例えばα1におって
は図の左からA2、A1、I32、B1の4枚の切れ刃
が切削に関与し、α2、α6についても同じであって、
そのピンチ間隔は〒Dとなって他の個所の刃部に対しピ
ッチ間隔は十となっている。此のためカッターが回転し
11方向に送られて切削をした場合、カッターの1回転
当りの切削量は一定であるからオーバーラツプ部の1刃
当りの切削量は他の個所の刃部のそれに対し当然十とな
り切屑厚みも十となってその結果被削面にむしれが生じ
て遂には仕上シ面にオーバーラツプの幅で送り方向Hに
筋やひどい場合は段差がついて面粗度に今一つ満足でき
ないところがあるというカッターの構造上進けられない
欠陥が残るものであった。此の意味で先願の積層刃フラ
イスカッターはその切削性能の優秀性から荒削り用カッ
ターとしては従来のラフィングカッター(Roughi
ngcutter )には勝るとも劣らないものではあ
るが荒、仕上兼用カッターとしては未完のものであると
言わざるを得ないものであった。
The laminated-blade milling cutter itself has less shock at the start of cutting than conventional straight-blade milling cutters, and the laminated outer peripheral cutting edge is a twisted blade, resulting in less cutting resistance and less cutting resistance compared to twisted-blade milling cutters. Since the length of each outer peripheral cutting edge is short, there is little deviation in the cutting phase, and there is also little twisting deflection and force due to cutting resistance, and less distortion and deformation across the entire blade, and there is little slippage of the cutting edge, so the cutter axis The straightness of the finished cut surface with respect to the center (finished surface accuracy) is extremely excellent, and the chips are finely divided, so chip evacuation is good, the cutting feed is large, and the specific cutting force is reduced. It was an unparalleled idea that produced many characteristics that did not exist before. However, since the configuration was as described above, in the locations other than the blade parts α1, α2, and α6, there are 2 parts equal to the number of blade parts such as A1-B1 and A2-B2.
In contrast, in the overlap area, for example, α1, four cutting edges A2, A1, I32, and B1 from the left of the figure cut The same is true for α2 and α6,
The pinch interval is 〒D, and the pitch interval is 10 with respect to the other blade parts. For this reason, when the cutter rotates and cuts in 11 directions, the amount of cutting per rotation of the cutter is constant, so the amount of cutting per tooth in the overlap area is equal to that of the blades in other parts. Naturally, the thickness of the chip becomes 10, and the chip thickness also becomes 10, resulting in peeling of the workpiece surface, and finally, the finished surface has streaks or, in severe cases, steps in the feed direction H due to the overlap width, and the surface roughness is not satisfactory. There remained a structural flaw in the cutter that made it impossible to proceed. In this sense, the laminated blade milling cutter of the prior application has superior cutting performance and is superior to the conventional roughing cutter (Roughi) as a cutter for rough cutting.
ng cutter), but it has to be said that it is still incomplete as a cutter that can be used for both roughing and finishing.

この事実は切削理論上からも裏付けされるものであって
、切れ刃がトロコイド曲線を画いて交代しながら断続的
に切削するフライスカッターにあっては先行して切削し
た切れ刃の切削跡はその表面が加工硬化して硬化層がで
きるため、切れ刃のピンチ間隔が狭く1刃当りの切削量
が少く即ち切屑厚みが薄くなる場合は後続する切れ刃は
先行した切れ刃の切削跡の加工硬化層を切削しようとす
るだめ切れ刃がくい込みにくく従って切れ刃に若干の滑
りが起こり、ために発熱して益々硬化状態が悪化して仕
上シ面にむしれや段差が生じる現象が出る訳である。特
に自硬性の強い被削材にあっては遂には切削不能に陥る
ことすら起る程である。
This fact is also supported by cutting theory, and in the case of a milling cutter in which the cutting edge cuts intermittently while alternating in a trochoidal curve, the cutting marks of the cutting edge that cut earlier will be Because the surface is work hardened and a hardened layer is formed, when the pinch interval between the cutting edges is narrow and the cutting amount per tooth is small, i.e. the chip thickness is thin, subsequent cutting edges will work harden the cutting marks of the preceding cutting edge. If you try to cut the layer, the cutting edge will not penetrate easily, so the cutting edge will slip slightly, which will generate heat and further deteriorate the hardening state, resulting in peeling and unevenness on the finished surface. . Particularly in the case of workpiece materials with strong self-hardening properties, it may even become impossible to cut the material.

切れ刃のピッチ間隔が広く1刃当シの切削量の多い場合
即ち切屑厚みが厚くなる場合は先行した切れ刃の切削跡
の加工硬化層より深い位置の未硬化部を後続切れ刃が切
削することとなるので切削は円滑に遂行される。従って
如何にうまく面粗度を損なわずに1刃当りの切削量を多
くとるかがフライス加工作業の秘訣であり工具設計のノ
ウハウであった。
When the pitch interval of the cutting edges is wide and the amount of cutting per blade is large, that is, when the chip thickness is thick, the succeeding cutting edge cuts the unhardened part that is deeper than the work-hardened layer of the cutting trace of the preceding cutting edge. As a result, cutting can be carried out smoothly. Therefore, the secret of milling work and the know-how of tool design was how to obtain a large amount of cutting per tooth without impairing surface roughness.

本願の発明は斜上の理論的基礎を踏まえて先願の積層刃
フライスカッターの構造的欠陥の改善を果しだものであ
って、その構成は既述の如く一方の刃部にオーバーラツ
プ帯アが形成されている位置に対してはそれと隣り合せ
だ力差上の対称位置には必ず同じ幅の隙間帯イが形成さ
れていて切れ刃が存在しないようになっているから、カ
ッターがR方向に回転しH方向に送られた場合、オーバ
ーラッグ帯アで加工硬化層ができてもオーバーラツプし
ている切れ方間のピッチ間隔の6倍の広いピッチ間隔で
、オーバーラツプに際しカッターの回転方向Rに向って
先行していた切れ刃口らが1回転後にさらえ刃として機
能して前の加工硬化層を未硬化部から削り取ってしまう
から切削段差は勿論変色模様も仕上り面に残らないよう
になり、先願の構造的欠陥を解消すると共に積層刀刃型
自体がもともと具えている快削性能と相俟って仕上面粗
度が著しく向上した。而も本発明は先にも触れた如くオ
ーバーラツプ帯アと隙間帯イの位置の対称関係は双方の
刃部に各層ごとに交互に位置し力差間に切削抵抗の不均
衡が生じ・ないようにする配慮まで払われているので荒
、仕上兼用(Roughand  finish  i
n  one  operation )のカッターと
して切削性能がよいのは勿論仕上面精度、仕上面粗度共
に従来既存の荒、仕上兼用カッターを遥かに凌ぐ性能を
具えて、新しい型式の積層刃フライスカッターに完成の
途を拓いたもので、その意味で切削理論の基本に叶った
優れた発明であるといえる。
The invention of the present application has achieved improvement of the structural defects of the laminated-blade milling cutter of the earlier application based on the theoretical basis of slanting, and as described above, the invention has an overlap band on one of the blades. For the position where the cutter is formed, a gap band A of the same width is always formed at the symmetrical position on the force difference adjacent to it, so that there is no cutting edge, so the cutter moves in the R direction. When the cutter is rotated and fed in the H direction, even if a work-hardened layer is formed in the overlapping band A, the cutter is rotated in the direction R of the cutter when overlapping, with a pitch interval six times wider than the pitch interval between the overlapping cuts. After one rotation, the leading cutting edge functions as a stripping edge and scrapes off the previous work-hardened layer from the unhardened part, so that not only cutting steps but also discolored patterns will not remain on the finished surface. In addition to eliminating the structural defects of the previous application, this combined with the free-cutting performance that the laminated knife blade itself inherently possesses significantly improves the finished surface roughness. However, as mentioned above, in the present invention, the symmetrical relationship between the positions of the overlap zone A and the gap zone B is such that the positions of the overlap zone A and the gap zone B are alternately positioned in each layer on both blades, so that an imbalance in cutting resistance does not occur between the force differences. It can be used for both rough and finishing.
Not only does it have good cutting performance as a cutter for single operation (one operation), but it also has finished surface accuracy and finished surface roughness that far exceeds existing rough and finishing cutters. It paved the way, and in that sense it can be said to be an excellent invention that fulfilled the basics of cutting theory.

第6図は第2実施例で、力差が4基以上で偶数力差であ
るものの代表例として例示したものである。此の場合そ
の構成は第1実施例と全く同じでA力差3aとB力差6
bが交互に配しであることとカッターの円周を分割する
分割刃数Nは力差の総数より多い任意の数でなければな
らないから力差の数が増えるのに応じて選択される分割
刃数Nが多くなる点だけが異って来るだけで発明の構成
要件に追加される要件は何もない。
FIG. 6 shows a second embodiment, which is exemplified as a representative example of an even force difference among four or more units. In this case, the configuration is exactly the same as the first embodiment, with A force difference 3a and B force difference 6.
Since b is arranged alternately and the number of divided blades N that divides the circumference of the cutter must be an arbitrary number greater than the total number of force differences, the division is selected as the number of force differences increases. The only difference is that the number N of blades increases, and there is no requirement added to the constituent requirements of the invention.

第1実施例は力差の数が2基で分割刃数Nは4枚であっ
たから力差の円弧の長さ5は−Dで従つて円弧の中心角
は90度であったが第6図は力差の数が4基で分割刃数
Nを8枚に選んだ場合を画いであるから力差の円弧の長
さ5は−Dで円弧の中心角は45度である。
In the first embodiment, the number of force differences was 2 and the number of divided blades N was 4, so the length 5 of the force difference arc was −D, so the central angle of the arc was 90 degrees, but the 6th embodiment The figure shows the case where the number of force differences is 4 and the number of divided blades N is 8, so the length 5 of the force difference arc is -D and the center angle of the arc is 45 degrees.

機能上では先に説明した如く第1実施例ではオーバーラ
ツプした切れ刃のカッターの回転方向Rに向って先行す
る切れ刃口らが1回転後にオーバーラツプにより生じた
加工硬化層をさらえ切削したが力差が4基以上の偶数力
差の場合はオーバーラツプした切れ刃の力差から1基隔
てて後続する力差のオーバーラツプ刃のカッターの回転
方向Rに向って先行する切れ刃が先に生じた加工硬化層
をさらえ切削するがそのピッチ間隔はオーバーラツプし
ている切れ刃のピンチ間隔の6倍で第1実施例と全く同
じである。
Functionally, as explained above, in the first embodiment, the leading cutting edge in the rotational direction R of the cutter of the overlapping cutting edge wipes away the work-hardened layer caused by the overlap after one rotation, but the force difference If there is an even force difference of 4 or more, the work hardening that occurs first in the cutting edge that precedes the overlapping blade in the rotational direction R of the cutter is the force difference that follows the overlapping cutting edge by one blade. Although the layers are cleaned and cut, the pitch interval is six times the pinch interval of the overlapping cutting edges, which is exactly the same as in the first embodiment.

、又A刃基3aとB力差3bとの間では先述の如く一方
の力差にオーバーラツプ帯アがある位置に対して他方の
力差の対称位置に隙間帯イがあり、且つそれが双方の力
差間で各層ごとに交互に来るように配置されているので
本例の如く力差の数が4基以上でA力差6aとB力差6
bとが交互に配しであるとA力差6a同士、B力差6b
同士の間ではそれぞれオーバーラツプ帯ア同士、隙間帯
イ同士が対向して位置する。
, between the A blade base 3a and the B force difference 3b, as mentioned above, there is an overlap zone A in one force difference, and a gap zone A in the symmetrical position of the other force difference, and it is Since the force differences are arranged alternately in each layer, as in this example, when the number of force differences is 4 or more, A force difference 6a and B force difference 6
b are arranged alternately, A force difference 6a and B force difference 6b
Between them, overlap zones A and gap zones B are located opposite to each other.

第7図第8図は力差の数が5基の場合の第6実施例であ
りA力差3a、B力差sb、C力差3Cが設けられ各力
差のカッターの回転方向Rに向く前縁面fはカッターの
円周4を6等分する位置にあり、カッターの直径りの測
定は6点測定具が用いられる。カッターの円周を分割割
出しする分割刃数Nは力差の総数6基以上の任意の数で
あればよいが本例では力差の倍数6枚を選んである。此
の分割刃数Nを基としてカッターの円周を等分すD+α
の延長ピッチ間隔P2とを決定し、詳説を省くがA力差
5aとB力差6bとにはこれらのピッチ間隔POXP1
、P2を第1実施と同じ手順と構成で適用して外周切れ
刃の配置構成を第1実施例のそれと類比的に形成してA
力差6a上にオーバーラツプ帯アが形成されている位置
に対してはB力差3b上の対称位置にオーツく一うップ
帯アの幅と等しい幅の隙間帯イが形成され、逆にB力差
3bJ二にオーバーラツプ帯アが形成されている位置に
対してはA力差3a上の対称位置に隙間帯イが形成され
ていて而も此の位置関係がA力差5aとB力差6b相互
の間で各層ごとに交互になっている。此の点において本
例のA力差3aとB力差3bは第1実施例のそれと構成
は全く同じにしである。
Fig. 7 and Fig. 8 show a sixth embodiment in which the number of force differences is five, and A force difference 3a, B force difference sb, and C force difference 3C are provided in the rotation direction R of the cutter for each force difference. The facing front edge surface f is located at a position that divides the circumference 4 of the cutter into six equal parts, and a six-point measuring tool is used to measure the diameter of the cutter. The number N of divided blades for dividing and indexing the circumference of the cutter may be any number that is greater than or equal to the total number of force differences, but in this example, six blades are selected, which is a multiple of the force difference. D+α to equally divide the circumference of the cutter based on this number of divided blades N
The extended pitch interval P2 is determined, and the detailed explanation is omitted, but these pitch intervals POXP1 are determined for the A force difference 5a and the B force difference 6b.
, P2 is applied in the same procedure and configuration as the first embodiment, and the arrangement of the outer peripheral cutting edge is formed analogously to that of the first embodiment.
For the position where the overlap band A is formed on the force difference 6a, a gap band A with a width equal to the width of the automatic overlap band A is formed at a symmetrical position on the force difference B, and vice versa. With respect to the position where the overlap band A is formed on the B force difference 3bJ2, the gap band A is formed at a symmetrical position on the A force difference 3a, and this positional relationship is the same as the A force difference 5a and the B force. The differences 6b alternate between each layer. In this respect, the A force difference 3a and the B force difference 3b of this embodiment have exactly the same structure as that of the first embodiment.

C力差6Cに対しては該力差の前縁面fの力。CFor the force difference 6C, the force of the leading edge surface f of the force difference.

タ一端面6側の先端を基準位置として上記、Dの等分ピ
ンチ間隔POでカッターの回転方向Rに向けて円周4を
等間隔に割り出し分割し乍らβの捻れ角で螺旋状に捻れ
刃切りしてC力差3C上に外周切れ刃C1、C2、C3
、C4、C5、C6をそれぞれ、上記等分ピッチ間隔p
oとP OXcotβの関係にある均等積層間隔SOを
挾んで軸方向に等間隔に削設しである。C力差6Cの円
弧の長さ5は第7図の如く該力差の後縁面eを調整して
る。此のようにするとC力差6C上の外周切れ刃C1、
C2、C6、C4、C5、C6の間にすべて間隔が開い
て、A力差3a、B力差3bのオーバーラツプ帯アと隙
間帯イと等しい幅の隙間ができて而もすべてそれらと同
一円周上に位置する。
The circumference 4 is indexed and divided into equal intervals in the rotational direction R of the cutter using the tip on the end face 6 side as a reference position at the above-mentioned equal pinch interval PO of D, and twisted spirally at a twist angle of β. The outer cutting edge C1, C2, C3 is cut on the C force difference 3C.
, C4, C5, and C6, respectively, at the equal pitch interval p
They are cut at equal intervals in the axial direction, sandwiching the equal lamination interval SO having the relationship between o and POXcotβ. The arc length 5 of the C force difference 6C adjusts the trailing edge surface e of the force difference as shown in FIG. In this way, the outer cutting edge C1 above the C force difference 6C,
There is a gap between C2, C6, C4, C5, and C6, and there is a gap with the same width as the overlap band A and gap band A of the A force difference 3a and B force difference 3b, and they are all the same circle. Located on the circumference.

此の結果力差3Cは機能上A力差3aとB力差3bとの
間のオーバーラツプとそのさらえ切削の関係を何んら邪
魔するととなく第1実施例の諸性能を損わずに6刃基の
積層刃フライスカッターとして成立し、特に溝切削作業
に用いた場合第1実施例、第2実施例の積層刃フライス
カッターを用いた場合よりも高精度の溝を仕上げる特色
を有している。
As a result, the force difference 3C can be adjusted without impeding the overlap between the A force difference 3a and the B force difference 3b and their smooth cutting relationship, and without impairing the various performances of the first embodiment. It is established as a laminated blade milling cutter with a blade base, and has the feature of finishing grooves with higher precision than when using the laminated blade milling cutters of the first and second embodiments, especially when used for groove cutting work. There is.

第9図第10図に示すものは第4実施例であって軸方向
切屑溝2に外周切れ刃の捻れ角βより′小さく且つ冒頭
に述べた軸方向の範囲内の角度にある捻れ角θを付して
削溝し力差3a、、3b、 3cにθ角の捻れを付して
形成しである。外周切れ刃を削設する手法と構成は前6
例とそれぞれ同じであって力差がθ角捻れたことにより
、等分ピッチ間隔?Oに対する均等積層間隔SO1短縮
ピッチ間隔P1に対する狭い積層間隔S1、延長ビ、チ
間隔P2に対する広い積層間隔S2の対応比は変って来
るが全体の配置構成が変ることはない。
What is shown in FIGS. 9 and 10 is a fourth embodiment, in which the axial chip groove 2 has a helix angle θ which is smaller than the helix angle β of the outer peripheral cutting edge and is within the axial range mentioned at the beginning. The force differences 3a, 3b, and 3c are twisted at an angle of θ. The method and configuration for cutting the outer cutting edge are described in 6 above.
Each is the same as the example, but the force difference is twisted by θ angle, so the pitch interval is equally divided? Although the correspondence ratios of uniform stacking spacing SO1 to O, narrow stacking spacing S1 to shortened pitch spacing P1, and wide stacking spacing S2 to extended pitch P2 will change, the overall arrangement will not change.

mは切削開始線であって常にカッターの軸心AXと平行
であるが、カッターが回転してA力差6a上に積層して
いる外周切れ刃の刃先a1、C2、C3、C4、C5や
B力差3b上に積層している外周切れ刃の刃先b1、b
2、b3、b4、b5が切削開始線mに達したときそれ
ぞれ夕)周切れ刃の切削が開始される。ところが第9図
を例にとれば端面切れ刃の刃先a1が切削開始線mに達
した時における図中の三角形a 1 a 5 m 5と
三角形a1a2m2、a1’a3m3、a 1 a 4
 m 4とはそれぞ九相似三角形ではあるが積層間隔S
1、S2が異った間隔であるため、各刃先a2、C3、
C4、C5が切削開始線mに達する点即ちm2、m5、
m4、m5の端面切れ刃の刃先a1からの距離a 1−
m 2、a 1−m 3、al−m4、al−m5は級
数的関係になく従って各刃先a2、C3、C4、C5が
切削開始線mに達する距離即ちC2−m2、C3−m5
、a 4  m4、a 5−m5も又級数的でない。従
ってカッターが回転して端面切れ刃の刃先a1が切削開
始線mに達しだ後、他の刃先a2、C3、C4、C5が
順次m線に達して切削を開始する時間は周期的でなく周
期に時間的ずれ(tirne  lag)が生じ各刃先
の切削開始時期は不等周期となる。
m is the cutting start line, which is always parallel to the axis AX of the cutter, but as the cutter rotates, the cutting edges a1, C2, C3, C4, C5, etc. of the peripheral cutting edge stacked on the A force difference 6a. B The cutting edges b1 and b of the peripheral cutting edge stacked on the force difference 3b
When the cutting edges 2, b3, b4, and b5 reach the cutting start line m, cutting of the peripheral cutting edge is started. However, if we take Figure 9 as an example, when the cutting edge a1 of the end face cutting edge reaches the cutting start line m, the triangles a1a5m5 and triangles a1a2m2, a1'a3m3, a1a4 in the figure
m 4 are nine similar triangles, but the stacking interval S
1. Since S2 has different intervals, each cutting edge a2, C3,
The point where C4 and C5 reach the cutting start line m, that is, m2, m5,
Distance from the cutting edge a1 of the end cutting edge of m4 and m5 a 1-
m2, a1-m3, al-m4, al-m5 are not in a series relationship, therefore, the distances that each cutting edge a2, C3, C4, C5 reaches the cutting start line m, that is, C2-m2, C3-m5
, a 4 m4, a 5-m5 are also not series-like. Therefore, after the cutter rotates and the cutting edge a1 of the end cutting edge reaches the cutting start line m, the other cutting edges a2, C3, C4, and C5 sequentially reach the m line and start cutting, and the time is not periodic but periodic. A time lag occurs, and the timing at which each cutting edge starts cutting becomes unequal.

一般に断続切削をするフライスカッターにあって個々の
切れ刃の切削開始時に切削衝撃が発生し、これが周期的
に繰返されて衝撃振動波が増幅されて)いわゆるビビリ
振動の原因となるとされているが、上述の如く各刃先の
切削開始時期が周期的でなく切削衝撃振動の発生が不等
周期となれば各刃先が起こす衝撃振動波は互いに干渉し
合い邪魔し合って逆に消振現象が生じ力差自体が防振機
能を具えることとなる。
In general, in milling cutters that perform interrupted cutting, a cutting impact occurs when each cutting edge starts cutting, and this is repeated periodically and the impact vibration waves are amplified, causing so-called chatter vibration. As mentioned above, if the cutting start timing of each cutting edge is not periodic and the occurrence of cutting impact vibrations is unequal, the impact vibration waves generated by each cutting edge will interfere with each other and interfere with each other, resulting in a vibration damping phenomenon. The force difference itself has an anti-vibration function.

第10図のB力差6bも同様であって端面切れ刃の刃先
b1が切削開始線mに達してから各刃先が順次切削開始
線mに達する距離即ちb 2− m 2、b3−rn5
、l) 4− m4、b5−m5はA力差3aと同様級
数的関係になく従って各刃先の切削開始時期は周期的で
なく周期に時間的ずれが生じて切削衝撃振動の発生は不
等周期となって、各刃先が起こす衝撃振動波は互いに干
渉し合い邪魔し合って逆に消振揚魚が生じて力差自体が
防振機能を持つこととなる。
The B force difference 6b in FIG. 10 is also the same, and the distance from when the cutting edge b1 of the end face cutting edge reaches the cutting start line m to when each cutting edge reaches the cutting start line m sequentially, that is, b2-m2, b3-rn5
, l) 4-m4, b5-m5 are not in a series relationship like the A force difference 3a, so the cutting start time of each cutting edge is not periodic, but there is a time lag in the period, and the occurrence of cutting impact vibration is uneven. Periodically, the shock vibration waves generated by each cutting edge interfere with and disturb each other, and conversely, vibration damping occurs, and the force difference itself has a vibration damping function.

此のように本実施例の如くすれば力差自身が防振機能を
具えることとなるが、鼓に更に注目すべきは第9図と第
10図を対比すれば容易に判ることであって、第10図
における三角形b1b2m2、b1b3m3.1)11
)4fn4、)、11)5m5は前記した第9図の三角
形と合同となる三角形が1つもないということである。
As shown in this embodiment, the force difference itself has an anti-vibration function, but what is more important to pay attention to is the drum, which can be easily seen by comparing Figures 9 and 10. Therefore, the triangles b1b2m2, b1b3m3.1)11 in Figure 10
)4fn4, ), 11)5m5 means that there is no triangle that is congruent with the triangle in FIG. 9 described above.

このことは一方の端面切れ刃の刃先a1が切削開始線m
に達してからその上の各刃先a2、C3、C4、C5が
それぞれ切削開始線mに達する距離と、他方の端面切れ
刃の刃先b1が切削開始線mに達してからその上の刃先
b2、b5、b4、b、5がそれぞれ切削開始線mに達
する距離とでは両刃基を通じてすべて不等であることを
意味し、且つそれぞれの力差において前記級数的でない
関係の態様も同一でないことを意味する。従って当然の
ことながら切削衝撃振動発生の不等周期性の態様も−A
力差6aとB力差3bとでは全く異っているということ
である。
This means that the cutting edge a1 of one end face cutting edge is at the cutting start line m.
The distance from which each cutting edge a2, C3, C4, C5 reaches the cutting start line m after reaching the cutting edge, and the cutting edge b2 above it after the cutting edge b1 of the other end face cutting edge reaches the cutting start line m, This means that the distances b5, b4, b, and 5 reach the cutting start line m are all unequal throughout the double-edged base, and also that the aspects of the non-sequential relationships are not the same in each force difference. do. Therefore, as a matter of course, the aspect of non-uniform periodicity of cutting impact vibration generation is also -A
This means that the force difference 6a and the B force difference 3b are completely different.

此のように本実施例の防振機能は些か特異であって力差
自体がそれぞれ防振能力を具えている上に両刃基の切削
衝撃振動発生の不等周期性の態様が全く異っているので
、切削衝撃振動の発生は正にバラバラ、無秩序、乱雑で
あって衝撃振動波は複雑に交錯し合い、絡み合い、干渉
し合って、その消振現象、防振効果は誠に強烈である。
As can be seen, the vibration damping function of this embodiment is somewhat unique, in that the force differences themselves each have a vibration damping ability, and the non-uniform periodicity of the cutting impact vibration generated by the double-edged base is completely different. Therefore, the generation of cutting impact vibrations is truly disjointed, chaotic, and disorderly, and the impact vibration waves intertwine, intertwine, and interfere with each other in a complex manner, and the vibration damping phenomenon and vibration isolation effect are truly strong. .

尚、切削衝撃振動発生の不等周期性がフライスカッター
に防振機能を付与する要因であることは既に公知である
が従来の適用例はすべてカッターの円周上に切れ刃を不
等ピッチに配列して切削衝撃振動発生の不等周期性を導
入したものであって、正面フライスカッターの如くカッ
ターの端面で切削するものについては有効に作用しだが
本願発明が対象としている有効切削刃長りが長く主とし
てカッターの外周面で切削するものについては殆どその
効果は生れなかった。これに対し本願の発明にあっては
製作の過程としてはカッターの円周を不等間隔に割シ出
し分割はするが、これは力差上に積層する外周切れ刃の
積層間隔を不等積層間隔に導くだめの手段に過ぎず、端
面切れ刃はカッターの円周を等分割している力差の前縁
面fのカッタ一端面6 fAllの先端にのみ設けられ
て等ピッチの位置にあり、カッターに防振機能を付与す
る要因である切削衝撃振動の不等周期性は前記しだ力差
上に軸方向に積層している外周切れ刃の積層間隔の不等
関係を導因として導入されているものであって、此のよ
うにして始めてカッターの外周面で主たる切削を行う有
効切削刃長りの長いエンドミルやブレンカッターなどに
有効に防振機能を付与することができたものでその根底
には外周切れ刃を力差上に軸方向に積層して削設すると
いう比類のない構成が基底として存在しており、且つ又
従来例の防振カッターがカッターの円周上に切れ刃を不
等ピッチに配列するという限られた1態様の切削衝撃振
動発生の不等周期性しか適用しえなかったのに対し本発
明にあっては2態様の切削衝撃振動の不等周期性を別々
に・2つの力差に適用して防振効果を加重させてあって
、これも又カッターに複数の力差を軸方向に設けるとい
う本願独自の構成に基いてこそよくなしうるところであ
って従来公知の防振原理を知ることのみで達成できる如
き尋常の企画設計ではない。
Although it is already known that the non-uniform periodicity of cutting impact vibration generation is a factor that provides a vibration-proofing function to a milling cutter, all conventional application examples involve setting the cutting edges at non-uniform pitches on the circumference of the cutter. This method introduces unequal periodicity in the generation of cutting impact vibrations by arranging them, and it works effectively for those that cut with the end face of the cutter, such as a face milling cutter, but the effective cutting edge length that is the object of the present invention This effect was hardly produced in cases where the cutter was long and the cutter was mainly cut using the outer circumferential surface of the cutter. On the other hand, in the invention of the present application, the circumference of the cutter is indexed and divided at unequal intervals in the manufacturing process, but this is done by arranging the outer circumferential cutting edges stacked at unequal intervals due to the difference in force. The end face cutting edge is provided only at the tip of the cutter end face 6fAll of the front edge face f of the force difference that equally divides the circumference of the cutter, and is positioned at equal pitches. The non-uniform periodicity of the cutting impact vibration, which is a factor that provides the cutter with a vibration-proofing function, is introduced as a result of the unequal relationship between the laminated intervals of the outer peripheral cutting edges laminated in the axial direction due to the above-mentioned difference in shear force. This is the first time that we have been able to effectively impart a vibration damping function to end mills and Blen cutters with long effective cutting edges that perform the main cutting on the outer circumferential surface of the cutter. The basis of this lies in an unparalleled structure in which outer peripheral cutting edges are laminated in the axial direction based on a force difference, and the conventional anti-vibration cutter cuts on the circumference of the cutter. While it was possible to apply only one limited form of nonuniform periodicity of cutting impact vibration generation in which the blades are arranged at nonuniform pitches, in the present invention, two forms of nonuniform periodicity of cutting impact vibration generation could be applied. is applied separately to the two force differences to increase the vibration-proofing effect, and this can also be effectively achieved based on the unique structure of the present application in which a plurality of force differences are provided in the cutter in the axial direction. This is not an ordinary planning and design that can be achieved only by knowing the conventionally known vibration isolation principles.

更に又特筆すべきことは従来例の不等ピッチ分割の防振
カッターは端面切れ刃が不等ピッチとなるものであるか
ら切れ刃が2枚の場合例えば2枚方エンドミルの如き場
合は切れ刃を同−直径上に配しえなくなりカッターの直
径が測定できなくて2枚刃のカッターには適用できない
ものであったが本発明の場合にあっては端面切れ刃は等
ピッチの位置にあり2枚刃(2刃基)の場合にも適用で
きることは既に実施例の説明において十分間隙しだとこ
ろであって此の点からも従来公知の不等ピッチ分割防振
カッターとは構成上全く別の範ちゅうに属すものである
といえる。
Furthermore, it should be noted that conventional vibration-proof cutters with uneven pitch divisions have end cutting edges with uneven pitches, so if there are two cutting edges, such as a two-sided end mill, the cutting edges should be This method could not be applied to a two-blade cutter because it could not be arranged on the same diameter and the diameter of the cutter could not be measured, but in the case of the present invention, the end cutting edges are located at equal pitches, and the cutter diameter cannot be measured. The fact that it can also be applied to the case of a single blade (two-blade base) has already been mentioned in the description of the embodiment, and from this point of view, the structure is completely different from the conventionally known uneven pitch division vibration-proof cutter. It can be said that it belongs to Chu.

尚本第4実施例は前掲6例の実施例の軸方向切屑溝2に
θの捻れ角を付して削溝し力差3a15b、3cをθ角
捻れ形成しただけのものであり冒頭に記述した如く軸方
向の範囲は[軸心AXから軸心AXと直交する半径方向
と軸心AXとの分界線即ち軸心AXに対する45度の角
度までの範囲」と規定しであるから捻れ角θが上記軸方
向の範囲内に設けられている限り新たに伺は加えられた
構成要件は何もなく前掲6例のそれぞれの実施態様に該
当する。
In addition, this fourth embodiment is simply the one in which the axial chip groove 2 of the six embodiments listed above is milled with a twist angle of θ, and the force difference 3a15b, 3c is formed with a twist angle of θ, and is described at the beginning. As mentioned above, the range in the axial direction is defined as [the range from the axis AX to the demarcation line between the radial direction perpendicular to the axis AX and the axis AX, that is, the angle of 45 degrees with respect to the axis AX'', so the torsion angle θ As long as it is provided within the range in the above-mentioned axial direction, there is no newly added structural requirement and the embodiment corresponds to each of the six embodiments listed above.

以上が本発明の全容であるが既に詳細に説明した如く本
願発明の積層刃フライスカッターは従来汎用の直刃型フ
ライスカッターや捻れ刃型フライスカッターの常識を超
えた切削性能を持っており更に切削理論の基本に則って
先願の構造的欠陥を改善して仕上面粗度と仕上面精度の
向上を達成し、積層刃フライスカッターという新しい型
式のカツターを創造完成したものであるが、更に加えて
第4実施例において説明した如き卓抜な防振機能をも兼
備するようにできる結果益々切削条件を高めることが可
能となったばかりでなくビビリ振動による切れ刃の損傷
も無くなって、カッターの寿命も著しく伸長して経済性
にも優れた他の追随を許さぬ画期的々カッターであり、
而もその適用範囲もスパイラルエンドミル、スロッチン
クエントミル等の円柱フライスカッターやプレンカッタ
ー、ンエルエン、ドミル等の円筒フライスカッター、更
にはボールエンドミル、テーパーカッターにまでわたり
斯界の技術発展に貢献するところ極めて大きい発明であ
る。
The above is the entire outline of the present invention, but as already explained in detail, the laminated-blade milling cutter of the present invention has cutting performance that exceeds the common sense of conventional general-purpose straight-blade milling cutters and twisted-blade milling cutters. Based on the fundamentals of theory, we improved the structural defects of the previous application and achieved improvements in finished surface roughness and finished surface accuracy, creating and completing a new type of cutter called a laminated blade milling cutter. As a result, not only is it possible to further improve the cutting conditions, but also damage to the cutting edge due to chatter vibration is eliminated, which extends the life of the cutter. It is an epoch-making cutter with remarkable growth and excellent economic efficiency, unrivaled by any other cutter.
Moreover, the scope of its application extends to cylindrical milling cutters such as spiral end mills and slotted quench mills, cylindrical milling cutters such as Plane cutters, Neruen and Domills, and even ball end mills and taper cutters, making it extremely useful for contributing to the technological development of this industry. This is a great invention.

尚、本発明においては先にも触れた如くカッターの円周
を定められた規準と順序で不等ピッチ間隔に割り出し分
割はするが、これは外周切れ刃が不等積層間隔で積層す
るように導くだめの最も簡便な手段であって、本願の主
旨はその結果得られる外周切れ刃の配置構成の態様にあ
る訳であるが、本願、の発明の詳細な説明を通読すれば
その配置構成の態様を計算的に割出し把握することは誠
に容易であり、工作上は多少煩雑な操作を必要とするが
そ9計算的割り出しに基き工作機械のテーブルをXY方
向に移動させ乍ら前記捻れ角βを軸方向すくい角とした
斜直線刃に外周切れ刃を形成して本発明の主旨とする外
周切れ刃の配置を構成することは可能であり、まして数
値制御の工作機械が普及した今日においてはさほど困難
な工作ではない。しかし乍ら捻れ刃と斜直線刃との異る
ところは切れ刃のすくい面の形状が違う点にありこれは
本願の埒外の問題であって、直接切削に携り、本願添付
図面にAI、A、2・・・・・・、B1、B2・・・・
・・等と符号を付しである外周切れ刃の稜線(edge
)は捻れ刃であっても斜直線刃であっても他の条件が同
じであれば同一稜線形状を呈すから外周切れ刃が上述の
如き手法で斜直線刃に形成されようともその配置構成が
本願記載の配置構成の態様に該当するものであれば本願
発明の範ちゅうから外れるものではない。
In addition, in the present invention, as mentioned earlier, the circumference of the cutter is indexed and divided at uneven pitch intervals according to a predetermined standard and order, but this is done so that the outer cutting edges are stacked at uneven stacking intervals. This is the simplest means for guiding the guide, and the gist of the present application lies in the configuration of the resulting peripheral cutting edge. It is really easy to calculate and understand the shape of the torsion angle by calculating it, and although some complicated operations are required during the machining process, the table of the machine tool is moved in the X and Y directions based on the calculation. It is possible to form the outer peripheral cutting edge on a diagonal straight cutting edge with an axial rake angle of β to configure the arrangement of the outer peripheral cutting edge that is the gist of the present invention, and even more so in today's world where numerically controlled machine tools have become widespread. It's not a very difficult task. However, the difference between a twisted blade and an oblique straight blade is that the shape of the rake face of the cutting edge is different, and this is a problem outside the scope of this application. A, 2..., B1, B2...
The edge line of the outer cutting edge is marked with
) has the same ridgeline shape whether it is a twisted edge or an oblique straight edge, if other conditions are the same, so even if the peripheral cutting edge is formed into an oblique straight edge by the method described above, its arrangement configuration will be As long as it corresponds to the aspect of the arrangement described in the present application, it does not fall outside the scope of the present invention.

又これまでの説明では捻れ角β及びθはいわゆる右捻れ
であるものとして説明したがプレンカッター等にあって
左捻れとする場合もあシ、本願にとって捻れ方向の左右
は問うところではない。
In addition, in the explanation so far, the twist angles β and θ have been described as so-called right-handed twists, but there may also be cases where they are left-handed twists in plane cutters, etc., and the left and right twist directions are not a problem for the present application.

更に又説明の全体を通して高速度鋼の如き工具材料の無
垢材に直接成形加工することを前提として記述したが炭
素鋼の如き非工具材料を母材として超硬合金などの工具
材料を刃部にのみロー付は接着したものや機械的に固着
したものについても本発明の要件が適用されるものであ
ることは勿論である。
Furthermore, although the entire explanation was based on the assumption that the tool material is directly formed into a solid material such as high-speed steel, it is also possible to use a non-tool material such as carbon steel as the base material and a tool material such as cemented carbide as the blade part. Needless to say, the requirements of the present invention also apply to items that are bonded or mechanically fixed with chisel brazing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発明の第1実施例の正面図 第2図は第1図の下面図(端面図) 第6図は発明の第1実施例の刃部展開図第4図、第5図
は発明の第1実施例の説明用要部展開図 第6図は発明の第2実施例の下面図(端面図)第7図は
発明の第6実施例の下面図(端面図)第8図は発明の第
6実施例の刃部展開図第9図、第10図は発明の第4実
施例の刃部部分展開図 第11図は先願発明の刃部展開図 1・・・カッタ一本体 2・・・軸方向切屑溝5a、3
b、3c・・・刃部 f・・・刃部の前縁面e・・・刃
部の後縁面 4・・・カッターの円周5・・・刃部の円
弧の長さ R・・・カッターの回転方向H・・・カッタ
ーの送り方向 D・・・カッターの直径A1、A2、A
、5、A4・・・・・・、131、B2、B6、B4・
・・・・・、C1、C2、C6、C4、C5、C6・・
・・・・、・・・外周切れ刃 β・・・外周切れ刃の捻
れ角■〕0、Pl、B2、・・・・・・カッター円周の
分割ピッチ間隔 5O1S1、B2・・・・・・外周切
れ刃の積層間隔 ア・・・オーバーラツプ帯 イ・・・
隙間帯り11.有効切削刃長 6・・・カッターの端面
θ・・・刃部の捻れ角 m・・・切削開始線a1、C2
、C5、C4、C5・・・・・・、bl、B2、B5、
B4、B5・・・・・・、・・・刃先m2、m3、m4
、m5・・・・・・切削開始点第6図 第γ図 手続補正書(才人) 1、事件の表示  昭和57年特許願第128039号
2、発明の名称 積層刃フライスカッター6、補正をす
る者 事件との関係  特許出願人 住 所  京都府京都市上京区御前通今出川上ル4、補
正命令の日付  昭和57年10月7日58補正の対象
 図 面 6、補正の内容 別紙の通シ
FIG. 1 is a front view of the first embodiment of the invention. FIG. 2 is a bottom view (end view) of FIG. 1. FIG. 6 is an exploded view of the blade of the first embodiment of the invention. 6 is a bottom view (end view) of the second embodiment of the invention. FIG. 7 is a bottom view (end view) of the sixth embodiment of the invention. FIG. 9 is a developed view of the blade portion of the sixth embodiment of the invention, FIG. 10 is a partially developed view of the blade portion of the fourth embodiment of the invention, and FIG. 11 is a developed view of the blade portion of the earlier invention. Main body 2...Axial chip grooves 5a, 3
b, 3c...blade f...front edge surface of the blade e...rear edge surface of the blade 4...Cutter circumference 5...arc length of the blade R...・Cutter rotation direction H...Cutter feed direction D...Cutter diameter A1, A2, A
, 5, A4..., 131, B2, B6, B4・
..., C1, C2, C6, C4, C5, C6...
...,...Outer cutting edge β...Helix angle of outer cutting edge ■〕0, Pl, B2, ...... Division pitch interval of cutter circumference 5O1S1, B2...・Lamination interval of outer cutting edge A...Overlap band A...
Gap band 11. Effective cutting blade length 6...Cutter end face θ...Twisting angle of the blade m...Cutting start line a1, C2
, C5, C4, C5..., bl, B2, B5,
B4, B5...,...Blade tip m2, m3, m4
, m5... Cutting start point Figure 6 Figure γ Procedural amendment (Saijin) 1. Indication of the case 1982 Patent Application No. 128039 2. Title of the invention Laminated blade milling cutter 6, amendment Patent applicant address: 4, Gozen-dori, Imadegawa-kami-ru, Kamigyo-ku, Kyoto-shi, Kyoto Prefecture Date of amendment order: October 7, 1980 58 Subject of amendment: Drawing 6, contents of amendment: Attached circular

Claims (1)

【特許請求の範囲】 1 カッタ一本体(1)に偶数条の軸方向切屑溝(2)
を軸心(Ax)平行から軸心(Ax)に対して45度未
満までのいわゆる軸方向の範囲内の角度で削溝して該溝
(2)と同数の刃基(6a13b・・・・・・)を、カ
ッターの回転方向(R)に向くこれら刃基の前縁面(f
)がカッターの円周(4)を等分する位置にある如くに
形成し、これら刃基の内の任意の1基をA力差(6a)
としそれと隣り合せた刃基をB刃基(6b)とし、併せ
てカッターの円周を分割割シ出しする分割刃数を刃基の
総数よυ多い任意の数で選定して該刃数をNとしカッタ
ーの直径をDとして、カッターの円周(4)を上記分割
刃数(N)で等分した。Dの等分ピッチ間隔(PO)と
、等分ピッチ間隔(PO)を若干(α)短縮した■−α
の短縮ピッチ間隔(Pl)と、等分ピッチ間隔(Po)
を若干(α)延長した胃り十〇の延長ピッチ間隔(P2
)とを決定し、A力差(6a)には該刃基の前縁面(f
)のカッタ一端面(6)側の先端を基準位置として前記
短縮ピッチ間隔(Pl)と延長ピッチ間隔(P2)とが
カッターの回転方向(R)に向けて円周上にPl、P2
、Pl、P2・・・・・・と交互に並ぶ如く不等ピッチ
に割り出し分割し乍らそれぞれβなる捻れ角で螺旋状に
捻れ刃切りする如くしてA力差(3a)上に外周切れ刃
(AI、A2、A3、A4・・・・・・)を前記短縮ピ
ッチ間隔(Pl)とPlxcotβの関係にある狭い積
層間隔(Sl)と、延長ピッチ間隔(P2)とP2xc
o tβの。 関係にある広い積層間隔(Sl)とを81、Slの順に
交互に挾んで不等間隔に積層して削設すると共に刃基の
円弧の長さく5)は刃基の後縁面(e)を調整して等分
ピッチ間隔(PO)と等しい長さ即ちHDとじて外周切
れ刃(AI、A2、A5、A4・・・・・・)の間にカ
ッターの回転方向(R)にオーバーラツプするオーバー
ラツプ帯(ア)と間隔が開いて隙間が生じるオーバーラ
ツプ帯(ア)の幅と等しい幅の隙間帯(イ)を軸方向に
交互に位置する如く形成し、一方B力差(3b)には該
力差の前縁面(f)′のカッタ一端面(6)側の先端を
基準位置として前記等分ピンチ間隔(PO)と、短縮ピ
ッチ間隔(Pl)と延長ピッチ間隔(B2)とがカッタ
ーの回転方向(R)に向けて最初にPOが位置し以下P
1、B2、Pl・・・・・・と交互に円周上に並ぶ如く
不等ピッチに割出し分割し乍らそれぞれβの捻れ角で螺
旋状に捻れ刃切りする如くして・B力差(6b)上に外
周切れ刃(B1、B2、Bl、B4・・・・・・)を上
記等分ピッチ間隔(PO)とP OX c o tβの
関係にある均等積層間隔(SO)を最下段として以下前
記狭い積層間隔(Sl)と広い積層間隔(B2)とを8
1、B2の順に交互に挾んで不等間隔に積層して削設す
ると共にη基の円弧の長さく5)は力差の後縁面(、e
)を調整して等分ピッチ間隔(PO)と等しい長さ即ち
s Dとし併せて最下段の外へ周切れ刃(B1)の後縁
側を前記αの値だけ削除して外周切れ刃(Bl、B2、
B3、B4・・・・・・)の間にカッターの回転方向(
R)にオーバーラツプするオーバーラツプ帯(ア)と間
隔が開いて隙間の生じるオーバーラツプ帯(ア)の幅と
等しい幅の隙間帯(イ)を軸方向に前記A力差(6a)
の場合と逆の順序で交互に位置する如く形成して、A力
差(3a)にオーバーラツプ帯(ア)が形成されている
位置に対してはB力差(6b)上の対称位置に隙間帯(
イ)が形成されており、逆にB力差(5b)にオーバー
ランプ帯(ア)が形成されている位置に対してはA力差
(3a)上の対称位置に隙間帯(イ)が形成されていて
而もその位置関係がA力差(3a)B力差(6b)相互
の間で各層ごとに交互になっている如く配置構成したこ
とを特徴とする積層刃フライスカッター。 2 力差の数が4基以上の偶数力差の場合にあって外周
切れ刃(A、 1、A2、A6、A4・・・・・・)が
狭い積層間隔(Sl)と広い積層間隔(B2)とを81
、B2の順に交互に挾んで積層し、力差の円弧の長さく
5)が等分ピッチ間隔(PO)と等しい長さとなってい
るA力差(3a)と、外周切れ刃(B1、B2、B6、
B4・・・・・・)が均等積層間隔(SO)を最下段と
して以下狭い積層間隔(Sl)と広い積層間隔(B2)
とを81、B2の順に交互に挾んで積層し、力差の円弧
の長さく5)が等ピンチ間隔(PO)と等しい長さとな
っており且つ最下段の外周切れ刃(B1)の後縁側をα
の値だけ削除したB力差(3b)とをカッターの円周上
に交互に配したことを特徴とする特許請求の範囲第1項
記載の積層刃フライスカッター。 6 カッタ一本体(1)に偶数条削溝して力差(6a、
3b)を形成する軸方向切屑−溝(2)に外周切れ刃の
捻れ角(β)より小さく且つ軸方向の範囲内の角度にあ
る捻れ角(θ)を付して削溝し、力差(3aX 3b、
)をθ角捻れ形成して、A力差(6a)の端面切れ刃の
刃先(al)が切削開始線(m)にある位置においてそ
の上に積層している外周切れ刃の各刃先(B2、B3、
B4、B5)がそれぞれ切削開始線(m)に達する距離
(B2−rn2、a 3−m3、a 4−m4、B5−
m5)が外周切れ刃の不等積層間隔に対応して級数的関
係になく、又B力差(3b)の端面切れ刃の刃先(bl
)が切削開始線(m)にある位置においてその上に積層
している外周切れ刃の各刃先(B2、B5、B4、−B
5)がそれぞれ切削開始線(m)に達する距離(B2−
m2、b 3−m 3、b 4−m 4、l)5−ms
)が外周切れ刃の不等積層間隔に対応して級数的関係に
ない如くシ、且つA力差(6a)とB力差(3b)の間
において上記級数的でない関係の態様が不等であること
を特徴とじた特許請求の範囲第1項まだは第2項記載の
積軸心(Ax)平行から軸心(Ax)に対して45度未
満までのいわゆる軸方向の範囲内の角度で削溝して6基
の力差(3aX3b、3c)を、カッターの回転方向(
R)に向くこれら力差の前縁面(f)がカッターの円周
(4)を6等分する位置にある如くに形成し、これら力
差の内の任意の1基をA力差(3a)としそれと隣り合
せる力差をそれぞれB力差(3b)C刃基(6C)とし
、併せてカッターの円周を分割割り出しする分割刃数を
力差の総数6基以上の任意の数で選定して該刃数をNと
しカッターの直径をDとして、カッターの円周(4)を
上記分割刃数Nで等分したNDの等分ピッチ間隔(PO
)と等分ピッチ間隔(PO)を若干(α)短縮したπD
−αの短縮ピッチ間隔(Pl)と等分ピッチ間隔(PO
)を若干(α)延長したND+αの延長ピッチ間隔(P
2)とを決定し、A力差(5a)とB力差(°b)とに
は・ 6れ!の′°・7間隔(po、Pl、P2、特許
請求の範囲第1項に記載したのと同じ手順と構成で適用
して外周切れ刃の配置構成を特許請求の範囲第1項に記
載のそれと類比的に形成し、A力差(6a)上にオーバ
ーランプ帯(ア)が形成されている位置に対してはB力
差(3b)上の対称の位置にオーパーラ、プ帯(ア)の
幅と等しい幅の隙間帯(イ)が形成され、逆にB力差(
3b )’上にオーバーラツプ帯(ア)が形成されてい
る位置に対してはA力差(6a)上の対称位置に隙間帯
(イ)が形成されていて、而もその位置関係がA力差(
6a)とB力差(3b)相互の間で各層ごとに交互にな
っている如くすると共に、C刃基(3c)には該力差の
前縁面(f)のカッタ一端面(6)側の先端を基準位置
として前記KDの等分ピッチ間隔(PO)でカッターの
回転方向(R)に向けて円周(4)を等間隔に割出し分
割し乍らβの捻れ角て螺旋状に捻れ刃切りする如くして
C刃基(3C)上に外周切れ刃(cl、C2、C3、C
4、C5、C6・・・・・・)をそれぞれ上記等分ピッ
チ間隔(PO)とP OX、cotβの関係にある均等
積層間隔(SO)を挾んで軸方向に等間隔に積層して削
設すると共に該力差の円弧の長さく5)・は力差の後縁
面(e)を調整して前記短縮ピッチ間隔(Pl)と等し
い長さ即ち、D−αとして、外周切れ、刃(cl、C2
、C3、C4、C5、C6−)の間にすべてA力差(6
a)、B力差(6b)上のオーバーラツプ帯(ア)と隙
間帯(イ)の幅と等しい幅の隙間を形成し而もそれらが
A力差(3a)B力差(6b)上のオー・り一ラップ帯
(ア)、隙間帯(イ)とすべて同一円周上に位置する如
く配置構成したことを特徴とした積層刃フライスカッタ
ー。 5 力、タ一本体(1)に6条削溝して力差(6a16
bX 3C)を形成する軸方向切屑溝(2)に外周切れ
刃の捻れ角(β)より少さく且つ軸方向の範囲内の角度
にある捻れ角(θ)をイ」シて削溝し、力差(3a、5
b)3c)を0角捻れ形成して、A力差(6a)の端面
切れ刃の刃先(al)が切削開始線(m)にある位置に
おいてその上に積層している外周切れ刃の各刃先(C2
、C3、C4、C5・・・・・・)75二それぞれ切削
開始線(ITI)に達する距離(C2−m2、C3−m
3、a 4− m 4、C5−m5・・・・・・)が外
周切れ刃の不等積層間隔に対応して級数的関係になく、
又B力差(3b)の端面切れ刃の刃先(bl)が切削開
始線(m)にある位置においてその上に積層している外
周、切れ刃の各刃先(1)2、b3、b4、b5・・・
・・・)がそれぞれ切削開始線(m)に達する距離(1
)2−m2、l)3−m3、l)4−m4、b5−m5
・・・・・・)が外周切れ刃の不等積層間隔に対応して
級数的関係にない如くし、且つA力差(3a)とB力差
(3b)相互の間において上記級数的でない関係の態様
が不等であることを特徴とする特許請求の範囲第4項記
載の積層刃フライスカッター。
[Claims] 1. An even number of axial chip grooves (2) in the cutter body (1)
Grooves are cut at an angle within the so-called axial direction range from parallel to the axis (Ax) to less than 45 degrees with respect to the axis (Ax) to form the same number of blade bases (6a13b...) as the grooves (2). ) are the front edge surfaces (f
) are located at positions that equally divide the circumference (4) of the cutter, and apply any one of these blade bases to A force difference (6a).
The blade base adjacent to it is set as the B blade base (6b), and the number of divided blades for dividing the circumference of the cutter is selected to be an arbitrary number υ greater than the total number of blade bases. The circumference (4) of the cutter was equally divided by the number of divided blades (N), and the diameter of the cutter was D. Equal pitch interval (PO) of D and ■-α which is slightly (α) shorter than equal pitch interval (PO)
The shortened pitch interval (Pl) and the equal pitch interval (Po)
Extended pitch interval (P2) of 10, which is slightly (α) extended
) is determined, and the A force difference (6a) is determined by the front edge surface (f
), the shortened pitch interval (Pl) and the extended pitch interval (P2) are arranged circumferentially Pl, P2 in the rotational direction (R) of the cutter, with the tip of the cutter end face (6) as the reference position.
, Pl, P2, etc. are indexed and divided at uneven pitches so that they are arranged alternately, and each is twisted spirally at a helix angle of β to cut the outer periphery on the A force difference (3a). The blades (AI, A2, A3, A4...) are arranged at a narrow stacking interval (Sl) having a relationship between the shortened pitch interval (Pl) and Plxcotβ, and an extended pitch interval (P2) and P2xc.
o tβ's. The related wide lamination interval (Sl) is alternately sandwiched in the order of 81 and SL and laminated at uneven intervals and cut. Adjust the length to be equal to the equal pitch interval (PO), that is, the HD overlap between the outer cutting edges (AI, A2, A5, A4...) in the rotational direction (R) of the cutter. Gap bands (A) with a width equal to the width of the overlap band (A) which is spaced apart from the overlap band (A) to create a gap are formed so as to be positioned alternately in the axial direction, while B force difference (3b) The equal pinch interval (PO), the shortened pitch interval (Pl), and the extended pitch interval (B2) are determined by using the tip of the leading edge surface (f)' of the force difference on the side of the cutter end surface (6) as a reference position. PO is located first in the direction of rotation (R) of the cutter, and
1, B2, Pl, etc. are indexed and divided into uneven pitches so that they are arranged alternately on the circumference, and the blades are twisted spirally at a helix angle of β, respectively.・B force difference (6b) On top, set the outer peripheral cutting edges (B1, B2, Bl, B4...) to the maximum uniform stacking interval (SO) that is in the relationship between the above equal pitch interval (PO) and P OX co tβ. In the lower stage, the narrow stacking interval (Sl) and wide stacking interval (B2) are defined as 8.
1 and B2 are alternately sandwiched and laminated at uneven intervals, and the η-base arc length 5) is cut on the trailing edge surface of the force difference (, e
) is adjusted to have a length equal to the equal pitch interval (PO), that is, sD, and the trailing edge side of the peripheral cutting edge (B1) is removed by the value of α to the outside of the lowest stage to create the outer peripheral cutting edge (Bl ,B2,
B3, B4...), the direction of rotation of the cutter (
The above A force difference (6a) is applied in the axial direction through a gap band (B) having a width equal to the width of the overlap band (A) which overlaps R) and the overlap band (A) which is spaced apart to create a gap.
They are formed so that they are arranged alternately in the reverse order, and for the position where the overlap zone (A) is formed on the A force difference (3a), a gap is formed at the symmetrical position on the B force difference (6b). band(
A) is formed, and conversely, for a position where an overramp band (A) is formed on the B force difference (5b), a gap band (A) is formed at a symmetrical position on the A force difference (3a). A laminated blade milling cutter characterized in that the laminated blade milling cutter is arranged such that the positional relationship between the A force difference (3a) and the B force difference (6b) is alternate for each layer. 2. When the number of force differences is 4 or more even force differences, the outer cutting edge (A, 1, A2, A6, A4...) has a narrow lamination interval (Sl) and a wide lamination interval (Sl). B2) and 81
, B2 are sandwiched and stacked alternately in the order of A force difference (3a) where the arc length of the force difference (5) is equal to the equal pitch interval (PO), and the outer peripheral cutting edge (B1, B2 ,B6,
B4...) has an even stacking spacing (SO) at the bottom, and the following are narrow stacking spacing (Sl) and wide stacking spacing (B2)
81 and B2 are sandwiched and stacked alternately in the order of α
2. The multi-blade milling cutter according to claim 1, wherein the B force difference (3b) is alternately arranged on the circumference of the cutter. 6 Cut an even number of grooves on the cutter body (1) to create a force difference (6a,
The axial chip-groove (2) forming 3b) is cut with a helix angle (θ) that is smaller than the helix angle (β) of the outer cutting edge and within the range of the axial direction, and the force difference is (3aX 3b,
) is twisted at an angle of θ, and each cutting edge (B2 ,B3,
B4, B5) reach the cutting start line (m), respectively (B2-rn2, a 3-m3, a 4-m4, B5-
m5) does not have a series relation due to the uneven lamination interval of the outer peripheral cutting edge, and the cutting edge of the end face cutting edge (bl) of the B force difference (3b)
) is at the cutting start line (m), each cutting edge of the peripheral cutting edge (B2, B5, B4, -B
5) respectively reach the cutting start line (m) (B2-
m2, b 3-m 3, b 4-m 4, l) 5-ms
) does not have a series relationship in accordance with the unequal lamination spacing of the peripheral cutting edge, and the aspect of the above non-sequence relationship between the A force difference (6a) and the B force difference (3b) is unequal. At an angle within the so-called axial direction range from parallel to the product axis (Ax) to less than 45 degrees with respect to the axis (Ax), The force difference between the six units (3aX3b, 3c) is adjusted by cutting the groove in the direction of rotation of the cutter (
The front edge surfaces (f) of these force differences facing toward R) are formed so that they are located at positions that divide the circumference (4) of the cutter into six equal parts, and any one of these force differences is connected to the force difference A ( 3a) Let the force difference between it and the adjacent one be respectively B force difference (3b) and C blade base (6C), and also set the number of divided blades to divide and index the circumference of the cutter to an arbitrary number of 6 or more, the total number of force differences. The selected number of blades is N, the diameter of the cutter is D, and the circumference (4) of the cutter is equally divided by the number of divided blades N, which is the equal pitch interval of ND (PO
) and πD with the equal pitch interval (PO) slightly shortened by (α)
−α shortened pitch interval (Pl) and equal pitch interval (PO
) is slightly (α) extended by ND+α extended pitch interval (P
2), and the A force difference (5a) and B force difference (°b) are: 6! '°·7 intervals (po, Pl, P2, by applying the same procedure and configuration as described in claim 1), the arrangement configuration of the outer peripheral cutting edge is changed to the configuration described in claim 1. Analogously, for the position where the overlamp band (A) is formed on the A force difference (6a), the overlamp band (A) is formed at the symmetrical position on the B force difference (3b). A gap zone (A) with a width equal to the width of is formed, and conversely, the force difference B (
3b)' With respect to the position where the overlap zone (A) is formed, a gap zone (A) is formed at a symmetrical position on the A force difference (6a), and the positional relationship is that of the A force. difference(
6a) and B force difference (3b) are arranged alternately for each layer, and the C blade base (3c) has one cutter end face (6) of the leading edge face (f) of the force difference. The circumference (4) is indexed and divided into equal intervals in the rotational direction (R) of the cutter at the equal pitch interval (PO) of the above-mentioned KD with the end of the side as a reference position, while creating a spiral shape with a twist angle of β. The outer cutting edge (cl, C2, C3, C
4, C5, C6...) are laminated at equal intervals in the axial direction between the equal stacking intervals (SO) which are in the relationship between the above-mentioned equal pitch interval (PO) and POX, cotβ, respectively, and then polished. At the same time, the length of the circular arc of the force difference 5) is adjusted by adjusting the trailing edge surface (e) of the force difference to a length equal to the shortened pitch interval (Pl), that is, D-α, and the outer cutting edge. (cl, C2
, C3, C4, C5, C6-).
a), a gap with a width equal to the width of the overlap zone (A) and gap zone (B) on the A force difference (3a) and the B force difference (6b) is formed. A laminated blade milling cutter characterized by an arrangement in which a lap zone (A) and a gap zone (B) are all located on the same circumference. 5. Cut 6 grooves on the main body (1) to create a force difference (6a16).
b Force difference (3a, 5
b) Each of the peripheral cutting edges stacked on top of 3c) at a position where the cutting edge (al) of the end face cutting edge with A force difference (6a) is at the cutting start line (m) by forming 3c) with a 0 angle twist. Blade tip (C2
, C3, C4, C5...) 75 Distances to reach the cutting start line (ITI), respectively (C2-m2, C3-m
3, a 4-m 4, C5-m5...) are not in a series relationship corresponding to the unequal stacking spacing of the outer cutting edge,
In addition, at the position where the cutting edge (bl) of the end face cutting edge of B force difference (3b) is at the cutting start line (m), the outer periphery and each cutting edge (1) 2, b3, b4, b5...
) reach the cutting start line (m) (1
)2-m2, l)3-m3, l)4-m4, b5-m5
...) are not in a series relationship in accordance with the uneven lamination spacing of the outer peripheral cutting edge, and the A force difference (3a) and B force difference (3b) are not in the above series relationship. A laminated blade milling cutter according to claim 4, characterized in that the relationship is unequal.
JP12803982A 1982-07-22 1982-07-22 Laminated-blade milling cutter Pending JPS5919618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12803982A JPS5919618A (en) 1982-07-22 1982-07-22 Laminated-blade milling cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12803982A JPS5919618A (en) 1982-07-22 1982-07-22 Laminated-blade milling cutter

Publications (1)

Publication Number Publication Date
JPS5919618A true JPS5919618A (en) 1984-02-01

Family

ID=14974998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12803982A Pending JPS5919618A (en) 1982-07-22 1982-07-22 Laminated-blade milling cutter

Country Status (1)

Country Link
JP (1) JPS5919618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080990A1 (en) * 2015-11-10 2017-05-18 Albert Knebel Holding Gmbh Machining tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080990A1 (en) * 2015-11-10 2017-05-18 Albert Knebel Holding Gmbh Machining tool

Similar Documents

Publication Publication Date Title
CA2679762C (en) End mill
WO1995030506A1 (en) End mill having high and low helical flutes
JPH08141818A (en) Throwaway end mill
EP0689490A1 (en) End mill
JPWO2010023761A1 (en) Throw-away cutting rotary tool
US10220452B2 (en) Formed rotary cutting tool
KR102164730B1 (en) Ball end mill
WO2019044791A1 (en) Tapered reamer
JPH0871824A (en) Composite material machining drill
JPH0453850Y2 (en)
JPH01127214A (en) Rough cutting end mill
JPH07299634A (en) End mill
JP5289617B1 (en) tool
JPS5919618A (en) Laminated-blade milling cutter
JPH0618737Y2 (en) End mill
JP2012157917A (en) End mill
JP3249601B2 (en) Rotary cutting tool with corrugated blade on cylindrical surface
JPS5919619A (en) Laminated-blade milling cutter
Kundrák et al. Some topics in process planning of rotational turning
JPS6094212A (en) End mill
JPH0549408B2 (en)
JP2509299Y2 (en) Rotary cutting tool
JP2002361511A (en) Cutting blade arranging method of cutting tool
WO2022113359A1 (en) End mill
WO2023054574A1 (en) Rotary tool, and method for manufacturing cut workpiece