JPS59195992A - Measurement of strength and deformation characteristics of soil around boring hole - Google Patents

Measurement of strength and deformation characteristics of soil around boring hole

Info

Publication number
JPS59195992A
JPS59195992A JP7122583A JP7122583A JPS59195992A JP S59195992 A JPS59195992 A JP S59195992A JP 7122583 A JP7122583 A JP 7122583A JP 7122583 A JP7122583 A JP 7122583A JP S59195992 A JPS59195992 A JP S59195992A
Authority
JP
Japan
Prior art keywords
pressure
ground
measuring
strength
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7122583A
Other languages
Japanese (ja)
Other versions
JPH0336119B2 (en
Inventor
博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORI GIJUTSU KENKYUSHO KK
Original Assignee
MORI GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORI GIJUTSU KENKYUSHO KK filed Critical MORI GIJUTSU KENKYUSHO KK
Priority to JP7122583A priority Critical patent/JPS59195992A/en
Publication of JPS59195992A publication Critical patent/JPS59195992A/en
Publication of JPH0336119B2 publication Critical patent/JPH0336119B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はポーリング孔周辺の土の強度と変形特性をひず
み制御によって測定する方法、更に詳しくは、地中に膨
張可能な測定管を設置し、膨らませて地盤に圧力を加え
、その時の圧力と膨張の度合から地盤の強さ等の情報を
得る試験(孔内水平載荷試験)におけるポーリング孔周
辺の土の強度と変形特性を測定する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention describes a method for measuring the strength and deformation characteristics of soil around a polling hole by strain control, and more specifically, a method for measuring the strength and deformation characteristics of soil around a polling hole, more specifically, by installing an inflatable measuring tube in the ground and inflating it to apply pressure to the ground. In addition, it relates to a method for measuring the strength and deformation characteristics of soil around a poling hole in a test (in-hole horizontal loading test) that obtains information such as the strength of the ground from the pressure and degree of expansion at that time.

従来この試験においては、例えば2分の賂隔をおいて段
階的に一定の割合で荷重を増加してゆく応力制御法が用
いられている。第1図くイ)(ロ)はその試験を行なう
為の装置の概念を示したものである。圧力源(ガスボン
ベ)(1)からのガス圧は減圧器(4)を経て容積計(
2〉にかけられ、容積計より地中の測定管に脱気水(3
)を圧送する。測定管に送られた脱気水(3ンは内側の
ゴムチューブ(7)を膨らませて地盤に圧力を加える。
Conventionally, in this test, a stress control method has been used in which the load is increased stepwise at a constant rate at intervals of, for example, 2 minutes. Figures 1(a) and 1(b) show the concept of the equipment for conducting the test. The gas pressure from the pressure source (gas cylinder) (1) passes through the pressure reducer (4) and reaches the volumetric meter (
2), and degassed water (3
) is pumped. The degassed water (3) sent to the measuring tube inflates the inner rubber tube (7) and applies pressure to the ground.

このとぎの圧力を地上の圧力謂(5)で、又膨張の度合
を容積計(2)で夫々読みとると共に地盤の強さ等の情
報を測定管に組込んだレンサー等によつで取得する。測
定管の外側のゴムチューブ(7)は減圧器(6)を経て
予めガス圧で膨らまゼるようにしている。図中の減圧器
aQらレギュレーター(4)を操作づ−ることにJ:つ
て任意の荷重を載荷することができる。このレギュレー
ターを操作して2分間隔て任意の荷車づつ1(9加して
ゆくのである3、この方法はその特性に合わけた解析法
が確立されており、広く普及しており+4jj稀な実例
と共に大きく基礎工学に貢u;シている。
The pressure at this point is read by the ground pressure (5), the degree of expansion is read by the volume meter (2), and information such as the strength of the ground is obtained by a lenser etc. built into the measuring tube. . The rubber tube (7) on the outside of the measuring tube is inflated with gas pressure through a pressure reducer (6). Any load can be applied to the pressure reducer aQ in the figure by operating the regulator (4). This regulator is operated to add 1 (9) to any cart at 2-minute intervals.3 This method has an established analysis method tailored to its characteristics, and is widely used. It has greatly contributed to basic engineering with practical examples.

又、第1図(ロ)は外側のゴムチューブを用いず、従っ
て減圧器(6)及びこれよりの圧力ガス回路を有しない
点を除いては第1図(イ)のそれと同様である。
Further, FIG. 1(B) is similar to FIG. 1(A) except that the outer rubber tube is not used and therefore the pressure reducer (6) and the pressure gas circuit connected thereto are not provided.

しかし近年の土質力学の発展に伴い、さらに多くの地盤
情報が必用になった。本発明法はこういった要求に答え
るために開発されたーしのである3゜本発明法は、測定
管の膨張の専11合を一定に保ちながら膨張させてゆく
もので、地中に生じる応力(ま適当な膨張度間隔で測定
する 即ち本発明の要旨する所は地中に膨張可能な測定管を設
置し、これを膨らませて地盤に圧力を加えそのとぎの圧
力と膨張の度合から地盤゛の強さ等の情報を得る試験方
法において、(a)シリンダーポンプを使用して該測定
管にそれを膨らませるための水圧を与えるために一定速
度で送水しあるいは逆に測定管から排水する過程、(b
 )自動制御装置と自動記録装置を使用して前記の送水
、排水速度を制御すると共に測定管の圧力、測定管周辺
の地盤の間隙水圧および測定管の側方変形を同時に記録
づる過程、(C)測定管に内蔵するj土力センサーによ
って上記のシリンダーポンプから測定管に送られる水の
水頭損失の影響を受けることなく測定管の水圧を電気信
号に変換する過程を包含している。
However, with the recent development of soil mechanics, even more ground information has become necessary. The method of the present invention was developed to meet these demands.3゜The method of the present invention expands the measuring tube while keeping the expansion ratio constant. The gist of the present invention is to install an inflatable measuring tube in the ground, apply pressure to the ground by inflating it, and then measure the stress in the ground based on the pressure and degree of expansion. In the test method for obtaining information such as the strength of ゛, (a) a cylinder pump is used to pump water at a constant rate into the measuring tube to provide water pressure to inflate it, or conversely to drain water from the measuring tube; process, (b
) A process of controlling the water supply and drainage speeds and simultaneously recording the pressure of the measuring pipe, the pore water pressure of the ground around the measuring pipe, and the lateral deformation of the measuring pipe using an automatic control device and an automatic recording device, (C ) It includes the process of converting the water pressure of the measuring pipe into an electrical signal by the earth force sensor built into the measuring pipe without being affected by the head loss of the water sent from the cylinder pump to the measuring pipe.

以下に本発明を図面に示す実施例によって証明する。The present invention will be demonstrated below by means of examples shown in the drawings.

第2図において(10)はシリンターポンプでこの中に
1;2気された水が入っている。この水が圧力媒体にな
ると同時にその量の変化を計測づ゛ることによって測定
管の膨張の度合がわかる。
In Fig. 2, (10) is a cylindrical pump, which contains 1:2 aerated water. At the same time that this water becomes a pressure medium, the degree of expansion of the measuring tube can be determined by measuring the change in its amount.

ポンプ(10)のビス1〜ンはモーター(8)によって
駆動されるが、このモーターの回転、従ってピストンの
移動速度を一定に保つことによりぶ11定管への注水3
!度を一定に保つことができる。地中に生じる応力は測
定管′の内側に生じた圧力から補正を施こして求められ
る。Illll定向+1111の圧力を測定するには、
シリンターポンプ(10)内の圧力を測定し、それにシ
リンターポンプど、測定管との高低差に由来する水頭差
を補正すれば求められるのであるが、実際(こは常にシ
リンダーポンプ< 10)から定量の脱気水が吐出され
ているために、両者の間の圧力差は水頭差だけでなく、
従ってそのような方法は適当ではない3.そこで測定管
の内側に作用する圧力をIll定づるために、測定色に
電気式圧カドランステユーザー〈11)を内蔵した。
The screws 1 to 3 of the pump (10) are driven by a motor (8), and by keeping the rotation of this motor, and therefore the moving speed of the piston, constant, water injection into the pipe 11 is controlled.
! The temperature can be kept constant. The stress generated underground is determined by correcting the pressure generated inside the measuring tube. To measure the pressure at Illll direction +1111,
It can be found by measuring the pressure inside the cylinder pump (10) and correcting the difference in water head due to the height difference between the cylinder pump and the measuring pipe, but in reality (this is always cylinder pump < 10). Since a fixed amount of degassed water is discharged from the two, the pressure difference between the two is not only the head difference;
Therefore, such a method is not appropriate3. Therefore, in order to determine the pressure acting on the inside of the measuring tube, an electric pressure quadrant user (11) was built into the measuring tube.

こうづ−ることによって圧ツノ測定に関り−る誤差を防
ぐことができる。
By doing this, errors related to pressure horn measurement can be prevented.

尚(13)は測定管の金属性シリンダ、(12)はその
ゴムチューブでポンプ(10)からの圧力水によって膨
まされる。(9〉は圧力を自動記録する圧力インジケー
タである。
Note that (13) is the metal cylinder of the measuring tube, and (12) is its rubber tube, which is inflated by pressure water from the pump (10). (9> is a pressure indicator that automatically records the pressure.

従来の段階式制御法と比較して本発明“のひずみ制御法
の利点は、まず第一にその試験時間にある。
The advantages of the strain control method according to the invention compared to conventional stepwise control methods lie primarily in its test time.

孔内水平載荷試験は原則として、膨張の度合がある程度
に達するまで載荷が続けられる。従来法の場合、地盤が
強ければ載荷重の増分を人込く、弱ければ小さくする等
の手段を用いてできるだけ試験口り間を地Q8の強度に
かかわらず、一定に覆るように試みられている。試験時
間を一定にづることは、荷重が作用している状態での地
盤の条件を判断する上で工学的にきわめて重要なことだ
からである。しかし地盤の強度は試験を行なう前には不
明であるから事実上、上記の手段はあまり適切な方法で
はない。ひずみ制御法の場合膨張速度が既知であるから
、任意の膨張になるまでの時間が事前にわかっており、
又、膨張速度を調節づれば任意の膨張度に達するまでの
時間を自由に設定することができる。従って地盤の強度
に′JIj!関係に定時間−C試験を実施することがで
きる。
In principle, in the horizontal hole loading test, loading is continued until a certain degree of expansion is reached. In the case of the conventional method, an attempt is made to cover the test opening as much as possible regardless of the strength of the ground by increasing the load increment if the ground is strong or reducing it if it is weak. There is. This is because setting a constant test time is extremely important from an engineering perspective in determining the ground conditions under load. However, since the strength of the ground is unknown before the test is carried out, the above method is not very appropriate in practice. In the case of the strain control method, the expansion rate is known, so the time required to reach a desired expansion is known in advance.
Furthermore, by adjusting the expansion rate, the time required to reach a desired degree of expansion can be freely set. Therefore, the strength of the ground is 'JIj! A fixed time-C test can be carried out in relation to this.

枯1牛土地盤の場合この試g5B峙間を比較的短時間に
すると工学的に意味のあるパ非排水条イ」″という条件
で地!’f(lに荷車を作用さゼることどなり、その結
果は“非排水条件下(こおける結果“′ど条件を明確に
することができ工学的に重要な情報をもたらす一0従来
法においてはこの試、験肋間か一定せず条件があいまい
であった。
In the case of a dry land board, it is engineeringly meaningful to make this test G5B relatively short time, and it is a non-drainage row. , the results can clarify the conditions under ``undrained conditions'' and provide important engineering information. Met.

従来法の場合、荷車を2分間隔℃段階的に載荷してゆく
ために、荷重を増加した瞬間と2分間、そのイ苛重を保
ちつつ(プる間とC゛は、地盤に牛しる状態が厳密には
!5!I!なる。本発明のひずみ制御η、の場合は連続
的に同じ速度で変形が強制的に牛しる1;め比較的短時
間じ状態で試験が行なわれることになる。こういった違
いによって、1qられる結果にも差か見られ、第3図に
示す−ようにひづ゛みが小さいところでピークの強度が
生じている。このピーク強度は工学的に有意4f情報で
ある。(14)はピーク強度部、(15)は残留強度部
である。
In the case of the conventional method, in order to load the cart in stages at 2-minute intervals, the load is maintained at the same level for 2 minutes (the moment when the load is increased and the time when the cart is placed on the ground is Strictly speaking, the state in which the deformation occurs is !5!I!.In the case of the strain control η of the present invention, the deformation is forced to occur continuously at the same speed. Due to these differences, there are differences in the 1q results, and as shown in Figure 3, a peak intensity occurs where the strain is small.This peak intensity is based on the engineering is significant 4f information. (14) is the peak intensity part, and (15) is the residual intensity part.

従来法の様な荷重制御方法の場合、荷重の増加rlがあ
らかしめ決められているためにピークの強度を正確に求
めることかできないたりてなく、ピーク強度に達した後
、急激に地四3にぜん断破壊と呼ばるれ変形が生し、そ
の状態で地中に°生じている残留強度と呼はれる強さを
計測することかできない。
In the case of conventional load control methods, since the load increase rl is predetermined, it is not possible to accurately determine the peak intensity, and after reaching the peak intensity, the A deformation called shear failure occurs, and in this state it is impossible to measure the strength called residual strength that occurs underground.

しかし本発明のひずみ制御法の揚台、試験を通して常に
同じ変形速度で試験が行なわれるために、ピークを示し
た後のけん断面破壊下にお(プる残留強度をill定す
ることが可能ある。第3図にその違いが表われている。
However, since the strain control method of the present invention uses the lifting platform and the test is always conducted at the same deformation rate throughout the test, it is possible to determine the residual strength (under the shear plane failure) after reaching the peak. The difference is shown in Figure 3.

上記のように本発明のひずみ制御法による孔内水平載荷
試験は、(つれた特徴をもつ試験法である。
As mentioned above, the in-hole horizontal loading test using the strain control method of the present invention is a test method with complicated characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〈イ)(ロ)は従来の段階式荷重制御法による孔
内水平載荷試験を示す各例示図、第2図は本発明のひず
み制御法による孔内水平載荷試験を示ず例示図、第3図
は従来法と本発明法によって得られる地盤情報の比較図
表である。 8、・・・・・・・・・モータ 9、・・・・・・・・・圧力インジケータ10、・・・
・・・・・・シリンターポンプ11、・・・・・・・・
・1モカトランスデューリ−−12、・・・・・・・・
・ゴムデユープ13、・・・・・・・・・金属性シリン
ダ14、・・・・・・・・・ピーク強度部15、・・・
・・・・・・残留強度部 用3図において ■ ・・・・・・・・・段階式荷TR測定法(従来法)
・ ・・・・・・・・・ひずみ制御法(本発明法)11 第1図 第1図 第2図 第3図 ε6 in%
Figure 1 (a) and (b) are illustrative diagrams showing the horizontal loading test in the hole using the conventional stepwise load control method, and Figure 2 is an illustrative diagram showing the horizontal loading test in the borehole using the strain control method of the present invention. , FIG. 3 is a comparison chart of ground information obtained by the conventional method and the method of the present invention. 8,...Motor 9,...Pressure indicator 10,...
・・・・・・Cylinder pump 11,・・・・・・・・・
・1 Mocha Transduly--12,・・・・・・・・・
・Rubber duplex 13,...Metallic cylinder 14,...Peak strength section 15,...
......In Figure 3 for the residual strength section■ ......Stepwise load TR measurement method (conventional method)
・・・・・・・・・・Strain control method (method of the present invention) 11 Fig. 1 Fig. 1 Fig. 2 Fig. 3 ε6 in%

Claims (1)

【特許請求の範囲】[Claims] (1)地中に膨張可能な測定管を設置し、これを膨らま
ゼて地盤に圧力を加えそのとき゛の圧力と膨張の度合か
ら地盤の強さ等の情報を得る試1験方法において、<a
 )シリンダーポンプを使用して該測定管にそれを膨ら
ませる水圧を与えるために一定速度で送水し、あるいは
逆に測定憔から排水する過程、(b)自動制御装置と自
動記録装置を使用して前記の送水、排水速度を制御する
と共に測定管の圧力、測定管周辺の地盤の間隙水圧d3
よび測定管の側方変形を同時に記録する過程、(C)測
定管に内蔵する圧力センサーによって上記のシリンダー
ポンプがら測定管に送られる水の水頭損失の影■゛を受
りることなく測定管の水圧を電気信号に変換する過程を
包含していることを特徴とするひずみ制御法によりポー
リング孔周辺の土の強度と変形特性を測定する方法。
(1) In test method 1, an inflatable measuring tube is installed in the ground, and the tube is inflated to apply pressure to the ground. At that time, information such as the strength of the ground is obtained from the pressure and degree of expansion. a
(b) using a cylinder pump to pump water at a constant rate to give water pressure to the measuring tube to inflate it, or conversely to drain water from the measuring tube; (b) using an automatic control device and an automatic recording device; In addition to controlling the water supply and drainage speeds mentioned above, the pressure of the measuring pipe and the pore water pressure of the ground around the measuring pipe d3
(C) The pressure sensor built into the measuring tube simultaneously records the measurement tube's lateral deformation. A method for measuring the strength and deformation characteristics of soil around a poling hole using a strain control method characterized by including the process of converting water pressure into an electrical signal.
JP7122583A 1983-04-22 1983-04-22 Measurement of strength and deformation characteristics of soil around boring hole Granted JPS59195992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7122583A JPS59195992A (en) 1983-04-22 1983-04-22 Measurement of strength and deformation characteristics of soil around boring hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7122583A JPS59195992A (en) 1983-04-22 1983-04-22 Measurement of strength and deformation characteristics of soil around boring hole

Publications (2)

Publication Number Publication Date
JPS59195992A true JPS59195992A (en) 1984-11-07
JPH0336119B2 JPH0336119B2 (en) 1991-05-30

Family

ID=13454519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7122583A Granted JPS59195992A (en) 1983-04-22 1983-04-22 Measurement of strength and deformation characteristics of soil around boring hole

Country Status (1)

Country Link
JP (1) JPS59195992A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101444A (en) * 1987-10-14 1989-04-19 Tokyo Electric Power Co Inc:The Testing method for impulse response of ground or the like and suspension type layer inspector
JPH02261116A (en) * 1989-03-30 1990-10-23 Oyo Corp Loading test method and its device on soft ground
JP2015218514A (en) * 2014-05-20 2015-12-07 応用計測サービス株式会社 Hole inner cargo loading test device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101444A (en) * 1987-10-14 1989-04-19 Tokyo Electric Power Co Inc:The Testing method for impulse response of ground or the like and suspension type layer inspector
JPH02261116A (en) * 1989-03-30 1990-10-23 Oyo Corp Loading test method and its device on soft ground
JP2015218514A (en) * 2014-05-20 2015-12-07 応用計測サービス株式会社 Hole inner cargo loading test device

Also Published As

Publication number Publication date
JPH0336119B2 (en) 1991-05-30

Similar Documents

Publication Publication Date Title
US5992223A (en) Acoustic method for determining the static gel strength of a cement slurry
US4392376A (en) Method and apparatus for monitoring borehole conditions
US4453595A (en) Method of measuring fracture pressure in underground formations
US2283429A (en) Method of and apparatus for determining the location of water strata in wells
US7753118B2 (en) Method and tool for evaluating fluid dynamic properties of a cement annulus surrounding a casing
US4515010A (en) Stuck point indicating device with linear sensing means
US10732086B2 (en) Device and method for measuring magnitude of seepage force and its influence on effective stress of formation
US2607222A (en) Formation tester
CN1266142A (en) Method for obtaining survey of leakage and structum integrity by finite downhole pressure test
US2905247A (en) Wire line liquid or gas formation thief
NO871381L (en) PROCEDURE AND APPARATUS FOR PERFORMANCE OF MEASUREMENTS CHARACTERISTIC OF GEOLOGICAL FORMS.
US4598591A (en) Apparatus for determining the variations in volume of an expandable deformable cell embedded in soil and subjected to internal pressure gradients
US2171840A (en) Method for determining the position of cement slurry in a well bore
JPS59195992A (en) Measurement of strength and deformation characteristics of soil around boring hole
US4793413A (en) Method for determining formation parting pressure
US3600938A (en) Stress relaxation gage
US4043192A (en) Apparatus for providing directional permeability measurements in subterranean earth formations
US4660415A (en) Method for determining at least one magnitude characteristic of a geological formation
JPH10505917A (en) Flow meter
FR2442956A1 (en) METHOD AND DEVICE FOR MEASURING THE DEVIATION OF THE REAL AXIS OF A BOREHOLE IN RELATION TO THE PLANNED AXIS
JP2772832B2 (en) In-situ test method and test apparatus for determining Young&#39;s modulus of non-viscous ground due to in-situ ground freezing
US3065633A (en) Well surveying apparatus
US6058771A (en) Determination of fluid influx or efflux
JPH0819663B2 (en) Apparatus and method for in-situ measurement of ground differential characteristics
FR2241686A1 (en) Gyroscopic method of testing alignment of a borehole - wherein a boring pipe instrumentation case signals azimuth and inclination