JPH01101444A - Testing method for impulse response of ground or the like and suspension type layer inspector - Google Patents

Testing method for impulse response of ground or the like and suspension type layer inspector

Info

Publication number
JPH01101444A
JPH01101444A JP62259393A JP25939387A JPH01101444A JP H01101444 A JPH01101444 A JP H01101444A JP 62259393 A JP62259393 A JP 62259393A JP 25939387 A JP25939387 A JP 25939387A JP H01101444 A JPH01101444 A JP H01101444A
Authority
JP
Japan
Prior art keywords
hammer
suspended
striking
impact
accelerometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62259393A
Other languages
Japanese (ja)
Other versions
JPH0769430B2 (en
Inventor
Hideyo Suzuki
英世 鈴木
Koreyuki Nozawa
野沢 是幸
Kokichi Kikuchi
菊地 宏吉
Makoto Fujieda
藤枝 誠
Kimio Ogura
小倉 公雄
Yoshinori Sone
好徳 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUDEN SEKKEI KK
Oyo Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
TOUDEN SEKKEI KK
Tokyo Electric Power Co Inc
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUDEN SEKKEI KK, Tokyo Electric Power Co Inc, Oyo Corp filed Critical TOUDEN SEKKEI KK
Priority to JP62259393A priority Critical patent/JPH0769430B2/en
Publication of JPH01101444A publication Critical patent/JPH01101444A/en
Publication of JPH0769430B2 publication Critical patent/JPH0769430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/60Platinum group metals with zinc, cadmium or mercury

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To easily grasp the properties of a material by striking an impact hammer wherein an accelerometer is incorporated with a solenoid hammer and then striking an object material with the impact hammer and finding the current response waveform of the accelerometer. CONSTITUTION:The solenoid hammer 5 suspended by leaf springs 4 is put in operation by applying a high pulse voltage to a coil 7 to strike the impact hammer 3 suspended by leaf springs 2, thereby striking the object material 6 with the impact hammer 3. At this time, the output waveform of the acceleromter 1 incorporated in the impact hammer 3 is found. The amplitude Pmax and pulse width W in the section of the impact behavior between the impact hammer 3 and object body 6 vary according to the properties of the object material 6, so the relation between the ratio of those values and property values of various materials is found previously and the properties of the material 6 are estimated from the measured ratio.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はゴム、コンクリート、岩石といった各種材料(
地盤等という)の物性を知る打撃応答試験方法並びにこ
の方法を検層の分野に適用する場合(使用する懸垂型検
層器に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to various materials such as rubber, concrete, and rock.
This article concerns the impact response test method for determining the physical properties of the ground, etc., and the application of this method to the field of well logging (suspended well logging equipment used).

〈従来の技術〉 硬さ情報を計測する機器として周知のショア硬ざ試験機
では、先端にほぼ球面のダイヤモンドをもつハンマーを
試料に落下させて、跳ね上りの高さを目測乃至はダイヤ
ルゲージで計測している。また、コンクリート材料や岩
石の強度あるいは台盤の変形係数や弾性係数を推定する
とき利用されるほか、岩盤の定量分類をするうえでも用
いられているシュミット・ロックハンマー(商標名)も
ハンマーによる衝撃作用時における反発度Rを自動記録
するようになっている。更に、エコーチップ(商標名)
と呼ばれる携帯用万能硬さ試験機では、ハンマーに内蔵
した磁石と、周囲に配設したコイルによって、供試体の
表面をハンマーで打撃したときの打撃速度V。と反発速
度■から、硬さ値“’L”(V/voの値)を求めてい
る。硬さ値“L 11の値は、供試体の硬さが硬ければ
反発速度Vが増すから大きくなるし、同じ硬さなら、弾
性係数の小さい供試体の方が大きな値を現わすことにな
る。
<Conventional technology> In the Shore hardness tester, which is well known as a device for measuring hardness information, a hammer with a nearly spherical diamond at the tip is dropped onto the sample, and the height of the bounce is measured visually or with a dial gauge. It is being measured. In addition, the Schmidt Rock Hammer (trade name), which is used to estimate the strength of concrete materials and rocks or the deformation coefficient and elastic modulus of bedrock, as well as to quantitatively classify rock masses, is also used to estimate the impact of the impact caused by a hammer. The degree of repulsion R during action is automatically recorded. In addition, Echo Chip (trade name)
A portable universal hardness tester called ``Difficulty Tester'' uses a magnet built into the hammer and a coil placed around it to measure the striking speed V when the surface of the specimen is struck with the hammer. The hardness value "'L" (value of V/vo) is obtained from The hardness value "L 11" becomes larger if the hardness of the specimen is harder because the repulsion velocity V increases, and if the hardness is the same, a specimen with a smaller elastic modulus will have a larger value. Become.

一方、岩盤等の物性を把握するため実施される原位置試
験にあっては、ポーリングした凡打゛  内に速度検層
用ゾンデを吊り降ろして、ゾンデ内部に設けた可動体を
運動させることにより、それに接している孔内水を介し
て孔壁面に娠源力を作用させ、そのときの地層の弾性波
伝播速度を測定する所謂懸垂型検層器が公知である。
On the other hand, in in-situ tests conducted to understand the physical properties of rock, etc., a speed logging sonde is suspended inside a polled well and a movable body installed inside the sonde is moved. A so-called suspended well logger is known that measures the propagation velocity of elastic waves in the stratum by applying a source force to the borehole wall surface through the borehole water in contact with the borehole wall surface.

この種のゾンデは振源と受振器との間に膨張可能なフィ
ルターチューブを設け、これによって検出対象である波
動が孔内水柱を伝わる波動により妨害されたりマスクさ
れたりしないようににしている。
This type of sonde uses an inflatable filter tube between the source and the geophone to ensure that the waves being detected are not blocked or masked by waves traveling through the borehole water column.

〈発明が解決しようとする問題点〉 上記したシュミット・ロックハンマーによる反発度R、
エコーチップによる硬さ値it L reといった打撃
応答値は、既往の測定例から、対象材料の識別及び物性
を評価するうえで有効な指標と一応はいえる。しかし、
より広範囲にわたる対象材料の物性等をより容易に把握
したいという観点からすると、充分満足できるものとは
いえないきらいがあったから、本発明では反発度Rや硬
さ値°“L etとは違った新規且つより有効な指標値
をた易く得ることができる打撃応答試験方法を提供する
ことを、その目的としてなされたものである。
<Problem to be solved by the invention> The degree of repulsion R by the above-mentioned Schmidt rock hammer,
Based on past measurement examples, it can be said that the impact response value such as the hardness value it L re measured by the echo chip is an effective index for identifying and evaluating the physical properties of the target material. but,
From the point of view of wanting to more easily understand the physical properties of a wider range of target materials, this may not be fully satisfactory, so in the present invention, the repulsion degree R and the hardness value are different from the The object of this invention is to provide a impact response test method that can easily obtain new and more effective index values.

また、この試験方法を前述した速度検層、それも孔内水
がある孔井内で適用可能とするには、打撃ハンマー廻り
の隙間から水が浸入しないように可撓性シー1〜で水封
する必要があるが、この場合、可撓性シートに対して外
側は水頭相当の水圧がかかるのに、内側は圧力がかから
ないことになるから、打撃ハンマーによる実質的な打撃
力は水圧に抗して打撃が行なわれる分、減少を余儀なく
される不都合を生じてしまう。本発明の第2の発明であ
る懸垂型検層器は、かかる不都合の解消を意図してなさ
れたものである。
In addition, in order to make this test method applicable to the above-mentioned velocity logging, especially in a well where there is water in the borehole, it is necessary to seal the water with a flexible seam 1 to prevent water from entering through the gap around the striking hammer. In this case, water pressure equivalent to the water head is applied to the outside of the flexible sheet, but no pressure is applied to the inside, so the actual impact force from the impact hammer resists the water pressure. This creates an inconvenience in that the number of hits is forced to decrease as the number of hits is increased. The second aspect of the present invention, a suspended type well logger, is intended to eliminate such inconveniences.

く問題点を解決するための手段〉 本発明になる地盤等の打撃応答試験方法は、内部に加速
度計が組み込まれ且つ板バネで吊った打撃ハンマーを、
同様に板バネで吊ったソレノイドハンマーで叩いて該打
撃ハンマーによって対象材料を直接打撃し、そのときの
上記加速度計による打撃応答波形を振幅とパルス幅の測
定が容易な波形となし、得られた振幅・パルス幅比の値
をもって対象材料の指標値とするものである。
Means for Solving the Problems> The method for testing the impact response of ground, etc. according to the present invention uses a percussion hammer that has an accelerometer incorporated inside and is suspended by a leaf spring.
Similarly, a solenoid hammer suspended by a leaf spring was used to directly impact the target material, and the impact response waveform measured by the accelerometer at that time was a waveform whose amplitude and pulse width could be easily measured. The value of the amplitude/pulse width ratio is used as an index value for the target material.

また、本発明になる懸垂型検層器は、孔井内に懸垂され
る検層具で必って、孔井内壁面を押−圧する固定部と、
孔井内壁面を直接打撃する打撃部と、孔井内壁面の直接
打撃によって生じた弾性波を検出する受振部を有し、そ
の打撃部は、加速度計が組み込まれ且つ板バネで吊った
打撃ハンマーと、同様に板バネで吊ったソレノイドハン
マー並びにその駆動用のコイルを対向して配設し、その
打撃ハンマーの出入箇所を可撓性シートで封口すると共
に、上記可撓性シートの外側に水頭圧がかかったとき、
その水頭圧とほぼ等しい水頭圧を受けることができる可
撓性エヤバッグを打撃部内側と連通させて取付けたもの
である。
Further, the suspended type well logging device according to the present invention necessarily includes a fixed part that presses the inner wall surface of the well borehole when the well logging tool is suspended inside the wellbore.
It has a striking part that directly strikes the inner wall surface of the borehole, and a vibration receiving part that detects the elastic waves generated by the direct striking of the inner wall surface of the borehole. Similarly, a solenoid hammer suspended by a leaf spring and its driving coil are arranged facing each other, and the entry and exit points of the striking hammer are sealed with a flexible sheet, and water head pressure is applied to the outside of the flexible sheet. When the
A flexible air bag capable of receiving a water head pressure approximately equal to the water head pressure is attached in communication with the inside of the striking part.

〈発明の効果〉 この発明の方法によれば、ソレノイドハンマーと打撃ハ
ンマーをそれぞれ板バネで保持し、ソレノイドハンマー
の動きを打撃ハンマーに伝達させるようにしたから、対
象材料の打撃応答値を得るための打撃力を毎回間じにす
るし、板バネの働きにより振幅・パルス幅比が求め易い
加速度波形とする。この比を指標値とすることによって
広範囲にわたる材料の物性を容易に把握することができ
る。また、上記した打撃応答値のほか、打撃点付近の材
料の弾性波伝播速度を測定することが孔内水の有無に係
わらず測定することができる。
<Effects of the Invention> According to the method of the present invention, the solenoid hammer and the impact hammer are each held by leaf springs, and the movement of the solenoid hammer is transmitted to the impact hammer, so that it is possible to obtain the impact response value of the target material. The impact force is kept constant each time, and the acceleration waveform is made so that the amplitude/pulse width ratio can be easily determined due to the action of the leaf spring. By using this ratio as an index value, it is possible to easily understand the physical properties of a wide range of materials. In addition to the impact response value described above, the elastic wave propagation velocity of the material near the impact point can be measured regardless of the presence or absence of water in the hole.

更に、この発明になる懸垂型検層器は、限られたスペー
スである孔井内での使用、特に礼拝の途中から孔内水が
ある場合における連続した使用に適しており、水頭圧に
よって打撃力が弱くならない点で優れている。
Furthermore, the suspended type well logger of the present invention is suitable for use in a borehole with limited space, especially for continuous use when there is water in the borehole during worship, and the impact force is reduced by the water head pressure. It is excellent in that it does not become weak.

〈実施例〉 始めに、本発明になる打撃応答試験方法の実施例につい
て述べる。第1図の説明図において、高圧パルス電圧を
コイル7に印加して板バネ4で吊られているソレノイド
ハンマー5を作動させ、板バネ2で吊られている打撃ハ
ンマー3を叩くことで、対象材料6を打撃ハンマー3で
打撃1、このとき、打撃ハンマー3内に装着した加速度
計1の出力波形、換言すれば打撃応答波形を求めると、
第2図のとおりである。第2図−中、点■はソレノイド
ハンマー5と打撃ハンマー3との衝突点、点■から点■
の区間は打撃ハンマー3がソレノイドハンマー5からエ
ネルギーを受は取る両ハンマー5,3の衝突挙動区間、
点■から点■の区間は、与えられたエネルギーにより打
撃ハンマー3が対象材料6に向って運動している区間、
点■は打撃ハンマー3と対象材料6とが衝突し始める点
、点■から点■の区間は、対象材料6が打撃ハンマー3
からエネルギーを受は取る衝突挙動区間である。点■と
■の間の波形つまり振幅p maxとパルス幅Wは対象
材料6の物性に応じて変化し、板バネ2の働きによって
図示の如き測定が容易な波形となるから、振幅・パルス
幅比Pmax /Wを求めるこ・とは容易である。第3
−A図から第3−D図までに各種材料のpmax/Wと
一軸圧縮強度、動弾性係数、密度、P波速度との関係を
示す。同図からl)max/Wが各種材料物性の指標値
たり1qることが明らかである。したがって、予めかか
る関係を多数把握し蓄積しておくことで、得られたPm
aX/Wの値から、その材料の所望゛する物性を推測す
ることが可能である。
<Example> First, an example of the impact response test method according to the present invention will be described. In the explanatory diagram of FIG. 1, a high-voltage pulse voltage is applied to the coil 7 to activate the solenoid hammer 5 suspended by the leaf spring 4, and by hitting the striking hammer 3 suspended by the leaf spring 2, the target is When the material 6 is hit 1 with the impact hammer 3, the output waveform of the accelerometer 1 installed in the impact hammer 3, in other words, the impact response waveform, is determined as follows.
As shown in Figure 2. Figure 2 - In the middle, point ■ is the collision point between solenoid hammer 5 and impact hammer 3, from point ■ to point ■
The section is a collision behavior section of both hammers 5 and 3 in which the impact hammer 3 receives and receives energy from the solenoid hammer 5,
The section from point ■ to point ■ is the section where the impact hammer 3 is moving toward the target material 6 due to the given energy,
Point ■ is the point where the impact hammer 3 and the target material 6 begin to collide, and in the area from point ■ to point ■, the target material 6 is the impact hammer 3
This is the collision behavior section in which energy is received from the vehicle. The waveform between points ■ and ■, that is, the amplitude p max and the pulse width W, change depending on the physical properties of the target material 6, and the action of the leaf spring 2 creates a waveform that is easy to measure as shown in the figure. It is easy to find the ratio Pmax/W. Third
Figures -A to 3-D show the relationships between pmax/W, unconfined compressive strength, dynamic elastic modulus, density, and P-wave velocity of various materials. From the same figure, it is clear that l) max/W is 1q, which is an index value of various material properties. Therefore, by understanding and accumulating many such relationships in advance, the obtained Pm
From the value of aX/W, it is possible to estimate the desired physical properties of the material.

次に本発明の方法を孔井内での検層に適用する際に好適
な懸垂型検層器の実施例について述べる。先ず、装置全
体を示した第4−図に従って概説すると、孔内水を有す
る孔井20内にはコントロールケーブル21で吊り下げ
られたゾンデZが挿入されている。図示するを省略した
が、孔井20内には孔内水が全くなくてもよいし、礼拝
20の途中から孔内水がある場合であってもよい。コン
トロールケーブル21は三又櫓22の滑車23を経てウ
ィンチ24で巻上げ巻下ろし自在であり、したがってゾ
ンデZは適宜高さに昇降自在である。孔外20内ゾンデ
Zからの電気信号を地上の計測記録装置25に送っ−た
り、孔外20内ゾンデZで必要とする駆動電流や駆動圧
力を地上の諸設備から送り込むことは、コントロールケ
ーブル21によって行なわれる。
Next, an embodiment of a suspended well logging device suitable for applying the method of the present invention to well logging in a borehole will be described. First, to outline the entire apparatus according to FIG. 4, a sonde Z suspended by a control cable 21 is inserted into a borehole 20 having water in the borehole. Although not shown in the drawings, there may be no water in the borehole 20 at all, or there may be water in the borehole from the middle of the prayer 20. The control cable 21 can be wound up and down by a winch 24 via a pulley 23 of a three-pronged turret 22, so that the sonde Z can be raised and lowered to an appropriate height. The control cable 21 is used to send electrical signals from the sonde Z inside the outside hole 20 to the measurement and recording device 25 on the ground, and to send the driving current and driving pressure required by the sonde Z inside the outside hole 20 from various equipment on the ground. It is carried out by

第5図にゾンデZの詳細を示す。このゾンデZは圧力バ
ランス部A、打撃ハンマ一部B、チャージアンプ部C1
第1固定部D、第1受振部Eおよび第2固定部[) /
、第2受振部E′が一連に連結されていることによって
組立てられている。打撃ハンマ一部Bは第6図に拡大し
て示したが、基本的構成は第1図で説明したとおり、板
バネ4で吊られているソレノイドハンマー5並びにその
駆動用のコイル7と、板バネ2で吊られている打撃ハン
マー3とが対向して配設され、その打撃ハンマー3内に
は加速度計1が装着されている。打撃ハンマー3は礼拝
20の内壁面を直接打撃するものであって、コイル7に
流す電流を時間で制御する方法、つまり、パルス幅の調
節で打撃力の調節が可能である。第1図に見ない構成と
しては、打撃ハンマー3廻りの隙間を可撓性シート8で
封口し、孔内水があった場合に内部に浸入しないように
している点、と、打撃部Bの内部を圧力バランス部Aに
設けた可撓性エヤバッグ9の内部と連通している点であ
る。このエヤバッグ9の体積は打撃部Bの体積に比して
充分に大ぎくとり、また、圧力バランス部Aのハウジン
グには開口部10を穿設して、孔内水中での使用時には
エヤバッグ9の外側に水頭相当の水圧がかかるようにし
ている。
Figure 5 shows details of Sonde Z. This sonde Z has a pressure balance part A, a hammer part B, and a charge amplifier part C1.
First fixed part D, first vibration receiving part E and second fixed part [) /
, the second vibration receiving section E' are connected in series. Part B of the impact hammer is shown enlarged in FIG. 6, but its basic configuration is as explained in FIG. A percussion hammer 3 suspended by a spring 2 is disposed facing the percussion hammer 3, and an accelerometer 1 is mounted inside the percussion hammer 3. The striking hammer 3 directly strikes the inner wall surface of the prayer 20, and the striking force can be adjusted by controlling the current flowing through the coil 7 based on time, that is, by adjusting the pulse width. The structure not shown in Fig. 1 is that the gap around the striking hammer 3 is sealed with a flexible sheet 8 to prevent water from entering the hole even if there is water in the hole, and that the striking part B is closed. The interior thereof is in communication with the interior of the flexible air bag 9 provided in the pressure balance section A. The volume of the air bag 9 is set to be sufficiently large compared to the volume of the striking part B, and an opening 10 is bored in the housing of the pressure balance part A so that the air bag 9 can be opened when used underwater in the hole. Water pressure equivalent to the water head is applied to the outside.

こうすることで、孔内水がない場合にあっては大気圧で
あったエヤバッグ9内圧力は水頭相当の水圧を受けて平
衡するところまで圧縮され昇圧するから、結局、可撓性
シート8における内外の圧力はバランスすることになり
、したがって打撃部Bで発生した打撃力が圧力差によっ
て無駄に消費されるといったことはなくなる。
By doing this, the pressure inside the air bag 9, which would be atmospheric pressure when there was no water in the hole, is compressed and increased to the point where it reaches equilibrium upon receiving the water pressure equivalent to the water head. The internal and external pressures are balanced, so that the striking force generated in the striking part B is not wasted due to the pressure difference.

つぎにチャージアンプ部Cは、そのハウジングの内側に
電池11とチャージアンプ12とが装着され、打撃ハン
マー3に組み込んだ加速度計1からの信号を忠実に地上
計測部に送り出し、且つまた両者の整合をとる。第1固
定部りはゾンデZを礼拝20内にしつかり固定する役目
を果たす。図示の例では、ガス圧が作用することでゴム
膜13が膨れ上がり、ローラ14を設けたピストン部1
5が孔壁方向に移動し、ローラ14で孔壁面を押すよう
になっている。もつとも、その他の方式、例えば圧気で
空気袋を膨張させたり、油圧でジヤツキを伸ばしたり、
バネ力で抑圧部材を作動させるといった適宜手段が採用
可能である。第1受振部Eは、打撃によって生じた弾性
波が伝播する速度、や周波数特性を調べるために受振セ
ンサーが配される。
Next, the charge amplifier section C has a battery 11 and a charge amplifier 12 installed inside its housing, and faithfully sends the signal from the accelerometer 1 incorporated in the striking hammer 3 to the ground measurement section, and also matches the two. Take. The first fixing portion serves to securely fix the sonde Z within the worship 20. In the illustrated example, the rubber film 13 swells due to the action of gas pressure, and the piston part 1 provided with the roller 14
5 moves toward the hole wall, and the roller 14 pushes the hole wall surface. Of course, there are other methods, such as inflating the air bag with pressurized air or extending the jacket with hydraulic pressure.
Appropriate means such as actuating the suppressing member with spring force can be adopted. The first vibration receiving section E is provided with a vibration receiving sensor in order to examine the propagation speed and frequency characteristics of the elastic waves generated by the impact.

上記した懸垂型検層器を第4図の如く礼拝20内に吊り
下げて、凡打20内壁面を直接打撃したときの実際の試
験結果の一例を第7図に示した。打撃部Bにおける打撃
応答波形は1チヤンネルに、第1受振部Eと第2受振部
E′にお【プる受振波形は2チヤンネルと3チヤンネル
に示している。この打撃応答波形から、第2図で述べた
娠幅・パルス幅比が求められ、これによって物性を知る
ことができるし、また、第1受振部Eにおける波形の初
動に注目し、周波数を求めることができる。更に第1受
振部Eと第2受振部E′の伝播距離、伝播時間から弾性
波の伝播速度がわかる。
FIG. 7 shows an example of the actual test results when the above-described suspended type logger was suspended in the church 20 as shown in FIG. 4 and the inner wall surface of the hammer 20 was directly struck. The impact response waveform in the impact portion B is shown in the first channel, and the received waveforms in the first vibration receiving portion E and the second vibration receiving portion E' are shown in the second channel and the third channel. From this impact response waveform, the pulse width/pulse width ratio described in Fig. 2 can be determined, and the physical properties can be determined from this.Furthermore, the frequency can be determined by paying attention to the initial motion of the waveform in the first vibration receiver E. be able to. Further, the propagation speed of the elastic wave can be determined from the propagation distance and propagation time between the first vibration receiving part E and the second vibration receiving part E'.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の理解を容易ならしめるための説
明図、第2図はその打撃応答波形を示す図、第3−A図
から第3−0図までは各種材料の撮幅・パルス幅比と一
軸圧縮強度、動弾性係数、密度、P波速度との関係を示
す図、第4図は懸垂型検層装置全体の説明図、第5図は
そのゾンデを三分割して示した断面図、第6図は打撃部
の拡大図、第7図は実際の打撃応答波形を示す図である
。 1・・・加速度計、2・・・板バネ、3・・・打撃ハン
マー、4・・・板バネ、5・・・ソレノイドハンマー、
7・・・コイル、8・・・可撓性シート、9・・・可撓
性エヤバッグ。 @3−A図 機幅・1寸ルX、輻九 (V/m5) IE3−8図 才^幅りでルス幅 (V/ms) 起 笥 欠 # 9 ギ く 第3−C図 第3−D図 脈慴・lマlシス幅化(V/m5) s4図 f47図 晴 間(ms)
Fig. 1 is an explanatory diagram to facilitate understanding of the method of the present invention, Fig. 2 is a diagram showing the impact response waveform, and Figs. 3-A to 3-0 show the imaging width and width of various materials. A diagram showing the relationship between pulse width ratio, uniaxial compressive strength, dynamic elastic modulus, density, and P-wave velocity. Figure 4 is an explanatory diagram of the entire suspended logging device. Figure 5 shows the sonde divided into three parts. FIG. 6 is an enlarged view of the striking part, and FIG. 7 is a diagram showing an actual striking response waveform. 1... Accelerometer, 2... Leaf spring, 3... Impact hammer, 4... Leaf spring, 5... Solenoid hammer,
7... Coil, 8... Flexible sheet, 9... Flexible air bag. @3-A drawing machine width: 1 inch x, 9 (V/m5) IE3-8 drawing width: width (V/ms) - D figure vein width / l axis width (V/m5) s4 figure f47 figure clear interval (ms)

Claims (1)

【特許請求の範囲】 1、加速度計が組み込まれ且つ板バネで吊つた打撃ハン
マーを、同様に板バネで吊つたソレノイドハンマーで叩
いて該打撃ハンマーで対象材料を直接打撃し、そのとき
の上記加速度計による打撃応答波形を振幅とパルス幅の
測定が容易な波形となし、得られた振幅・パルス幅比の
値をもって対象材料の指標値とすることを特徴とする地
盤等の打撃応答試験方法。 2、孔井内に懸垂される検層具であつて、孔井内壁面を
押圧する固定部(D、D′)と、孔井内壁面を直接打撃
する打撃部(B)と、孔井内壁面の直接打撃によつて生
じた弾性波を検出する受振部(E、E′)を有し、その
打撃部(B)は、加速度計(1)が組み込まれ且つ板バ
ネ(2)で吊つた打撃ハンマー(3)と、同様に板バネ
(4)で吊つたソレノイドハンマー(5)並びにその駆
動用のコイル(7)を対向して配設し、その打撃ハンマ
ー(3)の出入箇所を可撓性シート(8)で封口すると
共に、上記可撓性シート(8)の外側に水頭圧がかかっ
たとき、その水頭圧とほぼ等しい水頭圧を受けることが
できる可撓性エヤバツグ(9)を打撃部(B)内側と連
通させて取付けたことを特徴とする懸垂型検層器。
[Claims] 1. A striking hammer in which an accelerometer is incorporated and suspended by a leaf spring is struck by a solenoid hammer also suspended by a leaf spring, and the striking hammer directly hits the target material, and the above-mentioned at that time. A method for testing the impact response of the ground, etc., characterized in that the impact response waveform measured by an accelerometer is made into a waveform whose amplitude and pulse width can be easily measured, and the obtained value of the amplitude/pulse width ratio is used as an index value for the target material. . 2. A logging tool suspended in a wellbore, which includes a fixed part (D, D') that presses the inner wall of the wellbore, a striking part (B) that directly hits the inner wall of the wellbore, and a logging tool that directly hits the inner wall of the wellbore. It has a vibration receiving part (E, E') that detects the elastic waves generated by a strike, and the striking part (B) is a striking hammer in which an accelerometer (1) is incorporated and is suspended by a leaf spring (2). (3), a solenoid hammer (5) similarly suspended by a leaf spring (4), and its driving coil (7) are arranged facing each other, and the entry and exit points of the impact hammer (3) are made flexible. A flexible air bag (9) that can be sealed with a sheet (8) and can receive a head pressure approximately equal to the head pressure when a head pressure is applied to the outside of the flexible sheet (8) is attached to the striking part. (B) A suspended well logging device characterized by being installed in communication with the inside.
JP62259393A 1987-10-14 1987-10-14 Impact response test method for ground, etc. and suspended type log logger Expired - Fee Related JPH0769430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259393A JPH0769430B2 (en) 1987-10-14 1987-10-14 Impact response test method for ground, etc. and suspended type log logger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259393A JPH0769430B2 (en) 1987-10-14 1987-10-14 Impact response test method for ground, etc. and suspended type log logger

Publications (2)

Publication Number Publication Date
JPH01101444A true JPH01101444A (en) 1989-04-19
JPH0769430B2 JPH0769430B2 (en) 1995-07-31

Family

ID=17333510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259393A Expired - Fee Related JPH0769430B2 (en) 1987-10-14 1987-10-14 Impact response test method for ground, etc. and suspended type log logger

Country Status (1)

Country Link
JP (1) JPH0769430B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117402A (en) * 1975-03-17 1976-10-15 Uni Uesutan Oosutoraria Za Impact type soil testing apparatus
JPS59195992A (en) * 1983-04-22 1984-11-07 株式会社森技術研究所 Measurement of strength and deformation characteristics of soil around boring hole
JPS6410146A (en) * 1987-07-03 1989-01-13 Bridgestone Corp Impact characteristic evaluating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117402A (en) * 1975-03-17 1976-10-15 Uni Uesutan Oosutoraria Za Impact type soil testing apparatus
JPS59195992A (en) * 1983-04-22 1984-11-07 株式会社森技術研究所 Measurement of strength and deformation characteristics of soil around boring hole
JPS6410146A (en) * 1987-07-03 1989-01-13 Bridgestone Corp Impact characteristic evaluating device

Also Published As

Publication number Publication date
JPH0769430B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US6880403B1 (en) Structure inspection device
US5983701A (en) Non-destructive evaluation of geological material structures
EP0471733B1 (en) Pile tester
US5487298A (en) Inertial Hopkinson bar shock sensor
GB2387908A (en) Seismic source comprising solenoid coil and bullet
JP3770668B2 (en) Method for detecting internal defects in structures
JPS62472B2 (en)
JP6688619B2 (en) Impact device used for impact elastic wave method
US4773501A (en) Device for generating seismic impulses inside a drilling through the fall of a weight onto an anchored target element
US6598485B1 (en) Method and device for evaluating quality of concrete structures
US6386036B1 (en) Prodder with force feedback
JPH11271286A (en) Estimating method for concrete strength
US5534668A (en) Deadweight dropping type wave source
JPH01101444A (en) Testing method for impulse response of ground or the like and suspension type layer inspector
JPH10170390A (en) Impact tester
Blair et al. Evaluation of gages for measuring displacement, velocity, and acceleration of seismic pulses
CN206757054U (en) A kind of face ripple pick-up sensor and face ripple detecting system
JP2004317217A (en) Method and device for testing surface state of article to be measured
US20050204809A1 (en) Parallel seismic depth testing using a cone penetrometer
JPS6336131A (en) Method and instrument for measuring s wave speed using large-sized three-axial cell
CN109778920B (en) In-use foundation pile damage detection equipment and detection method
CN208224505U (en) Vibration excitor and test device in a kind of steady state shearing wave instrument connection
JPH08248142A (en) Method and apparatus for investigation of ground by s-wave generation device and cone penetration device carried on ground investigation vehicle
JPS62142291A (en) Acoustic logging device
KR20010035143A (en) Method of detecting an explosive time in seismic tomography survey and apparatus thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees