JPH025136B2 - - Google Patents

Info

Publication number
JPH025136B2
JPH025136B2 JP57128885A JP12888582A JPH025136B2 JP H025136 B2 JPH025136 B2 JP H025136B2 JP 57128885 A JP57128885 A JP 57128885A JP 12888582 A JP12888582 A JP 12888582A JP H025136 B2 JPH025136 B2 JP H025136B2
Authority
JP
Japan
Prior art keywords
slurry
type
screw
hydrothermal synthesis
complete mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57128885A
Other languages
Japanese (ja)
Other versions
JPS5919540A (en
Inventor
Hirofumi Tanaka
Juichi Kataoka
Kyohiko Uchida
Taido Kanesaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP57128885A priority Critical patent/JPS5919540A/en
Publication of JPS5919540A publication Critical patent/JPS5919540A/en
Publication of JPH025136B2 publication Critical patent/JPH025136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、槽型反応器と管型反応器を組合せた
連続式水熱合成装置に関する。 反応装置を装置形状で大きく分けると、槽型反
応装置、管型反応装置及び塔型反応装置となる。
また流れの流動状態には理想流れと非理想流れが
あり、前者はさらに押出し流れ(piston flow)
と完全混合流れ(mixed flow)に分けられる。
理想流れは理想化された流れであり、実際の反応
器においては押出し流れと完全混合流れの中間的
性格をもつ非理想流れを示すと考えられる。 一般に槽型反応装置は、撹拌機を設けることに
よつて完全混合流れを、管型反応装置は押出し流
れを各々示すとして設計される。塔型反応装置は
主に触媒等の充填塔として用いられ、その装置内
の流れの状態は非理想流れを示す。 完全混合型反応槽(完全混合流れを示す撹拌機
付槽型反応装置)を用いた連続操作では、槽内液
組成は全ての部分で均一であり、出口液組成は槽
内のそれと同一である。従つて種々の条件、例え
ば処理量、装置容量、反応速度等により、単一反
応槽では出口液組成中に占める未反応物量が無視
できなくなる恐れがある。このため連続操作にお
いては一般に、完全混合型反応槽を単独で用いる
ことはまれで、これをいくつか連結した多段式の
ものが採用されることが多い。 一方、管型反応器では反応器内組成は均一では
なく、流れ方向に沿つて連続的に変化する。反応
工学的には管型反応器は、完全混合型反応槽を無
限個つないだものと考えることができる。 本発明は、これら完全混合型反応槽と管型反応
器とを基本構成要素とする連続式水熱合成装置に
関するものである。 水熱合成は高温の水特に高温高圧の水の存在の
下に行なわれる化合物の合成および結晶育成法を
言い、その代表例としては、α型半水石膏(α−
CaSO4・1/2H2O)、ベーマイト(AlOOH)及び
ゾノトライト(6CaO・6SiO2・H2O)等の合成
がある。この水熱合成反応では、原料はスラリー
で与えられる場合がほとんどで、上の例で言うな
らばα型半水石膏合成では二水石膏(CaSO4
2H2O)−水系スラリー、ベーマイト合成ではジ
ブサイト(Al(OH)3)−水系スラリー、またゾノ
トライトの場合は生石灰(CaO)−シリカ
(SiO2)−水系スラリーが各々原料スラリーとし
て反応に供せられる。 水熱合成反応は大きく分けて核生成及び結晶成
長の二段階を経て進行するが、第一段階の核生成
には撹拌槽のような比較的大きな空間をもち、し
かも均一に撹拌されるものが最適である。原料が
スラリーで与えられる場合が多い水熱合成を行な
う装置としては、上述のように撹拌槽型の均一撹
拌式すなわち完全混合型反応槽が最も有効である
が、この場合問題となるのは未反応原料の製品へ
の混入による製品品質の低下である。未反応原料
の製品への混入を防ぐためには、回分操作ならば
充分な反応時間をとればよいが、連続操作の場合
は撹拌槽を多段にするのが最も一般的であり、そ
の結果装置が複雑かつ規模が大きくならざるを得
ない。一般に工業操作として連続操作の方が回分
操作より有利な点が多いにもかかわらず、現状で
はスラリー原料を連続的に安定処理できる水熱合
成装置はほとんど実用化されていない。 本発明は、完全混合型反応槽と管型反応器を組
み合わせただけの極めてシンプルかつコンパクト
な構造により、原料がスラリーで与えられること
の多い水熱合成において未反応原料が製品中に混
入して起きる製品品質の低下を全く引き起こすこ
となく連続的に安定処理できる水熱合成装置を提
供するものである。 すなわち本発明の第1の発明は、完全混合型反
応槽とこれに続くスクリユー型撹拌機を設置した
管型反応器とから構成され、かつ両者間に反応物
を移送する管とは別個に圧力を調整するための圧
力バランス調整管を設置したことを特徴とする連
続式水熱合成装置である。また第2の発明は、第
1の発明のスクリユー型撹拌機として、軸方向に
適宜の位置においてスクリユー羽根を少なくとも
1ピツチ以上残し、それ以外のスクリユー羽根を
そのラセン方向の面に沿つて20ないし40度間隔
で、一枚おきに切除したものを使用したものであ
る。 前述したように完全混合型反応槽は、連続操作
の場合出口組成と槽内組成が同一であるため、こ
れ単独では出口スラリー中に未反応原料が混入す
ることは本質的に避けられないので、本発明にお
いては反応工学的に完全混合型反応槽を無限個直
列につないだものと解析される、つまり反応条件
によつては出口スラリー中に未反応原料が残存す
る恐れが全くない管型反応器を後設することによ
り未反応原料の混入をなくするものである。これ
により、完全混合型反応槽を多段にする場合に比
べ装置規模が小さく、かつ構造がシンプルである
ため設備コストも低減できる。 また完全混合型反応槽と管型反応器の組み合わ
せを水熱合成の各段階、すなわち核生成と結晶成
長に分けてみるならば、完全混合型反応槽では前
述のように主として核生成が行なわれ、その後結
晶成長が一部進行したのち管型反応器に入り、こ
こでさらに結晶の成長が行なわれるのである。 さらに上記管型反応器は、その内部にスクリユ
ー型撹拌機を備えている。管型反応器は一般に気
相、液相といつた単一相の反応に用いられ、スラ
リーのような固液相の処理には適さない。本発明
になる管型反応器は、スクリユー型撹拌機を付設
することにより原料がスラリーで与えられた場合
でも連続して安定な水熱合成処理ができる。また
この撹拌機は基本的にはスクリユー型であるた
め、かなり濃厚なスラリーであつても管型反応器
内を通すことができる。 すなわち本発明になる管型反応器は、単に反応
を起こなわせるだけでなく、反応物を次のプロセ
スに輸送するという機能をも兼ね備えているので
ある。 以下、本発明を図面を参照しながら説明する。 第1図は、本発明にかかる連続式水熱合成装置
の一例を示す縦断面説明図である。図において1
は完全混合型反応槽であり、原料送入口2より送
入される原料はここで撹拌機3により均一に撹拌
されながら水熱合成され、結晶核の発生及び結晶
成長を行なう。4は加熱用ジヤケツトである。こ
のジヤケツトの内部は図のようにラセン状に流路
が仕切られており、熱媒体はこの流路に沿つてジ
ヤケツト内を流れる。反応物はさらに輸送管5を
経て管型反応器6へと導かれ、スクリユー型撹拌
機7により均一に撹拌され未反応物を完全に反応
し、さらに結晶成長を行ない、排出口8へと移送
される。9は4と同様加熱用ジヤケツトである。
スクリユー型撹拌機7は、前述したようにスラリ
ー状反応物が固液分離して管内に堆積するのを防
ぐと共にスクリユー本来の機能である輸送の役割
も果たすものである。すなわちスラリーはこのス
クリユー型撹拌機により管型反応器内を均一に撹
拌されつつ結晶成長を行ないながら排出口へと輸
送されるわけである。スクリユー型撹拌機として
は通常のラセン状スクリユーのままでもよいが、
好ましくは軸方向に適宜の位置においてスクリユ
ー羽根を少なくとも1ピツチ以上残し、それ以外
のスクリユー羽根をそのラセン方向の面に沿つて
20ないし40度間隔で、一枚おきに羽根を切除する
のが撹拌性能及び製品品質保持の両面から有効で
ある。 すなわちスクリユーは本来輸送手段として用い
られるもので、その構造上スラリーの撹拌には向
いていないが、上述のようにスクリユー羽根を切
除することにより撹拌性能の向上を計る一方基本
的にはスクリユー本来のラセン構造を残している
ため輸送の機能も兼ね備えているのである。また
スクリユー羽根全部に対してこのように切除する
わけでなく、軸方向に適宜の位置でスクリユー羽
根をそのまま少なくとも1ピツチ以上残すのは、
製品の品質保持の面から意味がある。すなわちこ
のスクリユー羽根をそのまま残した部分が、一種
のせき止め帯となつてスラリーの反応器内滞留を
促進する効果を与え、その結果未反応原料の素通
りが阻止されるため製品への未反応物混入が避け
られるのである。このせき止め帯の間の部分で
は、前述した様に切除したスクリユー羽根により
均一に撹拌されることを考え合わせるならば、本
発明になる管型反応器は、完全混合型反応槽を多
段に連結したものと等価とみなせられるが、その
場合には本発明の場合より装置が複雑かつ大規模
になる。 このせき止め帯の数は反応系の特性、操作条
件、製品の品質特性等により決められるものであ
る。またこのスクリユー型撹拌機の排出口8側の
部分は、第1図の様にスクリユー羽根を2ないし
3ピツチ逆ラセンにすることにより、スラリーの
排出を円滑に行なうことができる。 また第1図には完全混合型反応槽1と管型反応
器6の間にスラリー輸送管5とは別に、圧力を調
整するための圧力バランス調整管10がある。完
全混合型反応槽1から管型反応器6に輸送管5を
介してスラリーが移送される際に生じる完全混合
型反応槽1と管型反応器6との間の圧力バランス
の変動が、この配管10内の蒸気移動により補償
され、その結果装置系全体を安定に操作できるわ
けである。 このように本発明は、原料がスラリーで与えら
れる場合が多い水熱合成において連続的に安定し
た処理ができる連続式水熱合成装置を提供するも
のである。 次に本発明を実施例、比較例によつて更に具体
的に説明する。 実施例 1 排煙脱硫石膏(2水石膏)を原料として加圧水
溶液法によりα型半水石膏の連続製造を行なつ
た。連続式反応装置は直径512mm、高さ975mm、容
積200の完全混合型反応槽と、これに続く直径
100mm、長さ4200mm、容積18の管型反応器から
なる連続水熱合成装置を用いた。管型反応器は軸
方向に3等分にスクリユー羽根を2ピツチ残しそ
のラセン方向に30゜間隔で一枚おきに羽根を切除
したスクリユーを設置した。また完全混合型反応
槽の筒頂と管型反応器の投入口近傍に圧力バラン
ス管を設置した。 原料石膏と水を混ぜスラリーとしスラリーポン
プで連続的に水熱合成装置に供給し、製造条件温
度130℃、圧力2.8Kg/cm2で所定時間滞留後、α型
半水石膏として回収した。なお、媒晶剤としてコ
ハク酸ナトリウムを原料石膏に対して重量比で
0.1%添加した。スラリーのPHはNaOHにより調
整した。未反応の2水石膏は認められなかつた。 第1表に製造条件を、また第2表に第1表で得
られた製品α型半水石膏と市販品の品質試験結果
を各々に示した。品質試験はJIS R 9112−1956
に準して実施した。
The present invention relates to a continuous hydrothermal synthesis apparatus that combines a tank reactor and a tube reactor. Reactors can be broadly divided into tank-type reactors, tube-type reactors, and tower-type reactors.
In addition, there are two types of flow states: ideal flow and non-ideal flow, and the former is also known as piston flow.
and completely mixed flow.
The ideal flow is an idealized flow, and in an actual reactor it is thought to exhibit a non-ideal flow with characteristics intermediate between an extrusion flow and a complete mixing flow. In general, a tank reactor is designed to provide a completely mixed flow by providing an agitator, and a tubular reactor is designed to provide a push flow. A column reactor is mainly used as a packed column for catalysts, etc., and the flow state within the device exhibits a non-ideal flow. In continuous operation using a fully mixed reactor (tank reactor with a stirrer that exhibits a completely mixed flow), the liquid composition inside the tank is uniform in all parts, and the outlet liquid composition is the same as that inside the tank. . Therefore, depending on various conditions such as throughput, equipment capacity, reaction rate, etc., in a single reaction tank, the amount of unreacted substances in the composition of the outlet liquid may become non-negligible. For this reason, in continuous operation, it is generally rare to use a complete mixing type reaction tank alone, and a multistage type in which several of these are connected is often used. On the other hand, in a tubular reactor, the composition within the reactor is not uniform and changes continuously along the flow direction. In terms of reaction engineering, a tubular reactor can be thought of as an infinite number of complete mixing reaction vessels connected together. The present invention relates to a continuous hydrothermal synthesis apparatus having these complete mixing type reaction vessels and tubular reactors as basic components. Hydrothermal synthesis refers to a method for synthesizing compounds and growing crystals in the presence of high-temperature water, particularly high-temperature, high-pressure water.A typical example is α-type hemihydrate gypsum (α-
Synthesis includes CaSO 4 1/2H 2 O), boehmite (AlOOH) and xonotlite (6CaO 6SiO 2 H 2 O). In this hydrothermal synthesis reaction, the raw material is most often provided in the form of a slurry, and in the above example, in the synthesis of α-type hemihydrate, dihydrate ( CaSO4 .
2H 2 O)-water-based slurry, gibbsite (Al(OH) 3 )-water-based slurry for boehmite synthesis, and quicklime (CaO)-silica (SiO 2 )-water-based slurry for xonotrite are each used as raw material slurries for the reaction. It will be done. The hydrothermal synthesis reaction proceeds through two stages: nucleation and crystal growth.The first stage of nucleation requires a relatively large space such as a stirred tank, which is evenly stirred. Optimal. As mentioned above, the most effective equipment for hydrothermal synthesis, where raw materials are often provided in the form of slurry, is a stirred tank type reaction tank with uniform stirring, that is, a complete mixing type reaction tank, but in this case, the problem is that This is a decrease in product quality due to the contamination of reaction raw materials into the product. In order to prevent unreacted raw materials from being mixed into the product, if it is a batch operation, it is sufficient to allow sufficient reaction time, but if it is a continuous operation, it is most common to use a multi-stage stirring tank, which results in equipment It has no choice but to become complex and large in scale. Although continuous operation generally has many advantages over batch operation as an industrial operation, at present there are almost no hydrothermal synthesis apparatuses that can stably process slurry raw materials in a continuous manner. The present invention has an extremely simple and compact structure that combines a complete mixing reactor and a tubular reactor, which prevents unreacted raw materials from getting mixed into the product during hydrothermal synthesis, where raw materials are often provided in the form of slurry. The present invention provides a hydrothermal synthesis device that can perform continuous and stable processing without causing any deterioration in product quality. That is, the first invention of the present invention is composed of a complete mixing type reaction tank and a tubular reactor equipped with a screw-type stirrer, and the pressure is controlled separately from the tube for transferring reactants between the two. This is a continuous hydrothermal synthesis device characterized by the installation of pressure balance adjustment pipes to adjust the pressure. Further, the second invention is the screw-type agitator of the first invention, in which at least one pitch or more of the screw blades are left at an appropriate position in the axial direction, and the other screw blades are arranged along the surface in the helical direction at 20 or more pitches. Every other sheet was excised at 40 degree intervals. As mentioned above, in a complete mixing type reaction tank, the outlet composition and the inside composition are the same in the case of continuous operation, so if this alone is used, it is essentially unavoidable that unreacted raw materials will be mixed into the outlet slurry. In the present invention, from a reaction engineering standpoint, it is analyzed that an infinite number of completely mixed reaction vessels are connected in series.In other words, depending on the reaction conditions, there is no risk of unreacted raw materials remaining in the outlet slurry. By installing a container later, it is possible to eliminate the contamination of unreacted raw materials. As a result, the scale of the apparatus is smaller and the structure is simpler than in the case of using multiple stages of complete mixing type reaction vessels, so that equipment costs can be reduced. Furthermore, if we divide the combination of a fully mixed reactor and a tubular reactor into each stage of hydrothermal synthesis, namely nucleation and crystal growth, in the fully mixed reactor, nucleation is mainly performed as mentioned above. Then, after some crystal growth has progressed, it enters a tubular reactor, where further crystal growth occurs. Further, the tubular reactor is equipped with a screw type stirrer inside thereof. Tubular reactors are generally used for single-phase reactions such as gas phase and liquid phase, and are not suitable for processing solid-liquid phases such as slurry. The tubular reactor of the present invention is equipped with a screw-type stirrer, thereby enabling continuous and stable hydrothermal synthesis treatment even when the raw material is provided as a slurry. Moreover, since this stirrer is basically a screw type, even a fairly thick slurry can be passed through the tubular reactor. In other words, the tubular reactor of the present invention not only allows reactions to occur, but also has the function of transporting reactants to the next process. Hereinafter, the present invention will be explained with reference to the drawings. FIG. 1 is an explanatory longitudinal cross-sectional view showing an example of a continuous hydrothermal synthesis apparatus according to the present invention. In the figure 1
is a complete mixing type reaction tank, in which the raw material fed through the raw material inlet 2 is hydrothermally synthesized while being uniformly stirred by a stirrer 3, thereby generating crystal nuclei and growing crystals. 4 is a heating jacket. The inside of this jacket is partitioned into a helical flow path as shown in the figure, and the heat medium flows inside the jacket along this flow path. The reactants are further guided to a tubular reactor 6 via a transport pipe 5, stirred uniformly by a screw type stirrer 7 to completely react unreacted substances, and further undergo crystal growth, before being transferred to a discharge port 8. be done. 9 is a heating jacket similar to 4.
As mentioned above, the screw type stirrer 7 prevents the slurry reactant from separating into solid and liquid and depositing in the tube, and also plays the role of transportation, which is the original function of the screw. That is, the slurry is uniformly stirred inside the tubular reactor by the screw-type stirrer and is transported to the discharge port while crystal growth occurs. As a screw-type stirrer, you can use a normal spiral-shaped screw, but
Preferably, at least one pitch of screw blades is left at an appropriate position in the axial direction, and the other screw blades are placed along the helical surface.
Cutting out every other blade at intervals of 20 to 40 degrees is effective in terms of both stirring performance and maintaining product quality. In other words, the screw is originally used as a means of transportation, and its structure makes it unsuitable for stirring slurry. However, as mentioned above, removing the screw blades improves the stirring performance. Because it retains its helical structure, it also has a transportation function. Also, it is not necessary to cut out all of the screw blades in this way, but to leave at least one pitch of the screw blades at an appropriate position in the axial direction.
This is meaningful from the perspective of maintaining product quality. In other words, the portion of the screw blade that remains intact acts as a kind of dam band and has the effect of promoting retention of the slurry in the reactor, and as a result, unreacted raw materials are prevented from passing through, thereby preventing unreacted materials from being mixed into the product. can be avoided. Considering that the area between the dam bands is uniformly stirred by the cut screw blades as described above, the tubular reactor according to the present invention is constructed by connecting complete mixing type reaction vessels in multiple stages. However, in that case, the device would be more complex and larger than in the case of the present invention. The number of damming bands is determined by the characteristics of the reaction system, operating conditions, quality characteristics of the product, etc. Further, the portion of the screw type agitator on the discharge port 8 side can smoothly discharge the slurry by forming the screw blades into a 2 or 3 pitch inverted spiral as shown in FIG. Further, in FIG. 1, there is a pressure balance adjustment pipe 10 for adjusting the pressure, in addition to the slurry transport pipe 5, between the complete mixing type reaction tank 1 and the tubular reactor 6. This fluctuation in the pressure balance between the complete mixing type reaction tank 1 and the tubular reactor 6 that occurs when the slurry is transferred from the complete mixing type reaction tank 1 to the tubular reactor 6 via the transport pipe 5 This is compensated for by the movement of steam within the pipe 10, and as a result, the entire system can be operated stably. As described above, the present invention provides a continuous hydrothermal synthesis apparatus capable of continuous and stable processing in hydrothermal synthesis where raw materials are often provided in the form of slurry. Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Example 1 α-type hemihydrate gypsum was continuously produced by a pressurized aqueous solution method using flue gas desulfurization gypsum (dihydrate gypsum) as a raw material. The continuous reactor has a complete mixing reactor with a diameter of 512 mm, a height of 975 mm, and a volume of 200 mm, followed by a
A continuous hydrothermal synthesis apparatus consisting of a tubular reactor with a length of 100 mm, a length of 4200 mm, and a volume of 18 was used. In the tubular reactor, two pitches of screw blades were left equally divided into three in the axial direction, and screws were installed in which the blades were cut out every other screw at 30° intervals in the helical direction. In addition, pressure balance tubes were installed at the top of the complete mixing reactor and near the inlet of the tubular reactor. Raw material gypsum and water were mixed to form a slurry, which was continuously supplied to a hydrothermal synthesis device using a slurry pump, and after residence for a predetermined time under the production conditions of temperature 130°C and pressure 2.8 Kg/cm 2 , it was recovered as α-type hemihydrate gypsum. In addition, the weight ratio of sodium succinate to the raw gypsum as a crystallizing agent is
Added 0.1%. The pH of the slurry was adjusted with NaOH. No unreacted dihydrate gypsum was observed. Table 1 shows the manufacturing conditions, and Table 2 shows the quality test results of the α-type hemihydrate gypsum product obtained in Table 1 and the commercially available product. Quality test is JIS R 9112-1956
It was carried out in accordance with.

【表】【table】

【表】【table】

【表】 実施例 2 排煙脱硫石膏を原料とし加圧水溶液法によりα
型半水石膏の連続製造を行なつた。連続式反応装
置は直径300mm、高さ700mm、容積47の完全混合
型反応槽とこれに続く直径100mm、長さ4200mm、
容積18の管型反応器からなる連続水熱合成装置
を用いた。なお管型反応器は実施例1と同一のも
のを使用した。 原料石膏と水を混ぜてスラリーとし、媒晶剤と
してコハク酸ナトリウムを、原料石膏に対して重
量比で0.1%添加した。原料スラリーをスラリー
ポンプで連続的に水熱合成装置に供給し、所定時
間滞留後α型半水石膏として回収した。原料スラ
リーの水/石膏比は重量比で1.5、スラリーPHは
9.5、滞留時間1.5時間で運転した。 製品α型半水石膏の品質試験効果を第3表に示
した。
[Table] Example 2 α by using pressurized aqueous solution method using flue gas desulfurization gypsum as raw material
Continuous production of type hemihydrate gypsum was carried out. The continuous reactor consists of a fully mixed reaction tank with a diameter of 300 mm, a height of 700 mm, and a volume of 47 mm, followed by a complete mixing type reactor with a diameter of 100 mm, a length of 4200 mm,
A continuous hydrothermal synthesis apparatus consisting of a tubular reactor with a capacity of 18 was used. The tubular reactor used was the same as in Example 1. Raw gypsum and water were mixed to form a slurry, and sodium succinate was added as a modifier at a weight ratio of 0.1% to the raw gypsum. The raw material slurry was continuously supplied to the hydrothermal synthesis apparatus using a slurry pump, and after residence for a predetermined period of time, it was recovered as α-type hemihydrate gypsum. The water/gypsum ratio of the raw material slurry is 1.5 by weight, and the slurry PH is
9.5, operated with a residence time of 1.5 hours. Table 3 shows the quality test effects of the α-type hemihydrate gypsum product.

【表】 実施例 3 排煙脱硫石膏を原料とし加圧水溶液法によりα
型半水石膏の連続製造を行なつた。連続式水熱合
成装置は直径512mm、高さ975mm、容積200の完
全混合型反応槽と、これに続く直径100mm、長さ
4200mm、容積18の管型反応器からなる連続式水
熱合成装置を用いた。管型反応器はスクリユー型
撹拌機を設置し、スクリユー羽根には厚さ3mmの
シリコンゴム板を接着した製品の付着を防止し
た。完全混合型反応槽の筒頂と管型反応器の投入
口近傍に圧力バランス管を設置した。 原料石膏と水を混ぜスラリーとしスラリーポン
プで連続的に水熱合成装置に供給し、製造条件温
度130℃、圧力2.8Kg/cm2で所定時間滞留後α型半
水石膏として回収した。なお、媒晶剤としてコハ
ク酸ナトリウムを原料石膏に対して重量比で0.1
%添加した。 スラリーのPHはNaOHにより調整した。 第4表に製造条件を、また第5表に得られた製
品α型半水石膏の品質試験結果を各々に示した。
[Table] Example 3 Using flue gas desulfurization gypsum as raw material, α
Continuous production of type hemihydrate gypsum was carried out. The continuous hydrothermal synthesis equipment consists of a fully mixed reaction tank with a diameter of 512 mm, a height of 975 mm, and a volume of 200 mm, followed by a 100 mm diameter and length
A continuous hydrothermal synthesis apparatus consisting of a tubular reactor with a diameter of 4200 mm and a capacity of 18 was used. The tubular reactor was equipped with a screw type stirrer, and a 3 mm thick silicone rubber plate was glued to the screw blade to prevent product from adhering. A pressure balance tube was installed at the top of the complete mixing reactor and near the inlet of the tubular reactor. Raw material gypsum and water were mixed to form a slurry, which was continuously supplied to a hydrothermal synthesis device using a slurry pump, and after residence for a predetermined time under the production conditions of temperature 130°C and pressure 2.8 Kg/cm 2 , it was recovered as α-type hemihydrate gypsum. In addition, sodium succinate is used as a crystal modifier at a weight ratio of 0.1 to the raw gypsum.
% added. The pH of the slurry was adjusted with NaOH. Table 4 shows the manufacturing conditions, and Table 5 shows the quality test results of the α-type hemihydrate gypsum product.

【表】【table】

【表】 実施例 4 ジブサイトAl(OH)3を原料としベーマイト
AlOOHの連続合成を行なつた。連続式水熱合成
装置は実施例1に使用したものと同じである。製
造条件は水/ジブサイト比は重量比で5に混ぜた
スラリーとし、温度160〜180℃、圧力6.3〜10.3
Kg/cm2の飽和水蒸気圧下で実施した。第6表に製
造条件とベーマイト率(%)を示した。
[Table] Example 4 Boehmite made from Gibsite Al (OH) 3 as raw material
Continuous synthesis of AlOOH was carried out. The continuous hydrothermal synthesis apparatus was the same as that used in Example 1. The manufacturing conditions are a slurry with a water/gibsite ratio of 5 by weight, a temperature of 160 to 180°C, and a pressure of 6.3 to 10.3.
It was carried out under a saturated water vapor pressure of Kg/cm 2 . Table 6 shows the manufacturing conditions and boehmite percentage (%).

【表】 実施例 5 シリカゾルとアルミン酸ソーダを原料としA型
ゼオライトの連続合成を行なつた。連続式水熱合
成装置は実施例1で使用したものと同一である。
製造条件はシリカゾルとアルミン酸ソーダを
NaO/SiO2=0.5、SiO2/Al2O3=4、H2O/
Na2O=246に配合してスラリーとし、温度110℃
で圧力1.5Kg/cm2の飽和水蒸気圧下で実施した。滞
留時間5hrでほぼ純度100%のA型ゼオライトが合
成出来た。 実施例 6 廃アルミナゲル(アルミニウムの硫酸処理物)
と水ガラスを原料としA型ゼオライトの連続合成
を行なつた。連続式水熱合成装置は実施例1で使
用したものと同一である。製造条件は廃アルミナ
ゲルと水ガラスをNa2O/SiO2=2.0、SiO2
Al2O3=2.0、H2O/Na2O=100に配合してスラ
リーとし、温度105℃圧力1.2Kg/cm2の飽和水蒸気
圧下で実施した。滞留時間5hrでA型ゼオライト
(純度95%)が得られた。 実施例 7 生石灰(純度96%)とシリカ(シリカダスト純
度94%)を原料としてゾノトライトの連続合成を
行なつた。連続式水熱合成装置は実施例1に使用
したものと同じものである。生石灰を温水で消化
させた後、重量比でCaO/SiO2=0.9になるよう
にシリカを加え、また水/固体比12倍になるよう
に水を加えてスラリーとし、スラリーポンプで連
続的に供給し、所定時間滞留後ゾノトライトとし
て回収した。製造条件は温度190℃、圧力12.8Kg/
cm2の飽和水蒸気圧下で6時間滞留させた。製品ゾ
ノトライトは0.5μφ×10μの針状結晶で、平均20μ
程度の球状集合体として回収された。 比較例 1 排煙脱硫石膏を原料とし、加圧水溶液法により
α型半水石膏の連続製造を行なつた。連続式水熱
合成装置は直径512mm、高さ975mm、容積200の
単一完全混合型反応槽を用いた。 製造条件は温度130℃、圧力2.8Kg/cm2の飽和水
蒸気圧下で実施した。原料石膏と水を混ぜてスラ
リーとし、スラリーポンプで連続的に供給し所定
時間滞留後、α型半水石膏として回収した。な
お、媒晶剤としてコハク酸ナトリウムを原料石膏
に対して重量比で0.05〜0.2%添加した。第7表
に製造条件および製品α型半水石膏に残存する2
水石膏の割合(未反応率)を示した。未反応率は
DTAおよびTGにより測定した。
[Table] Example 5 A type zeolite was continuously synthesized using silica sol and sodium aluminate as raw materials. The continuous hydrothermal synthesis apparatus was the same as that used in Example 1.
The manufacturing conditions are silica sol and sodium aluminate.
NaO/SiO 2 =0.5, SiO 2 /Al 2 O 3 = 4, H 2 O/
Blend with Na 2 O = 246 to make slurry, temperature 110℃
The test was carried out under saturated water vapor pressure of 1.5 Kg/cm 2 . Type A zeolite with almost 100% purity was synthesized with a residence time of 5 hours. Example 6 Waste alumina gel (aluminum treated with sulfuric acid)
Continuous synthesis of type A zeolite was carried out using water glass and water glass as raw materials. The continuous hydrothermal synthesis apparatus was the same as that used in Example 1. The manufacturing conditions were as follows: waste alumina gel and water glass: Na 2 O/SiO 2 = 2.0, SiO 2 /
A slurry was prepared by blending Al 2 O 3 = 2.0 and H 2 O/Na 2 O = 100, and the test was carried out at a temperature of 105° C. and a pressure of 1.2 Kg/cm 2 under saturated steam pressure. Type A zeolite (95% purity) was obtained with a residence time of 5 hours. Example 7 Zonotlite was continuously synthesized using quicklime (purity 96%) and silica (silica dust purity 94%) as raw materials. The continuous hydrothermal synthesis apparatus was the same as that used in Example 1. After digesting the quicklime with hot water, silica is added so that the weight ratio is CaO/SiO 2 = 0.9, and water is added so that the water/solid ratio is 12 times to make a slurry, which is continuously digested using a slurry pump. It was supplied and collected as xonotlite after residence for a predetermined time. Manufacturing conditions are temperature 190℃, pressure 12.8Kg/
Residence was carried out for 6 hours under a saturated water vapor pressure of cm 2 . The product xonotlite is a needle-shaped crystal of 0.5μφ×10μ, with an average size of 20μ
It was recovered as a spherical aggregate. Comparative Example 1 Using flue gas desulfurization gypsum as a raw material, α-type hemihydrate gypsum was continuously produced by a pressurized aqueous solution method. The continuous hydrothermal synthesis equipment used a single complete mixing reactor with a diameter of 512 mm, a height of 975 mm, and a volume of 200 mm. The manufacturing conditions were a temperature of 130° C. and a pressure of 2.8 Kg/cm 2 under saturated steam pressure. Raw material gypsum and water were mixed to form a slurry, which was continuously supplied using a slurry pump and, after residence for a predetermined period of time, was recovered as α-type hemihydrate gypsum. Note that sodium succinate was added as a crystal modifier in a weight ratio of 0.05 to 0.2% based on the raw gypsum. Table 7 shows the manufacturing conditions and the amount of 2 remaining in the α-type hemihydrate gypsum product.
The proportion of hydrogypsum (unreacted rate) is shown. The non-response rate is
Measured by DTA and TG.

【表】 (注) 結晶形○は短柱状で結晶が大きい
△は柱状で結晶が小さい
×は針状で結晶が小さい
同一製造条件で実施した完全混合型反応槽とこ
れに続く管型反応器の組み合せによる連続式水熱
合成装置(実施例1の装置)での実験では、いず
れも2水石膏の痕跡は認められなかつた。なお、
単一完全混合型反応槽のバツチ条件で実施した場
合2水石膏の消失までに5時以上かかつた。 比較例 2 排煙脱硫石膏を原料とし、加圧水溶液法により
α型半水石膏の連続製造を行なつた。連続水熱合
成装置は直径100mm、長さ4200mm、容積18の管
型反応器(実施例1の管型反応器)のみを用い
た。製造条件は温度130℃、圧力2.8Kg/cm2の飽和
水蒸気圧下で実施した。原料石膏と水を混ぜてス
ラリーとし、スラリーポンプで連続的に供給し所
定時間滞留後、α型半水石膏として回収した。な
お、媒晶剤はコハク酸ナトリウムを原料石膏に対
して重量比で0.1%添加した。第8表に製造条件
を、第9表に製品α型半水石膏の品質試験結果を
示した。
[Table] (Note) Crystal form ○ is short columnar and large crystal.
△ is columnar and has small crystals
× indicates needle-like crystals and small crystals In experiments conducted under the same production conditions using a continuous hydrothermal synthesis apparatus (the apparatus of Example 1) that combines a complete mixing type reaction tank and a subsequent tubular reactor, No trace of dihydrate gypsum was observed. In addition,
When carried out under batch conditions in a single complete mixing reactor, it took more than 5 hours for the dihydrate gypsum to disappear. Comparative Example 2 Using flue gas desulfurization gypsum as a raw material, α-type hemihydrate gypsum was continuously produced by a pressurized aqueous solution method. As the continuous hydrothermal synthesis apparatus, only a tubular reactor (the tubular reactor of Example 1) having a diameter of 100 mm, a length of 4200 mm, and a volume of 18 was used. The manufacturing conditions were a temperature of 130° C. and a pressure of 2.8 Kg/cm 2 under saturated steam pressure. Raw material gypsum and water were mixed to form a slurry, which was continuously supplied using a slurry pump and, after residence for a predetermined period of time, was recovered as α-type hemihydrate gypsum. As a crystal modifier, 0.1% by weight of sodium succinate was added to the raw gypsum. Table 8 shows the manufacturing conditions, and Table 9 shows the quality test results of the α-type hemihydrate gypsum product.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る連続式水熱合成装置の
一例の縦断面説明図である。 1……完全混合型反応槽、2……原料送入口、
3……撹拌器、4……ジヤケツト、5……輸送
管、6……管型反応器、7……スクリユー型撹拌
器、8……排出口、9……ジヤケツト、10……
圧力バランス調整管。
FIG. 1 is an explanatory longitudinal cross-sectional view of an example of a continuous hydrothermal synthesis apparatus according to the present invention. 1... Complete mixing type reaction tank, 2... Raw material inlet,
3... Stirrer, 4... Jacket, 5... Transport pipe, 6... Tubular reactor, 7... Screw type stirrer, 8... Discharge port, 9... Jacket, 10...
Pressure balance adjustment tube.

Claims (1)

【特許請求の範囲】 1 完全混合型反応槽とこれに続くスクリユー型
撹拌機を設置した管型反応器とから構成され、か
つ両者間に反応物を移送する管とは別個に圧力を
調整するための圧力バランス調整管を設置したこ
とを特徴とする連続式水熱合成装置。 2 完全混合型反応槽とこれに続く軸方向に適宜
の位置においてスクリユー羽根を少なくとも1ピ
ツチ以上残し、それ以外のスクリユー羽根をその
ラセン方向の面に沿つて20ないし40度間隔で一枚
おきに切除したスクリユー型撹拌機を設置した管
型反応器とから構成され、かつ両者間に反応物を
移送する管とは別個に圧力を調整するための圧力
バランス調整管を置したことを特徴とする連続式
水熱合成装置。
[Claims] 1. Consisting of a complete mixing type reaction tank and a subsequent tube type reactor equipped with a screw type stirrer, the pressure is adjusted separately from the tube that transfers reactants between the two. Continuous hydrothermal synthesis equipment characterized by the installation of pressure balance adjustment pipes for 2 Leave at least one screw blade at an appropriate position in the axial direction following the complete mixing type reaction tank, and place the other screw blades at intervals of 20 to 40 degrees along the helical direction. It consists of a tubular reactor equipped with a cut-out screw-type stirrer, and is characterized by having a pressure balance adjustment tube for adjusting the pressure separate from the tube for transferring reactants between the two. Continuous hydrothermal synthesis equipment.
JP57128885A 1982-07-26 1982-07-26 Continuous hydrothermal synthesis apparatus Granted JPS5919540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57128885A JPS5919540A (en) 1982-07-26 1982-07-26 Continuous hydrothermal synthesis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57128885A JPS5919540A (en) 1982-07-26 1982-07-26 Continuous hydrothermal synthesis apparatus

Publications (2)

Publication Number Publication Date
JPS5919540A JPS5919540A (en) 1984-02-01
JPH025136B2 true JPH025136B2 (en) 1990-01-31

Family

ID=14995755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57128885A Granted JPS5919540A (en) 1982-07-26 1982-07-26 Continuous hydrothermal synthesis apparatus

Country Status (1)

Country Link
JP (1) JPS5919540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155173A (en) * 1995-12-08 1997-06-17 Kansai Electric Power Co Inc:The Moistening kneader

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642414B1 (en) * 1989-02-01 1991-04-26 Rhone Poulenc Chimie PROCESS FOR THE MANUFACTURE OF AGGLOMERATES OF ACTIVE ALUMIN, AGGLOMERATES OBTAINED BY THE PROCESS AND DEVICE FOR IMPLEMENTING SAME
DE69220673T2 (en) * 1992-12-07 1998-02-12 Blangy Gerard De Process and plant for treating and recycling waste materials by changing them into recyclable, non-contaminated materials
JP3484025B2 (en) * 1996-01-10 2004-01-06 仲道 山崎 Continuous hydrothermal synthesis method and apparatus
AR025176A1 (en) * 1999-06-15 2002-11-13 Dow Global Technologies Inc PROCESS AND APPLIANCE FOR MONITORING AND ONLINE CONTROL OF A PROCESS PLANT
JP4659883B2 (en) * 2005-09-28 2011-03-30 チャイナ タバコ フーナン インダストリアル コーポレーション Cigarette ash putting method and its equipment in the manufacturing process of cigarette sheet by paper manufacturing method
CN102166480B (en) * 2011-03-01 2013-09-04 江苏九天高科技股份有限公司 An apparatus and a method for synthesizing molecular sieve membranes
KR101464345B1 (en) * 2013-06-17 2014-11-25 주식회사 라미나 An Apparatus for Manufacturing Particles and Preparation Methods Using Thereof
JP6080317B2 (en) * 2015-01-30 2017-02-15 関東電化工業株式会社 Method for producing inorganic fine particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155173A (en) * 1995-12-08 1997-06-17 Kansai Electric Power Co Inc:The Moistening kneader

Also Published As

Publication number Publication date
JPS5919540A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
EP1249428B1 (en) Methods for making molecular sieves
JPH025136B2 (en)
CN107663160B (en) A kind of continuous flow synthesis technology of 4- chlorobenzene hydrazonium salt
JP2023055797A (en) Process for preparation of intermediates useful in preparation of non-ionic contrast agents
JPS61183119A (en) Manufacture of calcium hydroxide
AU2003229855B2 (en) Device for drying and/or firing gypsum
WO1994013584A1 (en) Preparation of aluminosilicate zeolites
US5427765A (en) Method of producing zeolite β
CN105329915A (en) Method for synthesizing nanometer ZSM-5 molecular sieves through crystallized mother liquor
CN105439789A (en) HMT continuous synthesis apparatus and method
PL224734B1 (en) Method for producing zeolites and a device for producing zeolites
FI78054B (en) FOERFARANDE FOER FRAMSTAELLNING AV FOSFORSYRA OCH KALCIUMSULFAT.
RU2363659C1 (en) Method for boehmite and hydrogen preparation
EP0087017B1 (en) Process for producing a crystalline silicate
KR100767815B1 (en) Method and apparatus for synthesizing a-type and p-type of high pure zeolite using microwave heat source
JPH05239784A (en) Single-stage slaking and causticizing method
US6656447B1 (en) Process for synthesizing and controlling the particle size and particle size distribution of a molecular sieve
CN109422641B (en) Continuous production method for preparing calcium formate from yellow phosphorus tail gas
CN110563110A (en) Production process of polyaluminum chloride
JP2007516930A (en) Treatment of highly solid materials
JP2002137917A (en) Continuous synthesis method for zeolite by contacting heated tube reactor and its continuous synthesis plant
PL144228B1 (en) Method of carrying on a chemical process in a multi-tube packed reactor
CN209815705U (en) Synthesizer of high silicon zeolite molecular sieve
WO2011116519A1 (en) Continuous reaction system comprising subcritical or supercritical liquid as solvent and reactant as solid
EP0096817A1 (en) Process for producing hydrogen fluoride