JPH07299634A - End mill - Google Patents

End mill

Info

Publication number
JPH07299634A
JPH07299634A JP12951394A JP12951394A JPH07299634A JP H07299634 A JPH07299634 A JP H07299634A JP 12951394 A JP12951394 A JP 12951394A JP 12951394 A JP12951394 A JP 12951394A JP H07299634 A JPH07299634 A JP H07299634A
Authority
JP
Japan
Prior art keywords
cutting edge
end mill
cutting
angle
main cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12951394A
Other languages
Japanese (ja)
Inventor
Teruji Sakuramoto
輝治 櫻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP12951394A priority Critical patent/JPH07299634A/en
Publication of JPH07299634A publication Critical patent/JPH07299634A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

PURPOSE:To provide an end mill by which rough cutting and finish cutting can be performed at a single stroke and highly accurate work by highly efficient cutting becomes possible. CONSTITUTION:In an end mill where plural twisted cutting edges are formed on the outer periphery of a tool body 1, at least a single set of cutting edge forms a composite shape composed of a main cutting edge 2 and a sub-cutting edge 3, and the sub-cutting edge 3 is arranged in a succeeding position to the rotational direction of the main cutting edge 2, and since a face angle of the main cutting edge 2 is set at a negative angle and a face angle of the sub- cutting edge 3 is set at a positive angle, rough cutting and finish cutting can be performed at a single stroke, and highly accurate work by highly efficient cutting can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフライス盤やマシニング
センター等の工作機械に用いるエンドミルに関するもの
であり、とくに高能率切削による高精度加工に適するエ
ンドミルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an end mill used for a machine tool such as a milling machine or a machining center, and more particularly to an end mill suitable for high precision machining by high efficiency cutting.

【0002】[0002]

【従来の技術】複合形状の外周切れ刃を有するエンドミ
ルとして、実開平1−114223号(以下、従来品1
という。)に開示されているエンドミルがある。これ
は、荒削り刃と仕上削り刃とを交互に2組以上設け、仕
上削り刃の径を荒削り刃の径より大きく定めると共に、
荒削り刃の前側の分割角を仕上削り刃の前側の分割角よ
り大きく定めたものであり、荒削りと仕上削りとが一工
程で完了するように工夫されたものである。また、類似
の作用のエンドミルとして、実開平5−13451号
(以下、従来品2という。)があり、外周逃げ面の外周
刃稜の後方に超砥粒が電着されたものである。さらに、
特開平6−39620号(以下、従来品3という。)に
開示されているエンドミルがあり、これは該外周切れ刃
に負のすくい角を設け、工具刃部の芯厚を大きくしたこ
とにより、高能率、高精度加工が可能にしたものであ
る。
2. Description of the Related Art As an end mill having an outer peripheral cutting edge of a composite shape, the actual machine No. 1-114223 (hereinafter referred to as conventional product 1
Say. ) Is disclosed. This is to provide two or more sets of rough cutting blades and finishing cutting blades alternately, and determine the diameter of the finishing cutting blade to be larger than the diameter of the rough cutting blade,
The dividing angle on the front side of the rough cutting blade is set to be larger than the dividing angle on the front side of the finishing cutting blade, and is devised so that the rough cutting and the finishing cutting are completed in one step. In addition, as an end mill having a similar action, there is No. 5-13451 (hereinafter referred to as conventional product 2), and superabrasive grains are electrodeposited behind the outer peripheral edge of the outer peripheral flank. further,
There is an end mill disclosed in JP-A-6-39620 (hereinafter, referred to as conventional product 3), which has a negative rake angle on the outer peripheral cutting edge to increase the core thickness of the tool blade portion. It enables high efficiency and high precision processing.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、従来
品1のエンドミルでは、通常のエンドミルと同様に、工
具剛性および刃先剛性が不十分であるため、高能率切削
を行うと、振動、ビビリ等によりチッピング、欠け等を
発生し、加工精度が得られないばかりでなく、折損する
場合もあり、安定性にも問題があった。また、従来品2
のエンドミルも従来品1のものと同様であり、かつ工具
製作上においても、電着処理の工数が余分となり、工具
製作コストがかかる。さらに、従来品3のエンドミルで
は、大きな負のすくい角と大きな芯厚を有しており、切
り込み量の少ない軽切削にのみ、その効果が得られるも
のであり、切り込み量が大きい切削においては、切削抵
抗の増大、およびチップポケットが狭いことによる切り
屑詰まりの発生により、十分な加工精度が得られなかっ
た。
However, in the end mill of the conventional product 1, the tool rigidity and the cutting edge rigidity are insufficient like the normal end mill. Therefore, when high efficiency cutting is performed, vibration and chattering may occur. In addition to chipping, chipping, etc., the processing accuracy could not be obtained, and in some cases, breakage occurred and there was a problem in stability. In addition, conventional product 2
The end mill of No. 1 is the same as that of the conventional product 1, and also in the tool manufacturing, the man-hours of the electrodeposition process become extra and the tool manufacturing cost is required. Furthermore, the end mill of Conventional Product 3 has a large negative rake angle and a large core thickness, and its effect can be obtained only in light cutting with a small cutting amount. In cutting with a large cutting amount, Due to increased cutting resistance and chip clogging due to the narrow chip pocket, sufficient machining accuracy could not be obtained.

【0004】[0004]

【本発明の目的】本発明は以上の問題を解決するために
なされたものであり、一工程で荒切削と仕上げ切削が行
え、かつ高能率切削による高精度加工が可能なエンドミ
ルを提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide an end mill which can perform rough cutting and finish cutting in one step and can perform high precision cutting by high efficiency cutting. To do.

【0005】[0005]

【問題を解決するための手段】本発明は、上記の目的を
達成するために、外周切れ刃の少なくとも1組が主切れ
刃と副切れ刃からなる複合形状を成し、副切れ刃は主切
れ刃の回転方向に対して後続の位置に設けてあり、主切
れ刃のすくい角を負角、副切れ刃のすくい角を正角とし
たものである。また、1組内の主切れ刃と副切れ刃の分
割角が、該主切れ刃とその後続の主切れ刃との分割角の
1/10〜1/3の範囲に設定したものである。さら
に、工具刃部の芯厚を工具刃径に対して70〜90%の
範囲に設定し、かつ副切れ刃の刃溝深さが主切れ刃の刃
溝深さと同等またはそれ以下にしたものである。なおさ
らに、該副切れ刃の回転軌跡における円の直径が工具刃
径と同径またはそれより小さくしても良い。ここで、被
膜としては、対クレーター摩耗に優れるAl、Si、周
期律表第4a、5a、6a族遷移金属の炭化物、窒化
物、酸化物、硼化物、および炭化硼素、硬質窒化硼素、
硬質炭素さらにこれらの固溶体または混合体からなる群
のうちから選ばれた1種または2種以上の硬質物質を1
層または2層以上の多層で0.2〜20μmの厚みで被
覆すれば、より一層の効果を得るという技術的手段を講
じたものである。。また、外周切れ刃と連続してエンド
切れ刃においても、少なくとも一組が主切れ刃と副切れ
刃からなる複合形状を有することが可能である。さら
に、切削量の大きい主切れ刃のみエンドコーナー部に丸
みまたは面取りを設けたり、該エンドコーナー部のすく
い面にフラットな面を設ける等のエンドコーナー部の強
化処理を施すことも可能である。
In order to achieve the above-mentioned object, the present invention has a composite shape in which at least one set of peripheral cutting edges comprises a main cutting edge and a sub cutting edge, and the sub cutting edge is mainly It is provided at a position subsequent to the rotation direction of the cutting edge, and the rake angle of the main cutting edge is a negative angle and the rake angle of the sub cutting edge is a positive angle. Further, the division angle of the main cutting edge and the sub cutting edge in one set is set to be within a range of 1/10 to 1/3 of the division angle of the main cutting edge and the subsequent main cutting edge. Further, the core thickness of the tool blade portion is set within a range of 70 to 90% with respect to the tool blade diameter, and the groove depth of the auxiliary cutting edge is equal to or less than the groove depth of the main cutting edge. Is. Furthermore, the diameter of the circle in the rotation locus of the sub cutting edge may be the same as or smaller than the tool blade diameter. Here, as the coating film, Al, Si, which is excellent in crater wear, carbides, nitrides, oxides, borides, and boron carbide, hard boron nitride of Group 4a, 5a, and 6a transition metals of the periodic table,
Hard carbon and 1 or 2 or more kinds of hard substances selected from the group consisting of solid solutions or mixtures thereof.
It is a technical measure that a further effect can be obtained by coating a layer or a multilayer of two or more layers with a thickness of 0.2 to 20 μm. . Further, even in the end cutting edge which is continuous with the outer circumference cutting edge, at least one set can have a composite shape including a main cutting edge and a sub cutting edge. Further, it is also possible to perform rounding or chamfering on the end corners of only the main cutting edge having a large cutting amount, or to strengthen the end corners by providing a flat surface on the rake face of the end corners.

【0006】[0006]

【作用】本願発明を適用することにより、一工程で荒切
削と仕上げ切削が同時にできるばかりでなく、刃先剛性
の大きい主切れ刃で荒切削、切れ味の良い副切れ刃で仕
上げ切削を行うことになり、高能率、高精度加工が可能
となった。ここで、実際の切削過程を想定してみると、
主切れ刃による切削面が副切れ刃により全て切削される
わけではなく、主切れ刃による加工精度も必要となって
くる。また、副切れ刃による切削は微小切削となり、切
削抵抗の増大に伴う削り残しが問題となるため、副切れ
刃においては切れ味が優先され、微小切削のため、大き
い刃先剛性は必要としない。そこで、本発明は、主切れ
刃のすくい角を負角、副切れ刃のすくい角を正角とし
た。なお、最適すくい角として、主切れ刃は−20゜〜
−3゜、副切れ刃は3゜〜20゜の範囲が望ましく、主
切れ刃の切れ味を確保するために主切れ刃のねじれ角は
40゜〜60゜が望ましい。
By applying the present invention, not only rough cutting and finish cutting can be performed at the same time in one step, but also rough cutting is performed by the main cutting edge having a large edge rigidity and finish cutting is performed by the sub cutting edge with good sharpness. As a result, high efficiency and high precision machining are possible. Here, assuming the actual cutting process,
The cutting surface by the main cutting edge is not completely cut by the sub cutting edge, and the processing accuracy by the main cutting edge is also required. Further, the cutting by the auxiliary cutting edge becomes minute cutting, and there is a problem of uncut residue due to an increase in cutting resistance. Therefore, sharpness is prioritized in the auxiliary cutting edge, and a large cutting edge rigidity is not required for minute cutting. Therefore, in the present invention, the rake angle of the main cutting edge is a negative angle, and the rake angle of the sub cutting edge is a positive angle. The optimum cutting angle is -20 ° for the main cutting edge.
-3 °, the sub cutting edge is preferably in the range of 3 ° to 20 °, and the twisting angle of the main cutting edge is preferably 40 ° to 60 ° in order to secure the sharpness of the main cutting edge.

【0007】さらに、1組内の主切れ刃と副切れ刃の分
割角が、該主切れ刃とその後続の主切れ刃との分割角の
1/10〜1/3の範囲に設定することにより、一層精
度面において向上が図れる。ここで、工具径および刃数
との兼ね合いもあるが、1組内の主切れ刃と副切れ刃の
分割角が、該主切れ刃とその後続の主切れ刃との分割角
の1/10未満になると副切れ刃の切削量が微量になり
すぎ、副切れ刃の効果が減少し、1/3を越えると副切
れ刃の負担が大きくなり、精度面に問題が生じる場合が
ある。また、工具刃部の芯厚を工具刃径に対して70〜
90%の範囲に設定し、かつ副切れ刃の刃溝深さが主切
れ刃の刃溝深さと同等またはそれ以下にすることによ
り、工具本体の剛性を高め、たおれ精度の向上につなが
る。なお、工具本体の剛性とチップポケットの兼ね合い
により、工具刃部の芯厚を工具刃径に対して70〜90
%の範囲に設定し、副切れ刃は微小切削を行うため、剛
性面を重視し、副切れ刃の刃溝深さが主切れ刃の刃溝深
さと同等またはそれ以下にした。
Further, the division angle of the main cutting edge and the sub cutting edge in one set is set within a range of 1/10 to 1/3 of the division angle between the main cutting edge and the subsequent main cutting edge. As a result, the accuracy can be further improved. Here, there is a tradeoff between the tool diameter and the number of blades, but the split angle between the main cutting edge and the sub cutting edge within one set is 1/10 of the split angle between the main cutting edge and the subsequent main cutting edge. If it is less than the above, the cutting amount of the sub-cutting edge becomes too small, and the effect of the sub-cutting edge is reduced. Further, the core thickness of the tool blade portion is 70 to the tool blade diameter.
By setting the groove depth of the auxiliary cutting edge to be equal to or less than the groove depth of the main cutting edge by setting it in the range of 90%, the rigidity of the tool body is increased and the accuracy of sagging is improved. The core thickness of the tool blade portion is 70 to 90 relative to the tool blade diameter due to the balance between the rigidity of the tool body and the tip pocket.
%, The sub cutting edge performs minute cutting, so the rigidity is emphasized, and the groove depth of the sub cutting edge is equal to or less than the groove depth of the main cutting edge.

【0008】さらに、高能率切削の場合、送り速度の設
定を大きくするため、副切れ刃の負担が大きくなり易
く、チッピング、欠け等の異常摩耗が懸念される。そこ
で、副切れ刃の回転軌跡における円の直径が工具刃径と
同径またはそれより小さくすることにより、副切れ刃の
負担を軽減できる。ここで、工具軸方向の送り以外の切
削においては、送り量の影響で副切れ刃の回転軌跡にお
ける円の直径が工具刃径より小さくても、副切れ刃によ
る切削が十分に行うことができる。なおさらに、硬質物
質を被覆したことにより、上記との相乗効果でより一層
高能率、高性能になったのである。なお、高能率切削ば
かりでなく、通常の切削においても高精度加工が可能で
あることはいうまでもない。さらに、調質鋼および耐熱
鋼等の難削材にも対応できる。以下、実施例において、
詳細に説明する。
Further, in the case of high-efficiency cutting, since the setting of the feed rate is increased, the burden on the auxiliary cutting edge is likely to be large, and abnormal wear such as chipping and chipping may occur. Therefore, by making the diameter of the circle in the rotation locus of the auxiliary cutting edge the same as or smaller than the tool blade diameter, the burden on the auxiliary cutting edge can be reduced. Here, in cutting other than the feed in the tool axial direction, even if the diameter of the circle in the rotation locus of the auxiliary cutting edge is smaller than the tool blade diameter due to the feed amount, the cutting by the auxiliary cutting edge can be sufficiently performed. . Furthermore, by coating with a hard substance, synergistic effect with the above results in higher efficiency and higher performance. Needless to say, high precision machining is possible not only in high efficiency machining but also in normal machining. Furthermore, it can be applied to hard-to-cut materials such as heat-treated steel and heat-resistant steel. Hereinafter, in Examples,
The details will be described.

【0009】[0009]

【実施例】図1ないし3に本発明の一実施例を示す。工
具材質に微粒系の超硬合金を用い、さらに硬質物質であ
るTiCN膜を被覆したものであり、工具刃径10m
m、6枚刃(ただし、主切れ刃と副切れ刃を1組として
数えた場合の刃数である。)、右刃右ねじれのエンドミ
ルである。また、工具軸直角断面における主切れ刃のす
くい角を−10゜、副切れ刃のすくい角を5゜であり、
工具刃部の芯厚を工具刃径の86%に当たる8.6mm
に設定したものである。すなわち、主切れ刃の刃溝深さ
は0.7mmとなり、副切れ刃の刃溝深さをそれより小
さい0.4mmに設定したものである。なお、副切れ刃
の回転軌跡における円の直径は工具刃径と同径とした。
1 to 3 show an embodiment of the present invention. Fine tool cemented carbide is used for the tool material, and a TiCN film, which is a hard material, is coated, and the tool blade diameter is 10 m.
m, 6-flute (however, the number of blades when the main cutting edge and the sub cutting edge are counted as one set), the right blade right-handed end mill. The rake angle of the main cutting edge is -10 ° and the rake angle of the auxiliary cutting edge is 5 ° in the cross section perpendicular to the tool axis.
8.6 mm, which corresponds to 86% of the tool blade diameter
Is set to. That is, the groove depth of the main cutting edge is 0.7 mm, and the groove depth of the sub cutting edge is set to 0.4 mm, which is smaller than that. The diameter of the circle in the rotation locus of the auxiliary cutting edge was the same as the tool blade diameter.

【0010】[0010]

【表1】 [Table 1]

【0011】表1に高能率切削における本発明品と従来
品との加工面のタオレ精度と面粗さの比較を示す。被削
材に機械構造用炭素鋼であるS50C材、硬さHB18
0のものを用い、回転数3200rpm、工具軸方向切
り込み切り込み15mm、工具径方向切り込み1mmに
おいて、送り速度をを変化させて側面切削を行った結果
である。従来品1および2は、送り速度500mm/m
inでチッピングを発生し、面粗さが得られないだけで
なく、従来品2においては電着部が脱落し、使用に耐え
ない状態であり、両者とも送り速度750mm/min
で切れ刃欠損により、切削不可となった。また、従来品
3は、送り速度1000mm/minにおいて若干ウネ
リを生じ、各送り速度においてタオレ精度および面粗さ
ともに本発明品の約2倍と劣った。本発明品は、送り速
度1000mm/minまでタオレ精度および面粗さと
もに10μm以下であり、ウネリまたはムシレ等もな
く、良好な加工面であった。
Table 1 shows a comparison between the surface accuracy and the surface roughness of the machined surface of the product of the present invention and the conventional product in high efficiency cutting. S50C material which is carbon steel for machine structure, hardness HB18
It is the result of performing side surface cutting by changing the feed rate at a rotational speed of 3200 rpm, a tool axial direction incision depth of 15 mm, and a tool radial direction incision depth of 1 mm. Conventional products 1 and 2 have a feed rate of 500 mm / m
Not only did chipping occur at in and the surface roughness could not be obtained, but in conventional product 2, the electrodeposited part fell off and it could not be used, both feed speed 750 mm / min
It became impossible to cut due to the lack of cutting edge. Further, the conventional product 3 slightly swelled at the feeding speed of 1000 mm / min, and the tao accuracy and the surface roughness at each feeding speed were inferior to those of the present invention product by about twice. The product of the present invention had a taper accuracy and a surface roughness of 10 μm or less up to a feed rate of 1000 mm / min, and was free from swelling, rustling, and the like, and had a good processed surface.

【0012】[0012]

【発明の効果】以上のように本発明を適用することによ
り、一工程で荒切削と仕上げ切削が行え、かつ高能率切
削による高精度加工が可能となったのである。
As described above, by applying the present invention, rough cutting and finish cutting can be performed in one step, and high-precision machining by high-efficiency cutting is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の一実施例を示し、その側面図
である。
FIG. 1 is a side view showing an embodiment of the present invention.

【図2】図2は、図1の刃部軸直角断面における断面図
である。
FIG. 2 is a cross-sectional view taken along a cross section perpendicular to the blade portion axis of FIG.

【図3】図3は、図2の外周切れ刃部の拡大図である。FIG. 3 is an enlarged view of the outer peripheral cutting edge portion of FIG. 2.

【図4】図4は、従来品1の刃部軸直角断面における断
面図である。
FIG. 4 is a cross-sectional view of a conventional product 1 in a cross section perpendicular to the blade axis.

【図5】図5は、従来品2の刃部軸直角断面における断
面図である。
FIG. 5 is a cross-sectional view of a conventional product 2 in a cross section perpendicular to the blade axis.

【図6】図6は、従来品3の刃部軸直角断面における断
面図である。
FIG. 6 is a cross-sectional view of a conventional product 3 in a cross section perpendicular to the blade axis.

【符号の説明】[Explanation of symbols]

1 工具本体 2 主切れ刃 3 副切れ刃 4 芯厚 5 チップポケット 6 外周にげ面 7 超砥粒電着部 θa 主切れ刃のすくい角 θb 副切れ刃のすくい角 Ha 主切れ刃の刃溝深さ Hb 副切れ刃の刃溝深さ 1 Tool body 2 Main cutting edge 3 Sub cutting edge 4 Core thickness 5 Chip pocket 6 Outer flank surface 7 Superabrasive grain electrodeposited part θa Rake angle of main cutting edge θb Rake angle of sub cutting edge Ha Groove groove of main cutting edge Depth Hb Depth of secondary cutting edge

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 工具本体の外周にねじれを有する複数の
切れ刃が形成されたエンドミルにおいて、該切れ刃の少
なくとも1組が主切れ刃と副切れ刃からなる複合形状を
成し、副切れ刃は主切れ刃の回転方向に対して後続の位
置に設けてあり、主切れ刃のすくい角を負角、副切れ刃
のすくい角を正角としたことを特徴とするエンドミル。
1. An end mill in which a plurality of cutting edges having twists are formed on the outer circumference of a tool body, wherein at least one set of the cutting edges has a composite shape consisting of a main cutting edge and a sub cutting edge. Is an end mill that is provided at a position subsequent to the rotation direction of the main cutting edge, in which the rake angle of the main cutting edge is a negative angle and the rake angle of the sub cutting edge is a positive angle.
【請求項2】 請求項1記載のエンドミルにおいて、1
組内の主切れ刃と副切れ刃の分割角が、該主切れ刃とそ
の後続の主切れ刃との分割角の1/10〜1/3の範囲
であることを特徴とするエンドミル。
2. The end mill according to claim 1, wherein
An end mill characterized in that a split angle between a main cutting edge and a sub cutting edge in a set is within a range of 1/10 to 1/3 of a split angle between the main cutting edge and a subsequent main cutting edge.
【請求項3】 請求項1ないし2記載のエンドミルにお
いて、工具刃部の芯厚を工具刃径に対して70〜90%
の範囲に設定し、かつ副切れ刃の刃溝深さが主切れ刃の
刃溝深さと同等またはそれ以下であることを特徴とする
エンドミル。
3. The end mill according to claim 1, wherein the core thickness of the tool blade portion is 70 to 90% of the tool blade diameter.
And the depth of the groove of the auxiliary cutting edge is equal to or less than the depth of the groove of the main cutting edge.
【請求項4】 請求項1ないし3記載のエンドミルにお
いて、該副切れ刃の回転軌跡における円の直径が工具刃
径と同径またはそれより小さいことを特徴とするエンド
ミル。
4. The end mill according to claim 1, wherein a diameter of a circle in a rotation locus of the auxiliary cutting edge is the same as or smaller than a tool blade diameter.
【請求項5】 請求項1ないし4記載のエンドミルにお
いて、Al、Si、周期律表第4a、5a、6a族遷移
金属の炭化物、窒化物、酸化物、硼化物、および炭化硼
素、硬質窒化硼素、硬質炭素さらにこれらの固溶体また
は混合体からなる群のうちから選ばれた1種または2種
以上の硬質物質を1層または2層以上の多層で0.2〜
20μmの厚みで被覆したことを特徴とするエンドミ
ル。
5. The end mill according to any one of claims 1 to 4, wherein Al, Si, carbides, nitrides, oxides, borides, boron carbide, and hard boron nitride of Group 4a, 5a, and 6a transition metals of the periodic table. , Hard carbon, and one or more hard substances selected from the group consisting of solid solutions or mixtures thereof in a single layer or a multilayer of two or more layers.
An end mill coated with a thickness of 20 μm.
JP12951394A 1994-04-25 1994-04-25 End mill Pending JPH07299634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12951394A JPH07299634A (en) 1994-04-25 1994-04-25 End mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12951394A JPH07299634A (en) 1994-04-25 1994-04-25 End mill

Publications (1)

Publication Number Publication Date
JPH07299634A true JPH07299634A (en) 1995-11-14

Family

ID=15011357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12951394A Pending JPH07299634A (en) 1994-04-25 1994-04-25 End mill

Country Status (1)

Country Link
JP (1) JPH07299634A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001328019A (en) * 2000-05-23 2001-11-27 Mitsubishi Heavy Ind Ltd Turbine rotor blade groove cutting tool and turbine rotor blade groove cutting method
JP2007229858A (en) * 2006-02-28 2007-09-13 Kyocera Corp Cutting tool
EP1971456A2 (en) 2006-01-04 2008-09-24 Sgs Tool Company Rotary cutting tool
JP2010120099A (en) * 2008-11-17 2010-06-03 Mitsubishi Materials Corp End mill and method for manufacturing the same
US20150209876A1 (en) * 2012-10-10 2015-07-30 Hufschmied Zerspanungssysteme Gmbh Machining Tool for Machining and Method for Cutting a Component Made of Fiber-Reinforced Plastics
US20150209877A1 (en) * 2012-10-10 2015-07-30 Hufschmied Zerspanungssysteme Gmbh Machining Tool for Machining and Method for Cutting a Component Made of Fiber-Reinforced Plastics
EP1120246B2 (en) 2000-01-27 2016-09-07 FUJIFILM Corporation Method of plate-making a planographic printing plate
JP2017113838A (en) * 2015-12-24 2017-06-29 京セラ株式会社 End mill and manufacturing method for cutting workpiece
US10137509B2 (en) 2006-01-04 2018-11-27 Kyocera Sgs Precision Tools, Inc. Rotary cutting tool
JP2019162698A (en) * 2018-03-20 2019-09-26 住友電工ハードメタル株式会社 Drill
EP3782752A1 (en) * 2019-08-05 2021-02-24 Gühring Kg End mill

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120246B2 (en) 2000-01-27 2016-09-07 FUJIFILM Corporation Method of plate-making a planographic printing plate
JP2001328019A (en) * 2000-05-23 2001-11-27 Mitsubishi Heavy Ind Ltd Turbine rotor blade groove cutting tool and turbine rotor blade groove cutting method
EP1971456A2 (en) 2006-01-04 2008-09-24 Sgs Tool Company Rotary cutting tool
US10137509B2 (en) 2006-01-04 2018-11-27 Kyocera Sgs Precision Tools, Inc. Rotary cutting tool
JP2007229858A (en) * 2006-02-28 2007-09-13 Kyocera Corp Cutting tool
JP2010120099A (en) * 2008-11-17 2010-06-03 Mitsubishi Materials Corp End mill and method for manufacturing the same
JP2015530273A (en) * 2012-10-10 2015-10-15 ホフシュミット ツェルシュパヌングシステーメ ゲーエムベーハー Machining tool and method for cutting fiber-reinforced plastic parts
US20150209877A1 (en) * 2012-10-10 2015-07-30 Hufschmied Zerspanungssysteme Gmbh Machining Tool for Machining and Method for Cutting a Component Made of Fiber-Reinforced Plastics
US9440296B2 (en) * 2012-10-10 2016-09-13 Hufschmied Zerspanungssysteme Gmbh Machining tool for machining and method for cutting a component made of fiber-reinforced plastics
US9452479B2 (en) * 2012-10-10 2016-09-27 Hufschmied Zerspanungssysteme Gmbh Machining tool for machining and method for cutting a component made of fiber-reinforced plastics
US20150209876A1 (en) * 2012-10-10 2015-07-30 Hufschmied Zerspanungssysteme Gmbh Machining Tool for Machining and Method for Cutting a Component Made of Fiber-Reinforced Plastics
JP2017113838A (en) * 2015-12-24 2017-06-29 京セラ株式会社 End mill and manufacturing method for cutting workpiece
JP2019162698A (en) * 2018-03-20 2019-09-26 住友電工ハードメタル株式会社 Drill
EP3782752A1 (en) * 2019-08-05 2021-02-24 Gühring Kg End mill

Similar Documents

Publication Publication Date Title
JP5475808B2 (en) Rotating tools and cutting inserts for cutting
JP2751873B2 (en) Indexable insert for milling and milling cutter using the same
US20070172321A1 (en) Ball endmill
US5322394A (en) Highly stiff end mill
JP2007030074A (en) Radius end mill and cutting method
WO2015068824A1 (en) Radius end mill, and cutting method
JP5614511B2 (en) Ball end mill and insert
KR102021271B1 (en) Interchangeable Blade Cutting Tools and Inserts
JPH07299634A (en) End mill
JPH08276311A (en) Spiral end mill and its manufacture
JP2003039223A (en) Ball end mill and processing method using the same
CN109414771B (en) Cutting insert and indexable insert type rotary cutting tool
JP3337804B2 (en) End mill
JP6086179B1 (en) Replaceable blade cutting tool and insert
KR102316725B1 (en) End mill Having Cutting Tooth Made of Polycrystalline Diamond
JPH06335816A (en) Minimum diameter end mill
JP2004195563A (en) Edge replaceable rotary tool and insert therefor
JP3036343B2 (en) End mill
JPH0557519A (en) End mill for cutting high hardness material
JPH0513451Y2 (en)
JPH0621609Y2 (en) End mill
JPH04146015A (en) Throw-away tip and end mill
JPH05228714A (en) Ball end mill
JPH03161280A (en) Tool for piercing hard brittle material
US20240109137A1 (en) Rotary tool and method for manufacturing machined product