JPS5919540A - Continuous hydrothermal synthesis apparatus - Google Patents

Continuous hydrothermal synthesis apparatus

Info

Publication number
JPS5919540A
JPS5919540A JP57128885A JP12888582A JPS5919540A JP S5919540 A JPS5919540 A JP S5919540A JP 57128885 A JP57128885 A JP 57128885A JP 12888582 A JP12888582 A JP 12888582A JP S5919540 A JPS5919540 A JP S5919540A
Authority
JP
Japan
Prior art keywords
screw
hydrothermal synthesis
reactor
slurry
tubular reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57128885A
Other languages
Japanese (ja)
Other versions
JPH025136B2 (en
Inventor
Hirofumi Tanaka
弘文 田中
Yuichi Kataoka
雄一 片岡
Kiyohiko Uchida
内田 清彦
Taido Kanesaki
泰道 兼先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP57128885A priority Critical patent/JPS5919540A/en
Publication of JPS5919540A publication Critical patent/JPS5919540A/en
Publication of JPH025136B2 publication Critical patent/JPH025136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles

Abstract

PURPOSE:To make it possible to perform stable treatment continuously without generating the lowering in product quality caused by the mixing of an unreacted stock material into product at all in hydrothermal synthesis, by a simple structure comprising the combination of a perfect mixing type reaction tank and a tubular reactor. CONSTITUTION:The titled apparatus is constituted from a perfect mixing type reaction tank 1 and a tubular reactor 6 having a screw type stirrer 7 connected thereto while a pressure balance adjusting pipe 10 for adjusting pressure is separately provided between both of them other than a reaction product transfer pipe 5. As the aforementioned screw type stirrer 7, one wherein at least one pitch or more of a screw blade is left at an appropriate position in the axial direction and other screw blades are cut off every other blade along the surface of the spiral direction thereof at 20-40 practical intervals is used. That is, the mixing of an unreacted stock material is eliminated by providing the tubular reactor having no fear leaving the unreacted stock material in an outlet slurry at all according to a reaction condition in the downstream side.

Description

【発明の詳細な説明】 本発明は、種型反応器と管型反応器を相合せた連続式水
熱合成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous hydrothermal synthesis apparatus that combines a seed reactor and a tubular reactor.

反応装置を装置形状で大きく分けると、種型反応装置、
前型反応装置及び基型反応装置となる。
Reactors can be broadly categorized by device shape: seed-type reactors,
It becomes a front type reactor and a base type reactor.

オた流れの流動状態には理想流れと非理想流れがあシ、
前者はさらに押出し流れ(pjston flow )
と完全混合流れ(m1xed flow )  に分け
られる。
There are two types of flow states: ideal flow and non-ideal flow.
The former is further extrusion flow (pjston flow)
and completely mixed flow (m1xed flow).

理想流れは理想化された流れであり、実際の反応器にお
いては押出し流れと完全混合流れの中間的性格をもつ非
理想流れを示すと考えられる。
The ideal flow is an idealized flow, and in an actual reactor it is thought to exhibit a non-ideal flow with characteristics intermediate between an extrusion flow and a complete mixing flow.

一般に種型反応装置は、攪拌機を設けることによって完
全混合流れを、前型反応装置は押出しカLれを各々示す
として設計される。基型反応装置は主に触媒等の充填塔
として用いられ、その装置内の流れの状態は非理想流れ
を示す。
In general, a seed reactor is designed to provide a completely mixed flow by providing an agitator, and a front reactor is designed to provide extrusion flow. The basic reactor is mainly used as a packed column for catalysts, etc., and the flow state within the device exhibits a non-ideal flow.

完全混合型反応槽(完全混合流れを示す攪拌機付種型反
応装置)を用いた連続操作では、槽内液組成は全ての部
分で均一であり、出口液組成は槽内のそれと同一である
。従って種々の東件、例えば処理量、装置容計、反応速
度等により、単一反応槽では出口液組成中に占める未反
応物量が無視できなくなる恐れがおる。このため連続操
作においては一般に、完全混合型反応槽を単゛独ズ用い
ることはまれで、これをいくつか連結した多段式のもの
が採用されることが多い。
In continuous operation using a fully mixed reactor (a stirrer-equipped seed reactor exhibiting a completely mixed flow), the liquid composition within the tank is uniform in all parts, and the outlet liquid composition is the same as that inside the tank. Therefore, depending on various factors such as throughput, capacity of the apparatus, reaction rate, etc., in a single reaction tank, the amount of unreacted substances in the composition of the outlet liquid may not be negligible. For this reason, in continuous operation, it is generally rare to use a single complete mixing type reaction tank, and a multi-stage type in which several such reactors are connected is often used.

一方、管壁反応器では反応器内組成は均一ではなく、流
れ方向に沿って連続的に変化する。反応工学的にl−i
管型反応器は、完全混合型反応槽を無限個つないだもの
と考えることができる。
On the other hand, in a tube wall reactor, the composition within the reactor is not uniform and changes continuously along the flow direction. Reaction engineering l-i
A tubular reactor can be thought of as an infinite number of complete mixing reactors connected together.

本発明は、これら完全混合型反応槽と管壁反応器とを基
本構成要素とする連続式水熱合成装置に関するものであ
る。
The present invention relates to a continuous hydrothermal synthesis apparatus having these complete mixing type reaction vessels and tube wall reactors as basic components.

水熱合或は高温の水特に高温高圧の水の存在の下に行な
われる化合物の合成および結晶育成法を言い、その代表
例としては、α型半水石膏(α−CaSO4@ ’A 
HzO)、ベーマイト(Alool()及びゾノトライ
ト(6Ca0・6SiO1・HzO)等の合成がちる。
Hydrothermal synthesis is a compound synthesis and crystal growth method carried out in the presence of high-temperature water, especially high-temperature and high-pressure water.A typical example is α-type hemihydrate gypsum (α-CaSO4
HzO), boehmite (Alool()) and xonotlite (6Ca0.6SiO1.HzO).

この水熱合成反応では、原料はスラリーで与えられる場
合がほとんどで、上の例で言うならばα型半水石膏合成
では工水石膏< caso4°2H20)−水系スラリ
−、ベーマイト合成ではジブザイト(AL(OIL)s
 )  水系スラリー、またゾノトライトの場合は生石
灰(Cab)−シリカ(St(h )−水系スラリーが
各々原料スラリーとして反応に供せられる。
In this hydrothermal synthesis reaction, the raw material is almost always provided in the form of a slurry, and in the above example, in the synthesis of α-type hemihydrate gypsum, it is gypsum < caso4°2H20) - aqueous slurry, and in the synthesis of boehmite, it is provided as dibzite ( AL(OIL)s
) An aqueous slurry, or in the case of xonotrite, a quicklime (Cab)-silica (St(h))-aqueous slurry is each used as a raw material slurry for the reaction.

水熱合成反応は犬きく分けて核生成及び結晶成長の二段
階を経て進行するが、刀・一段階の核生成には攪拌槽の
ような比較的大きな空間をもち、しかも均一に攪拌され
るものが最適である。原料がスラリーで与えられる場合
が多い水熱合成を行なう装置としては、上述のように攪
拌槽型の均一攪拌式すなわち完全混合型反応槽が最も有
効であるが、この場合問題となるのは未反応原料の製品
への混入による製品品質の低下である。未反応原料の製
品への混入を防ぐためには、回分操作ならば充分な反応
時間をとればよいが、連続操作の場合は攪拌槽を多段に
するのが最も一般的であり、その結実装置が複雑かつ規
模が大きくならざるを得ない。一般に工業操作として連
続操作の方が回分操作より有利な点が多いにもかかわら
ず、現状ではスラリー原料を連続的に安定処理できる水
熱合成装置はほとんど実用化されていない。
The hydrothermal synthesis reaction proceeds through two stages: nucleation and crystal growth, but the first stage of nucleation requires a relatively large space like a stirring tank, and is evenly stirred. The one that is the best. As mentioned above, the most effective equipment for hydrothermal synthesis, where raw materials are often provided in the form of slurry, is a stirred tank type reaction tank with uniform stirring, that is, a complete mixing type reaction tank. This is a decrease in product quality due to the contamination of reaction raw materials into the product. In order to prevent unreacted raw materials from being mixed into the product, if it is a batch operation, it is sufficient to allow sufficient reaction time, but if it is a continuous operation, it is most common to use a multi-stage stirring tank, and the fruiting equipment is It has no choice but to become complex and large in scale. Although continuous operation generally has many advantages over batch operation as an industrial operation, at present there are almost no hydrothermal synthesis apparatuses that can stably process slurry raw materials in a continuous manner.

本発明は、完全混合型反応槽と管壁反応器を組み合わせ
ただけの極めてシンプルかつコンパクトな構造によシ、
原料がスラリーで与えられることの多い水熱合成におい
て未反応原料が製品中に混入して起こる製品品質の低下
を全く引き起こすことなく連続的に安定処理できる水熱
合成装置を提供するものである。
The present invention has an extremely simple and compact structure that combines a complete mixing type reaction tank and a tube wall reactor.
To provide a hydrothermal synthesis apparatus capable of continuous and stable processing without causing any deterioration in product quality caused by unreacted raw materials mixed into the product in hydrothermal synthesis where raw materials are often provided in the form of slurry.

すなわち本発明のオlの発明は、完全混合型反応槽とこ
れに続くスクリュー型攪拌機を設置した管壁反応器とか
ら構成され、かつ両者間に反応物を移送する管とは別個
に圧力を調整するキめの圧力バランス調整管を設置した
ことfc特徴とする連続式水熱合成装置である。また第
2の発明Vま、第1の発明のスクリュー型攪拌機として
、軸方向に適宜の位置においてスクリュー羽根を少なく
ともlピッチ以上残し、それ以外のスクリュー羽根をそ
のラセン方向の面に沿って20ないし40度間隔で、一
枚にきに切除したものを使用したものである。
That is, O's invention of the present invention is composed of a complete mixing type reaction tank and a tube wall reactor equipped with a screw type stirrer, and a pressure is applied separately from the tube for transferring reactants between the two. This is a continuous hydrothermal synthesis device characterized by the installation of a pressure balance adjustment tube for adjustment. In addition, in the second invention V, as the screw type agitator of the first invention, the screw blades are left at least 1 pitch or more at appropriate positions in the axial direction, and the other screw blades are arranged along the helical direction surface of 20 or more. One piece was cut out at 40 degree intervals.

前述したように完全混合型反応槽は、連続操作の場合出
口組成と槽内組成が同一であるため、これ単独では出口
スラリー中に未反応原料が混入することは本質的に避け
られないので、本発明においては反応工学的に完全混合
型反応槽を無限個直列につないだものと解析される、つ
まり反応東件によっては出口スラリー中に未反応原料が
残存する恐れが全くない管壁反応器を後設することによ
シ未反応原料の混入をなくするものである。これによシ
、完全混合型反応槽を多段にする場合に比べ装置規模が
小さく、かつ構造がシンプルであるだめ設備コストも低
減できる。
As mentioned above, in a complete mixing type reaction tank, the outlet composition and the inside composition are the same in the case of continuous operation, so if this alone is used, it is essentially unavoidable that unreacted raw materials will be mixed into the outlet slurry. In the present invention, from a reaction engineering point of view, it is analyzed that an infinite number of completely mixed reaction vessels are connected in series, that is, a tube wall reactor in which there is no risk of unreacted raw materials remaining in the outlet slurry depending on the reaction conditions. By installing this later, it is possible to eliminate the contamination of unreacted raw materials. As a result, the scale of the apparatus is smaller and the structure is simpler than in the case of using multiple stages of complete mixing type reaction vessels, and the equipment cost can also be reduced.

゛また完全混合型反応槽と管壁反応器の組み合わせを水
熱合成の各段階、すなわち核生成と結晶成長に分けてみ
るならば、完全混合型反応槽でt′1nIJ述のように
主として核生成が行゛なわれ、その後結晶成長が一部進
行したのち管壁反応器に入り、ここでさらに結晶の成長
が行なわれるのである。
゛Also, if we divide the combination of a completely mixed reactor and a tube wall reactor into each stage of hydrothermal synthesis, namely nucleation and crystal growth, we can see that in a completely mixed reactor, nucleation mainly occurs as described in t'1nIJ. After the formation and subsequent crystal growth, it enters the tube wall reactor where further crystal growth occurs.

さらに上記管渠反応器は、その内部にスクリュー型攪拌
機を備えている。管渠反応器は一般に気相、液相といっ
た単−相の反応に用いられ、スラリーのような固液用の
処理には適さない。5本発明になる管渠反応器は、スク
リュー型攪、拌機を付設することによシ原料がスラリー
で与えられた場合でも連続して安定な水熱合成処理がで
きる。
Furthermore, the tube reactor is equipped with a screw type stirrer inside thereof. A tube reactor is generally used for single-phase reactions such as gas phase or liquid phase, and is not suitable for solid-liquid processing such as slurry. 5. The tube reactor according to the present invention is equipped with a screw-type stirrer and stirrer, so that even when the raw material is provided as a slurry, it is possible to carry out stable hydrothermal synthesis treatment continuously.

またこの攪拌機は基本的にはスクリュー型であるだめ、
かなυ濃厚なスラリーであっても筒型反応器内を通すこ
とができる。
Also, this stirrer is basically a screw type,
Even thick slurry can be passed through the cylindrical reactor.

すなわち本発明になる管渠反応器は、単に反応を起こな
わせるだけでなく、反応物を次のプロセスに輸送すると
いう機能をも兼ね備えているのである。
In other words, the tube reactor of the present invention not only allows reactions to occur, but also has the function of transporting reactants to the next process.

以下5本発明を図面を参照しながら説明する。Hereinafter, five aspects of the present invention will be explained with reference to the drawings.

1′1図は、本発明にかかる連続式水熱合成装置の一例
を示す縦断面説明図である。図において1は完全混合型
反応槽であル、原料送入口2よ勺送入される原料はここ
で攪拌機3によp均一に攪拌されながら水熱合成され、
結晶核の発生及び結晶成長を行なう。4は加熱用ジャケ
ットである。このジャケットの内部は図のようにラセン
状に流路が仕切られており、熱媒体tまこの流路に沿っ
てジャケット内金流れる。反応物はさらに輸送管5を経
て管型反X←器6へと導かれ、スクリュー型攪拌機7に
よシ均一に攪拌され未反応物を完全に反応し、さらに結
晶成長を行ない、排出口8へと移送される。9は4と同
様加熱用ジャケットである。
FIG. 1'1 is an explanatory longitudinal cross-sectional view showing an example of a continuous hydrothermal synthesis apparatus according to the present invention. In the figure, 1 is a complete mixing type reaction tank, where the raw materials fed through the raw material inlet 2 are hydrothermally synthesized while being uniformly stirred by the stirrer 3.
Generation of crystal nuclei and crystal growth are performed. 4 is a heating jacket. The inside of this jacket is partitioned into a spiral flow path as shown in the figure, and the heat medium flows along the flow path inside the jacket. The reactants are further led to the pipe-type reactor 6 via the transport pipe 5, and are uniformly stirred by the screw-type stirrer 7 to completely react the unreacted substances, further crystal growth, and then to the discharge port 8. be transferred to. 9 is a heating jacket similar to 4.

スクリュー型攪拌機7は、前述したようにスラリー状反
応物が固液分離して管内に堆積するのを防ぐと共にスク
リュ一本来の機能である輸送の役割も果たすものである
。すなわちスラリーホこのスクリュー型攪拌機によシ管
型反応器内を均一に攪拌されつつ結晶成長を行ないなが
ら排出口へと輸送されるわけである。スクリュー型攪拌
機としては通常のラセン状スクリューの!、までもよい
が、好ましくは軸方向に適宜の位置においてスクリュー
羽根を少ガくともlピッチ以上残し、それ以外のスクリ
ュー羽根をそのラセン方向の面に沿って20ないし40
度間隔で、一枚おきに羽根を切除するのが攪拌性能及び
製品品質保持の両面から有効である。
As mentioned above, the screw type stirrer 7 prevents the slurry reactant from separating into solid and liquid and depositing in the tube, and also plays the role of transport, which is the original function of the screw. In other words, the slurry is uniformly stirred inside the tubular reactor by the screw type stirrer and is transported to the discharge port while crystal growth occurs. As a screw type stirrer, it is a normal helical screw! , but it is preferable to leave the screw blades at a pitch of at least 1 at an appropriate position in the axial direction, and leave the other screw blades at a pitch of 20 to 40 along the helical direction.
It is effective to remove every other blade at intervals of 100°C from the viewpoint of both stirring performance and maintaining product quality.

すなわちスクリューは本来輸送手段として用いられるも
ので、その構造上スラリーの攪拌には向いていないが、
上述のようにスクリュー羽根を切除することによシ攪拌
性能の向上を計る一方基本的にはスクリュ一本来のラセ
ン構造を残しているため輸送の機能も兼ね備えているの
である。またスクリュー羽根全部に対してこのように切
除する、わけでなく、軸方向に適宜の位置でスクリュー
羽根をそのまま少なくともlピッチ以上残すのは、製品
の品質保持の面から意味がある。すなわちこのスクリュ
ー羽根をそのまま残した部分が、一種のせき止め帯とな
ってスラリーの反応器内滞留を促進する効果を与え、そ
の結果未反応原料の素通シが阻止されるため製品への未
反応物混入が避けられるのである。このせき止め帯の間
の部分では、前述した様に切除したスクリュー羽根によ
シ均一に攪拌されることを考え合わせるならば、本発明
になるW型反応器は、完全混合型反応槽を多段に連結し
たものと等価とみなせられるが、その場合には本発明の
場合より装置が複雑かつ大規模になる。
In other words, screws are originally used as a means of transportation and are not suitable for stirring slurry due to their structure.
As mentioned above, by removing the screw blades, the stirring performance is improved, but since the original helical structure of the screw is basically retained, it also has the function of transportation. Further, it is not necessary to cut out all the screw blades in this way, but to leave the screw blades as they are at a suitable position in the axial direction at least one pitch or more is meaningful from the viewpoint of maintaining the quality of the product. In other words, the portion of the screw blade left as it is serves as a kind of dam band and has the effect of promoting the retention of slurry in the reactor, and as a result, it prevents unreacted raw materials from passing through, so there is no unreacted material in the product. Contamination can be avoided. Considering that in the area between the dam bands, stirring is uniformly performed by the cut-out screw blades as described above, the W-type reactor according to the present invention can be constructed by constructing a complete mixing type reaction tank in multiple stages. Although it can be considered equivalent to a connected device, in that case, the device would be more complex and larger than in the case of the present invention.

このせき止め帯の数は反応系の特性、操作優性、製品の
品質特性等により決められるものである。
The number of damming bands is determined by the characteristics of the reaction system, operational advantages, quality characteristics of the product, etc.

またこのスクリュー型攪拌機の排出口8側の部分は、オ
1図の様にスクリュー羽根を2ないし3ピツチ逆ラセン
にすることにより、スラリーの排出を円滑に行なうこと
ができる。
In addition, the portion on the discharge port 8 side of this screw type agitator can smoothly discharge the slurry by arranging the screw blades in a 2- to 3-pitch inverted spiral as shown in Figure O1.

またオ1図には完全混合型反応槽lと管渠反応器6の間
にスラリー輸送管5とは別に、圧力を調整するだめの圧
力バランス調整管lOがある。完全混合型反応41il
から管渠反応器6に輸送管5を介してスラリーが移送さ
れる際に生じる完全混合型反応槽1と管渠反応器6との
間の圧力バランスの変動が、この配管10内の蒸気移動
によシ補償され、その結実装置系全体を安定に操作でき
るわけである。
In addition, in Fig. 1, there is a pressure balance adjustment pipe 1O between the complete mixing type reaction tank 1 and the pipe reactor 6, in addition to the slurry transport pipe 5, for adjusting the pressure. Completely mixed reaction 41il
Fluctuations in the pressure balance between the complete mixing type reaction tank 1 and the pipe reactor 6 that occur when the slurry is transferred from the slurry to the pipe reactor 6 via the transport pipe 5 result in vapor movement within the pipe 10. This means that the entire fruiting system can be operated stably.

このように本発明は、原料がスラリーで与えられる場合
が多い水熱合成において連続的に安定した処理ができる
連続式水熱合成装置を提供するものである。
As described above, the present invention provides a continuous hydrothermal synthesis apparatus capable of continuous and stable processing in hydrothermal synthesis where raw materials are often provided in the form of slurry.

次に本発明を実施例、比較例によって更に具体的に説明
する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 排煙脱硫石膏(2水石膏)を原料としてシロ圧水溶液法
によシα型半水石膏の連続製造を行なった。
Example 1 α-type hemihydrate gypsum was continuously produced using flue gas desulfurization gypsum (dihydrate gypsum) as a raw material by the silo pressure aqueous solution method.

連続式反応装置は直径512mm、高さ975mm、容
積200tの完全混合型反応槽と、これに続く直径10
0mm、  長さ4200 mm 、容積1stの管型
反応器からなる連続水熱合成装置を用いた。管型反応器
は軸方向に3等分にスクリュー羽根を2ピッチ残しその
ラセン方向に30°間隔で一枚おきに羽根を切除したス
クリューを設置した。また完全混合型反応槽の筒頂と管
型反応器の投入口近傍に圧力バランス管を設置した。
The continuous reactor has a complete mixing type reaction tank with a diameter of 512 mm, a height of 975 mm, and a capacity of 200 tons, followed by a 10 mm diameter
A continuous hydrothermal synthesis apparatus consisting of a tubular reactor with a diameter of 0 mm, a length of 4200 mm, and a volume of 1st was used. The tubular reactor was equipped with screws in which two pitches of screw blades were left at three equal intervals in the axial direction, and screws were cut out every other blade at 30° intervals in the helical direction. In addition, pressure balance tubes were installed at the top of the complete mixing reactor and near the inlet of the tubular reactor.

原料石膏と水を混ぜスラリーとしスラリーポンプで連続
的に水熱合成装置に供給し、製造条件温度130℃、圧
力2.sKg/cJで所定時間滞留後、α型半水石膏と
して回収した。なお、媒晶剤とじてコハク酸ナトリウム
を原料石膏に対して重量比で0.1チ添加した。スラリ
ーのpHはNa0)i により調整した。未反応の2水
石膏は認められなかった。
The raw material gypsum and water are mixed to form a slurry, which is continuously supplied to the hydrothermal synthesis equipment using a slurry pump.Production conditions: temperature 130°C, pressure 2. After staying at sKg/cJ for a predetermined time, it was recovered as α-type hemihydrate gypsum. In addition, 0.1 g of sodium succinate was added as a crystal modifier to the raw gypsum. The pH of the slurry was adjusted by Na0)i. No unreacted dihydrate gypsum was observed.

ツ・1表に製造条件を、まだ第2表に第1表で得られた
製品α型半水石膏と市販品の品質試験結果を各々に示し
た。品質試験はJIS R9112−195(iに実施
例 オ  1  表 第2表 実施例2 排煙脱硫石−1lv:を原料とし加圧水溶液法によυα
型半水石膏の連続製造を行なった。連続式反応装置は直
径300mm、高さ700mm、容fp47tの完全混
合型反応槽とこれに続く直径100mm、長さ4200
mrn 、  容積18 tの管型反応器からなる連続
水熱合成装置を用いた。なお管型反応器は実/kU19
1J lと同一のものを使用した。
Table 1 shows the manufacturing conditions, and Table 2 shows the quality test results for the α-type hemihydrate gypsum product obtained in Table 1 and the commercial product. The quality test was conducted using JIS R9112-195 (Example 1 in Table 2 Example 2 Flue gas desulfurization stone-1lv: as a raw material and υα by the pressurized aqueous solution method.
Continuous production of type hemihydrate gypsum was carried out. The continuous reactor consists of a complete mixing type reaction tank with a diameter of 300 mm, a height of 700 mm, and a capacity of FP47t, followed by a complete mixing type reaction tank with a diameter of 100 mm and a length of 420 mm.
A continuous hydrothermal synthesis apparatus consisting of a tubular reactor with a volume of 18 t was used. The tubular reactor is actual/kU19
The same one as 1Jl was used.

原料石膏と水を混ぜてスラリーとし、媒晶剤としてコハ
ク酸ナトリウムを、原料石膏に対して重量比で0.1チ
添加した。原料スラリーをスラリーポンプで連続的に水
熱合成装置に供給し、所定時間滞留後α型半水石膏とし
て回収した。原料スラリーの水/石膏比は重量比で1.
5、スラリーpl+は9.5、滞留時間1.5時間で運
転した。
Raw gypsum and water were mixed to form a slurry, and sodium succinate was added as a crystal modifier at a weight ratio of 0.1% to the raw gypsum. The raw material slurry was continuously supplied to the hydrothermal synthesis apparatus using a slurry pump, and after residence for a predetermined period of time, it was recovered as α-type hemihydrate gypsum. The water/gypsum ratio of the raw material slurry is 1.
5. Slurry pl+ was operated at 9.5 and residence time 1.5 hours.

製品α型半水石膏の品質試験結果を第3表に示しだ。Table 3 shows the quality test results of the α-type hemihydrate gypsum product.

オ  3  表 実施例3 排煙脱硫石膏を原料とし加圧水溶液法によりα型半水石
膏の連続製造を行なった。連続式水熱合成装置は直径5
121、高さ975簡、容積200tの完全混合型反応
槽と、これに続く直径100mw、長さ4200  a
m、容積18tの管型反応器からなる連続式水熱合成装
置を用いた。 管型反応器はスクリュー型攪拌機を設置
し、スクリュー羽根には厚さ3 mm のシリコンゴノ
ル板を接着して製品の付着を防止した。完全混合型反応
槽の筒頂と釘型反応器の投入口近傍に圧力バランス管を
設置した。
Example 3 α-type hemihydrate gypsum was continuously produced using flue gas desulfurization gypsum as a raw material by a pressurized aqueous solution method. Continuous hydrothermal synthesis equipment has a diameter of 5
121, a complete mixing type reaction tank with a height of 975 m and a capacity of 200 t, followed by a reactor with a diameter of 100 mw and a length of 4200 m.
A continuous hydrothermal synthesis apparatus consisting of a tubular reactor with a capacity of 18 t and a diameter of 18 t was used. The tubular reactor was equipped with a screw type stirrer, and a 3 mm thick silicon gonor plate was adhered to the screw blade to prevent product from adhering. A pressure balance tube was installed at the top of the complete mixing reactor and near the inlet of the nail reactor.

原f1石膏と水を混ぜスラリーとしスラリーポンプで連
続的に水熱合成装置に供給し、製造争件温度130℃、
圧力2.8Kg/cm2で所定時間滞留後α型半水石膏
として回収した。なお、媒晶剤としてコハク酸ナトリウ
ムを原料石膏に対してM月比で0.1チ添加した。
Raw F1 gypsum and water are mixed to form a slurry, which is continuously supplied to the hydrothermal synthesis equipment using a slurry pump, with a manufacturing temperature of 130°C.
After staying at a pressure of 2.8 Kg/cm2 for a predetermined time, it was recovered as α-type hemihydrate gypsum. In addition, 0.1 g of sodium succinate was added as a crystal modifier to the raw gypsum at a monthly ratio of 0.1 g.

スラリーのpHはNaOHによp調整した。The pH of the slurry was adjusted with NaOH.

第4表に製造条件を、また第5表に得られた製品α型半
水石膏の品質試験結果を各々に示した。
Table 4 shows the manufacturing conditions, and Table 5 shows the quality test results of the α-type hemihydrate gypsum product.

ツ・4表 オ    5    表 実施例4 ジプザイトAL(01()s を原料とじベーマイト/
uo(JHの連続合成を行なった。連続式水熱合成装置
は実施例1に使用したものと同じである。製造条件は水
/ジブサイト比は重量比で5に混ぜたスラリーとし、温
度160〜180℃、圧力(i、3〜10.3 Kg/
cn?の飽第11水蒸気圧下で実施した。第6表に製造
条件とベーマイト率(%)を示した。
TS・4Table 5 Table Example 4 Gypzite AL (01()s) is bound as a raw material and boehmite/
Continuous synthesis of JH was performed. The continuous hydrothermal synthesis apparatus was the same as that used in Example 1. The production conditions were a slurry with a water/gibsite ratio of 5 by weight, and a temperature of 160~ 180℃, pressure (i, 3-10.3 Kg/
cn? The experiment was carried out under the 11th water vapor pressure. Table 6 shows the manufacturing conditions and boehmite percentage (%).

第6表 (注)ベーマイト率はCIIKα線によるベーマイトの
回折角2θ= 14.5°、ジブザイトの回折角2θ=
 20.3°のX線回折ピークの強度比から求めた値で
ある。
Table 6 (Note) The boehmite rate is the diffraction angle 2θ of boehmite by CII Kα rays = 14.5°, the diffraction angle 2θ of gibzite =
This value was determined from the intensity ratio of the X-ray diffraction peak at 20.3°.

実施例5 シリカゾルとアルミン酸ソーダを原料としA型ゼオライ
トの連続合成を行なった。連続式水熱合成装置Nは実施
例1で使用したものと同一である。
Example 5 A type zeolite was continuously synthesized using silica sol and sodium aluminate as raw materials. The continuous hydrothermal synthesizer N is the same as that used in Example 1.

製造条件はシリカゾルとアルミン酸ソーダをNaO/5
i02 =0.5.5iOz/A403= 4 、H*
 0/Naz O= 246に配合してスラリーとし、
温度110℃で圧力1.5Kg/cm”の飽和水蒸気圧
下で実施した。滞留時間5hrでほぼ純度100%のA
型ゼオライトが合成出来た。
The manufacturing conditions are silica sol and sodium aluminate with NaO/5
i02 =0.5.5iOz/A403= 4, H*
0/Naz O=246 to make a slurry,
The experiment was carried out at a temperature of 110°C and a pressure of 1.5 Kg/cm'' under saturated steam pressure.A with almost 100% purity was obtained with a residence time of 5 hours.
type zeolite was synthesized.

実施例6 廃アルミナゲル(アルミニウムの硫酸処理物)と水ガラ
スを原料としA型ゼオライトの連続合成を行なった。連
続式水熱合成装置は実施例1で使用したものと同一であ
る。製造条件it[アルミナゲルと水ガラスをNa2O
/5i02= 2.0、S i O□/A1203=2
.0、I120/Na z O= 100  に配合し
てスラリーとし、温度105℃圧力t、zKp/♂の飽
和水蒸気圧下で実施した。7111留時間5 hrでA
型ゼオライト(純度95チ)が得られた。
Example 6 A-type zeolite was continuously synthesized using waste alumina gel (aluminum treated with sulfuric acid) and water glass as raw materials. The continuous hydrothermal synthesis apparatus was the same as that used in Example 1. Manufacturing conditions: alumina gel and water glass are mixed with Na2O
/5i02=2.0, S i O□/A1203=2
.. 0, I120/NazO=100 to form a slurry, and the test was carried out at a temperature of 105°C and a pressure of t and saturated steam pressure of zKp/♂. 7111 residence time 5 hr A
Type zeolite (purity 95%) was obtained.

実施例7 生石灰(純度96チ〕とシリカ(シリカダスト純度94
% ) ′fc原料としてゾノトライトの連続合成を行
なった。連続式水熱合成装置は実施例1に使用したもの
と同じものである。生石灰を温水で消化させた後、M 
、fft比でCaO/5i02= 0.9になルヨウニ
シリカを加え、また水/固体化12倍になるように水を
加えてスラリーとし、スラリーポンプで連続的に供給し
、所定時間滞留後ゾノトライトどして回収した。製造条
件は温度190℃、圧力12 、8 K9/lyn2の
飽和水蒸気圧下で6時間滞留させた。製品ゾノトライト
は0.5μφ×10μの針状結晶で、平均20μ程度の
球状集合体として回収された。
Example 7 Quicklime (purity 96%) and silica (silica dust purity 94%)
%)' Continuous synthesis of xonotlite was carried out as fc raw material. The continuous hydrothermal synthesis apparatus was the same as that used in Example 1. After digesting quicklime with warm water, M
, to a fft ratio of CaO/5i02 = 0.9, add silica and add water to make a slurry so that the ratio of water/solidification is 12 times.The slurry is continuously supplied with a slurry pump, and after residence for a predetermined time, xonotlite etc. and collected it. The production conditions were a temperature of 190°C, a pressure of 12°C, and a residence time of 6 hours under a saturated steam pressure of 8 K9/lyn2. The product xonotlite was a needle-like crystal of 0.5μΦ×10μ, and was recovered as a spherical aggregate with an average size of about 20μ.

比較例1 排煙脱硫石膏を原料とし、加圧水溶液法によりα型半水
石膏の連続製造を行なった。連続式水熱合成装置は直径
512mm、高さ975mm、  容積200tの単一
完全混合型反応槽を用いた。
Comparative Example 1 Using flue gas desulfurization gypsum as a raw material, α-type hemihydrate gypsum was continuously produced by a pressurized aqueous solution method. The continuous hydrothermal synthesis apparatus used a single complete mixing type reaction tank with a diameter of 512 mm, a height of 975 mm, and a volume of 200 tons.

製造条件は温度130℃、圧力2 、8 Kmc*の飽
和水蒸気圧下で実施した。原料石膏と水を混ぜてスラリ
ーとし、スラリーポンプで連続的に供給し所定時間滞留
後、α型半水石膏としで回収した。なお、媒晶剤として
コハク酸ナトリウムを原))石膏に対して重量比で0.
05〜0.2%添加した。オフ表に製造条件および製品
α型半水石膏に残存する2水石膏の割合(未反応率)を
示した。未反応率はDTAおよびTGによシ測定した。
The manufacturing conditions were a temperature of 130° C. and a pressure of 2.8 Kmc* under saturated steam pressure. Raw material gypsum and water were mixed to form a slurry, which was continuously supplied using a slurry pump and, after residence for a predetermined period of time, was recovered as α-type hemihydrate gypsum. In addition, sodium succinate was used as a crystal modifier at a weight ratio of 0.0% to gypsum.
05-0.2% was added. The production conditions and the proportion of dihydrate gypsum remaining in the α-type hemihydrate gypsum product (unreacted rate) are shown in the off-line table. The unreacted rate was measured by DTA and TG.

オ   7   表 (注)結晶形○は短柱状で結晶が大きいΔは柱状で結晶
が小さい ×は剣状で結晶が小さい 同一製造条件で実施した完全混合型反応槽とこれに続く
管理反応器の組み合せによる連続式水熱合成装置(実施
例1の装置っでの実験では、いずれも2水石膏の痕跡は
認められなかった。なお、単一完全混合型反応槽のバッ
チ糸付で実施した場合2水石πの消失までに5時以上が
がった。
E7 Table (Note) Crystal form ○: short columnar shape with large crystals Δ: columnar shape with small crystals ×: sword shape with small crystals A combination of continuous hydrothermal synthesis equipment (in the experiments using the equipment in Example 1, no trace of dihydrate was observed in any of the experiments. In addition, when carried out using a single complete mixing type reaction tank with a batch line attached) It took more than 5 hours for 2 Suiseki π to disappear.

比較例2 排煙脱硫石膏を原お)とし、カIノ圧水溶液法によpa
α型半水石膏連続製造を行なった。連続水熱合成装r!
t、Vi直径100mm、長さ4200 mm 、容積
18tの管理反応器(実施例1の管理反応器)のみを用
いた。製造条件は温度130℃、圧力2 、8 Kg/
cmの飽和蒸気圧下で実施した。原)1石膏と水を混ぜ
てスラリーとし、スラリーポンプで連続的に供給し所定
時間滞留後、α型半水石膏として回収した。なお、媒晶
剤はコハク酸ナトリウムを原料石膏に対して重量比で0
.1チ添加した。オ8表に製造会件を、オ9表に製品α
型半水石膏の品質試験結果を示した。
Comparative Example 2 Flue gas desulfurization gypsum was used as raw material, and pa
Continuous production of α-type hemihydrate gypsum was carried out. Continuous hydrothermal synthesis system!
Only a control reactor (control reactor of Example 1) having a diameter of 100 mm, a length of 4200 mm, and a volume of 18 tons was used. The manufacturing conditions are temperature 130℃, pressure 2, 8 kg/
The experiment was carried out under a saturated vapor pressure of cm. Original) 1 Gypsum and water were mixed to make a slurry, which was continuously supplied using a slurry pump and after residence for a predetermined period of time, was recovered as α-type hemihydrate gypsum. In addition, the crystal modifier is sodium succinate in a weight ratio of 0 to the raw gypsum.
.. Added 1 inch. Manufacturing information is shown in table O8, and product α is shown in table O9.
The quality test results of type hemihydrate gypsum are shown.

オ  8  表E 8 Table

【図面の簡単な説明】[Brief explanation of the drawing]

オ1図は、本発明に係る連続式水熱合成装置の一例の縦
断面説明図である。 l・・・完全混合型反応槽 2・・・原享)送入口3・
・・攪拌器      4・・・ジャケット5・・・翰
送管      6・・・管理反応器7−・・スクリュ
ー型攪拌器   8・・・排出口9・・・ジャケットI
O・・・圧カバランス調整管
FIG. 1 is an explanatory longitudinal cross-sectional view of an example of a continuous hydrothermal synthesis apparatus according to the present invention. l...Complete mixing type reaction tank 2...Hara Kyo) Inlet port 3.
... Stirrer 4 ... Jacket 5 ... Feed pipe 6 ... Management reactor 7 - ... Screw type stirrer 8 ... Discharge port 9 ... Jacket I
O...Pressure balance adjustment tube

Claims (2)

【特許請求の範囲】[Claims] (1)完全混合型反応槽とこれに続くスクリュー型攪拌
機を設置した管型反応器とから構成され、かつ両者間に
反応物を移送する管とは別個に圧力を調整するための圧
力バランス調整管を設置したことを特徴とする連続式水
熱合成装置。
(1) Composed of a complete mixing type reaction tank and a subsequent tubular reactor equipped with a screw type stirrer, and pressure balance adjustment to adjust the pressure separately from the tube that transfers reactants between the two. A continuous hydrothermal synthesis device characterized by the installation of pipes.
(2)完全混合型反応槽とこれに続く軸方向に適宜の位
置においてスクリュー羽根を少なくとも1ピッチ以上残
し、それ以外のスクリュー羽根をそのラセン方向の面に
沿って20ないし40度間隔で一枚おきに切除したスク
リュー型攪拌機を設置した管型反応器とから構成され、
かつ両者間に反応物を移送する管とは別個に圧力を調整
するだめの圧力バランス調整管を置したことを特徴とす
る連続式水熱合成装置。
(2) Leave at least one pitch of screw blades at appropriate positions in the axial direction following the complete mixing type reaction tank, and leave one screw blade at intervals of 20 to 40 degrees along the helical direction of the other screw blades. It consists of a tubular reactor equipped with a screw-type stirrer cut out at intervals.
A continuous hydrothermal synthesis apparatus characterized in that a pressure balance adjustment tube for adjusting the pressure is placed between the two, separate from the tube for transferring the reactant.
JP57128885A 1982-07-26 1982-07-26 Continuous hydrothermal synthesis apparatus Granted JPS5919540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57128885A JPS5919540A (en) 1982-07-26 1982-07-26 Continuous hydrothermal synthesis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57128885A JPS5919540A (en) 1982-07-26 1982-07-26 Continuous hydrothermal synthesis apparatus

Publications (2)

Publication Number Publication Date
JPS5919540A true JPS5919540A (en) 1984-02-01
JPH025136B2 JPH025136B2 (en) 1990-01-31

Family

ID=14995755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57128885A Granted JPS5919540A (en) 1982-07-26 1982-07-26 Continuous hydrothermal synthesis apparatus

Country Status (1)

Country Link
JP (1) JPS5919540A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035316A (en) * 1989-02-01 1991-01-11 Rhone Poulenc Chim Production of activated alumina aggregate, aggregate obtained by said method and apparatus for executing said method
US5866754A (en) * 1992-12-07 1999-02-02 Gerard De Blangy Method and apparatus for processing and exploiting waste by transforming it into materials that are non-polluting and reusable
US5910298A (en) * 1996-01-10 1999-06-08 Nakamichi Yamasaki Method of and apparatus for performing continuous hydrothermal synthesis
WO2000076736A1 (en) * 1999-06-15 2000-12-21 The Dow Chemical Company Process and apparatus for preparing a composition using a slurry feed
CN102166480A (en) * 2011-03-01 2011-08-31 南京九思高科技有限公司 An apparatus and a method for synthesizing molecular sieve membranes
EP2446957A3 (en) * 2005-09-28 2012-08-22 China Tobacco Hunan Industrial Corporation Devices for adding tobacco dust into paper making tobacco sheet
JP2015110521A (en) * 2015-01-30 2015-06-18 関東電化工業株式会社 Method for producing inorganic fine particles, and apparatus for producing the inorganic fine particles
JP2015533632A (en) * 2013-06-17 2015-11-26 ラミナー カンパニー,リミテッド Particle manufacturing apparatus and particle manufacturing method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169162B2 (en) * 1995-12-08 2001-05-21 関西電力株式会社 Humidifying kneader

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035316A (en) * 1989-02-01 1991-01-11 Rhone Poulenc Chim Production of activated alumina aggregate, aggregate obtained by said method and apparatus for executing said method
US5866754A (en) * 1992-12-07 1999-02-02 Gerard De Blangy Method and apparatus for processing and exploiting waste by transforming it into materials that are non-polluting and reusable
US5910298A (en) * 1996-01-10 1999-06-08 Nakamichi Yamasaki Method of and apparatus for performing continuous hydrothermal synthesis
WO2000076736A1 (en) * 1999-06-15 2000-12-21 The Dow Chemical Company Process and apparatus for preparing a composition using a slurry feed
WO2000076737A1 (en) * 1999-06-15 2000-12-21 The Dow Chemical Company Process and apparatus for preparing a composition using a continuous reactor and mixer in series
EP2446957A3 (en) * 2005-09-28 2012-08-22 China Tobacco Hunan Industrial Corporation Devices for adding tobacco dust into paper making tobacco sheet
CN102166480A (en) * 2011-03-01 2011-08-31 南京九思高科技有限公司 An apparatus and a method for synthesizing molecular sieve membranes
JP2015533632A (en) * 2013-06-17 2015-11-26 ラミナー カンパニー,リミテッド Particle manufacturing apparatus and particle manufacturing method using the same
JP2015110521A (en) * 2015-01-30 2015-06-18 関東電化工業株式会社 Method for producing inorganic fine particles, and apparatus for producing the inorganic fine particles

Also Published As

Publication number Publication date
JPH025136B2 (en) 1990-01-31

Similar Documents

Publication Publication Date Title
TW524792B (en) Aromatic alkylation process
US5367100A (en) Process for the conversion of methanol to light olefins and catalyst used for such process
EP0055529B1 (en) Zeolites
JPS5919540A (en) Continuous hydrothermal synthesis apparatus
JP2019524610A (en) Process for continuous synthesis of zeolitic materials
US11535578B2 (en) Processes for converting aromatic hydrocarbons using passivated reactor
CN105329915A (en) Method for synthesizing nanometer ZSM-5 molecular sieves through crystallized mother liquor
EP1334957A1 (en) Dehydrogenation process
JPH09122481A (en) Tube reactor
AU753445B2 (en) Preparation of zeolite L
EP1152979A1 (en) Method for making zsm-5 zeolites
JPS6247172B2 (en)
RU2363659C1 (en) Method for boehmite and hydrogen preparation
CN109422641B (en) Continuous production method for preparing calcium formate from yellow phosphorus tail gas
EP0156594B1 (en) A continuous process for manufacturing crystalline zeolites
JP4987476B2 (en) Method for producing bisphenol A
CN207816054U (en) A kind of heat exchanger, the four Hydrogenation iso-butane device of mixing carbon using the heat exchanger
CN209815705U (en) Synthesizer of high silicon zeolite molecular sieve
JP3482673B2 (en) Method for producing zeolite β
US20110060149A1 (en) Process for preparing ethylene oxide
US11827579B2 (en) Processes for converting benzene and/or toluene via methylation
CN102441423B (en) A kind of three-crystalline phase composite molecular sieve and preparation method thereof
US6599494B2 (en) Process for preparing artificial zeolite by a slurry reaction method
ES2124142A1 (en) Synthesis of beta zeolite
CN219111575U (en) Production system for synthesizing benzonitrile compounds