JPS59195220A - Optical detector - Google Patents

Optical detector

Info

Publication number
JPS59195220A
JPS59195220A JP58070720A JP7072083A JPS59195220A JP S59195220 A JPS59195220 A JP S59195220A JP 58070720 A JP58070720 A JP 58070720A JP 7072083 A JP7072083 A JP 7072083A JP S59195220 A JPS59195220 A JP S59195220A
Authority
JP
Japan
Prior art keywords
light
optical
waveguide
optical waveguides
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58070720A
Other languages
Japanese (ja)
Other versions
JPH0354283B2 (en
Inventor
Masayuki Izutsu
雅之 井筒
Tadashi Sueda
末田 正
Masaharu Matano
俣野 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP58070720A priority Critical patent/JPS59195220A/en
Publication of JPS59195220A publication Critical patent/JPS59195220A/en
Publication of JPH0354283B2 publication Critical patent/JPH0354283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Lasers (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To obtain a small-sized optical detector which eliminates the need for alignment by providing four light guides on one substrate, and demultiplexing and multiplexing specific light among those light guides. CONSTITUTION:Incident light having intensity Iin=¦A¦<2> is incident to the 1st light guide 11, split equally at a coupling part 15 to light guides 12 and 13 to propagate therein, and modulated by DELTAphi and -DELTAphi by a modulator which includes an electrode 16 for phase modulation to travel with electric fields E1 and E2 of speific light. The light beams traveling in the light guides 112 and 13 pass through an optical fiber 3 with a radius R and reach the light guides 13 and 12. Those light beams are phase-modulated by an optical modulator (16) and the light beams e1 and e2 interfere with each other at the coupling part 15 to output light with specific intensity Iout from the 4th light guide 14. Thus, the small- sized optical detector which eliminates the need for alignment is obtained.

Description

【発明の詳細な説明】 発明の背景 この発明は、光フアイバジャイロ、電流センサ等の光を
用いたセンサの信号を検出する装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an apparatus for detecting a signal from a sensor using light, such as an optical fiber gyro or a current sensor.

従来、光を用いたセンサにおいては光信号を処理するた
吟に、レンズ、ハーフミラ−等の個別の光学部品を組合
せて構成していた。したがって、小形化することがカ(
シい上に、各部品間の精密な軸合せが必要であり、組立
てが面倒であったり、h■囲湿温度変動で軸すれか起っ
て動作しなくなる等の欠点があった。
Conventionally, sensors using light have been constructed by combining individual optical components such as lenses and half mirrors in order to process optical signals. Therefore, it is important to downsize (
In addition, it requires precise axis alignment between each component, making assembly troublesome, and there are disadvantages such as the axis being misaligned due to changes in ambient humidity and temperature, resulting in inoperability.

発明の概要 この発明の目的は、軸合せが不要でかつ小型の光学的検
出装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a compact optical detection device that does not require alignment.

この発明による光学的検出装置は、1つの基板上に第1
、第2、第3および第4の単一モード光導波路が一体的
に形成され、これらの光導波路は、@lの光導波路を伝
搬するレーザ光が第2および第3の光導波路に0分7;
(]して伝搬され、第2および第3の光導波路を逆方向
に伝搬するレーザ光か第4の光導波路(こ合波、−11
tさせて導かれるように構成され、第2およ0第3の光
導波路を伝搬する光に位相変調をJJえる手段か設けら
れていることを特徴とする。
The optical detection device according to the invention includes a first
, second, third and fourth single mode optical waveguides are integrally formed, and these optical waveguides are such that the laser beam propagating through the optical waveguide @l reaches the second and third optical waveguides for 0 minutes. 7;
The laser beam is propagated through the second and third optical waveguides in opposite directions, and then the laser beam is propagated through the fourth optical waveguide (combined with −11
The optical waveguide is configured such that the light is guided at a certain angle, and is characterized in that it is provided with means for imparting phase modulation to the light propagating through the second and third optical waveguides.

この発Fy]によると、光の分割および合波5−1−渉
を行う光3j3波路と光に変i1!]を与える手段とか
同一基板」二に設けられているので、小形化、無調整化
が可能となる。
According to this emission Fy], the light 3j3 that performs the splitting and multiplexing 5-1 of the light changes into the 3 wave path and the light i1! ] is provided on the same substrate, making it possible to make the device smaller and eliminate adjustment.

実施例の説明 まずこの発明を角速度センサ、いわゆる光フアイバジャ
イロに適用した場合の動作原理について説明する。
DESCRIPTION OF EMBODIMENTS First, the operating principle when the present invention is applied to an angular velocity sensor, a so-called optical fiber gyro, will be explained.

@1図に示すよう【こ、強度工in = 1A12の入
射光が第1の光導波路(11) +こ入射し、結合部(
15)で@2および第3の光導波路+12+ ’(13
+に等分されてこれらの光導波路+121 +131を
伝搬していく。光導波路121 f13i )こ設けら
れた位相変m!d用電極(16)を含む変調部でこれら
の光はΔφ、−Δφの位相変調を受ける。このときの各
光導波路(121+13]中の光の電界E□、E2 は
次式て与えられる。
As shown in Figure 1, the incident light of intensity = 1A12 enters the first optical waveguide (11), and the coupling part (
15) @2 and the third optical waveguide +12+' (13
The light is divided equally into +121 and +131 and propagates through these optical waveguides +121 and +131. Optical waveguide 121 f13i ) This provided phase shift m! These lights undergo phase modulation of Δφ and −Δφ in the modulation section including the d electrode (16). At this time, the electric fields E□ and E2 of light in each optical waveguide (121+13) are given by the following equation.

E1=r A *Oxp (、iΔφ)     −+
1)E2−ヲA・・・p(=]Δφ)    ・・・(
2)各先導波路f121 +131の出口には1本の光
ファイア<の両端が接続されており、この光ファイバは
半径Rでコイル状に巻回されている((3)で示す)光
導波路(12)を伝搬する光(El)は光フアイバコイ
ル(3)内を通って光導波路Q3i に進む。光導波f
l(。
E1=r A *Oxp (,iΔφ) −+
1) E2-woA...p(=]Δφ)...(
2) Both ends of one optical fiber are connected to the exit of each leading waveguide f121 +131, and this optical fiber is wound into a coil with a radius R (indicated by (3)). The light (El) propagating through the optical fiber coil (3) passes through the optical fiber coil (3) and proceeds to the optical waveguide Q3i. optical waveguide f
l(.

(13)の光(E2)は光フアイバコイル(3)を通っ
て光導波路(12)に進む。
The light (E2) of (13) travels through the optical fiber coil (3) to the optical waveguide (12).

第1図【こ示す光学系全体が所定方向(こ回転すると、
光フアイバコイル(3)内を光が伝搬する■ζこ」−述
した互い(こ逆方向に進む2つの光(こは位相差か生じ
る(サクナツク効果)。この位相フ′。
Figure 1 [When the entire optical system shown in this figure is rotated in a predetermined direction,
When light propagates in the optical fiber coil (3), two lights traveling in opposite directions (as described above) produce a phase difference (Sakunatsu effect).This phase shift occurs.

をrとする。光フアイバコイル(3)を通過した2つの
光はそれぞれ光導波路(13i (12i +こ入る。
Let be r. The two lights that have passed through the optical fiber coil (3) enter the optical waveguide (13i (12i +)).

これらの光が先導波路f131 (+2)を逆方向に進
むとき番こ変調部(こよって受ける位相変化をそれぞれ
Δψ、−Δψとすると、変調を受けたあとの光の電界C
工、e2はそれぞれ次式で表わされる。
When these lights travel in the opposite direction through the leading wavepath f131 (+2), the electric field C of the light after being modulated is
E and e2 are respectively expressed by the following equations.

c 1 !E2・Oλp(jΔψ)      ・・・
(3)a  =E11 [IX]l (−、iΔψ)・
0XP(jr)  ・・・(4)2 ここで r=4πLRΩ/λC@@II(51 L:光ファイバの長さ R:光フアイバコイルの半径 λ:先の波長(真空中) 1    Ω:光学系全体の回転の角速度C1光速(2
′L空中) てあり、位イ・1]差rは一方の光を基準としている。
c1! E2・Oλp(jΔψ)...
(3) a = E11 [IX]l (-, iΔψ)・
O Angular velocity of rotation of the entire system C1 Speed of light (2
'L in the air), and the difference r is based on one light.

これらの2つの光(0工)、(C2)は結合部(15)
から第4の先導波路(14i tこ進入する。これらの
光か合成、干渉して得られる出力光強度■。+1.(よ
第(11式〜第(4j式を用いて次式で表わされる。
These two lights (0), (C2) are the connecting part (15)
The output light intensity obtained by combining and interfering these lights is expressed by the following equation using equations 11 to 4j. .

I out  −2101−リ 2 − 〇入J・(−、i(Δφ−Δψ月] 2     
 ・・・ (6)光導波路f]21 ll31を伝搬す
るノロ1こ正弦波の形で位相変yrrBを与えるとし、
変GW JM 11Jをa、変ird ffl Il’
d波数をωとすると、Δφ、Δψは次式で与えられる。
I out -2101-ri 2 - 〇in J・(-, i(Δφ−Δψ month) 2
... (6) Assuming that a phase change yrrB is given in the form of a sine wave propagating through the optical waveguide f]21ll31,
Change GW JM 11J a, change ird ffl Il'
When the d wave number is ω, Δφ and Δψ are given by the following equations.

Δφ= a ++ sin ((II L )    
 川(71Δψ−a*5in(ω(L+t9))   
 e−* ts+も 0 −  ll L / Cll
11− (9)11:光ファイバの屈折率 変調波の光波に対する位相は間顆としないので、次の置
き変えを行なう。
Δφ= a ++ sin ((II L )
River (71Δψ−a*5in(ω(L+t9))
e-*ts+ also 0-ll L/Cll
11- (9) 11: Since the phase of the refractive index modulated wave of the optical fiber with respect to the light wave is not intercondylar, the following replacement is performed.

ω1   −+−ω(t−to/z) ω(j+t。)→ω(v+to/2) これにより、 Δφ−Δcp == −2a * 5in(ωも0/ 
2 )@ 00B (ωt ) so (IQ)となる
ω1 −+−ω(t-to/z) ω(j+t.)→ω(v+to/2) As a result, Δφ−Δcp == −2a * 5in (ω is also 0/
2) @ 00B (ωt) so (IQ).

?J (10)式を第(6)式に代入すると次式を得る
? J Substituting equation (10) into equation (6) yields the following equation.

I out = −[1− cos (r)” (J6Cα)+Σ(−1)+2.、
(α)cos(2にωt ) )に+1 ・’−(11) ここて α−=−4a m sin (cilto/ 2 ) 
     @1111 [121J1、(α):ヘソセ
ル開数 である。
I out = −[1− cos (r)” (J6Cα)+Σ(−1)+2.,
(α) cos(2 to ωt)) +1 ・'-(11) Here α-=-4am sin (cilto/2)
@1111 [121J1, (α): Heso cell numerical aperture.

1 (11+式(こ含まれる周波数成分のうち低次のも
のを取出すと次式を得る。
1 (11+Equation) If we extract the lower-order frequency components among the included frequency components, we obtain the following equation.

111流成分 So = ■ill (1−Jo(α) e cos 
(r) ’1    eat f131基本波成分 Sl =  ”i++ ” Jl(α) m 5in(
r)    aha (141第2高調波成分 S2二l1nIIJ2(α)IIQθ8(γ)    
・・−t151第3高調波成分 S3二1i、1IIJ3(α) @ sin (r) 
    ”” f161第4高調波成分 C4=−1in ” +4 (”) ・cosCr) 
    *・m (171第(■4)式〜第(17i式
より次式を得る。
111 flow component So = ■ill (1-Jo(α) e cos
(r) '1 eat f131 fundamental wave component Sl = "i++" Jl(α) m 5in(
r) aha (141 second harmonic component S22l1nIIJ2(α)IIQθ8(γ)
...-t151 3rd harmonic component S321i, 1IIJ3 (α) @ sin (r)
"" f161 4th harmonic component C4 = -1in " +4 (") ・cosCr)
*・m (The following equation is obtained from the 171st equation (■4) to the (17i equation).

1 sin(γ)=−一一一一一一一 ■in ” Jl(リ      −(181α   
S−8 もa IN (γ) = −・ □         
   ・・・ (1!]14   82 第(18)式〜第ρ0)式のうちの所8ノのものを用い
て位相差γを求め、さら(こ第(5)式より回転の角速
度を得ることができる。
1 sin (γ) = -111111 ■in ” Jl (Le - (181α
S-8 also a IN (γ) = −・ □
... (1!] 14 82 Find the phase difference γ using the 8th equation of equations (18) to ρ0, and then obtain the angular velocity of rotation from equation (5). be able to.

第2図は、光フアイバジャイロの具体的な構成を示して
いる。ニオブ酸リチウム基板(10)上にTiの拡散な
どOこよって上述の光導波路(11)〜(14)が形成
されている。これらの光導波路(11)〜(14)はい
ずれも+41−モート−光軸7波路であり、先導波路(
11)+121 (131の+1jはそれらの位相定数
が同じになるよう(こ等しく設定されている。光導波路
04)のみのrlJが狭くその位相定数が小さく設定さ
れている。
FIG. 2 shows the specific configuration of the optical fiber gyro. The above-mentioned optical waveguides (11) to (14) are formed on the lithium niobate substrate (10) by diffusion of Ti and other oxygen. These optical waveguides (11) to (14) are all +41-mote-7 optical axis waveguides, and the leading waveguide (
11) +121 (+1j of 131 is set so that their phase constants are the same. The rlJ of only the optical waveguide 04 is narrow and its phase constant is set small.

光導波路(11)〜(14)は結合部で結合されている
が、先導波路(11)と(14)とのなす角、および光
導波路(頂と(13)とのなす角はいずれもきわめて小
さく、たとえは1° 以下である。このような先導波路
の詳細な構成およQ光伝搬理論は、特願昭57−光 8617Bに導波形ビーム・スプリッタとしてH’f述
されている。
The optical waveguides (11) to (14) are connected at a coupling part, but the angle between the leading waveguides (11) and (14) and the angle between the top of the optical waveguide (13) are both extremely small. It is small, for example, 1° or less.The detailed structure of such a leading waveguide and the Q-light propagation theory are described in Japanese Patent Application No. 1986-8617B as a waveguide beam splitter.

このような光導波路(121(131上には、1対の位
相変調用電極(16jか必要ならばS i02バッファ
層を介して設けられている。電極(161間(こは電源
(211によって高周波電圧が印加される。導波光に位
相変調を与えるのは、位相差γが小さい領域で測定精度
を高めるためである。
Such an optical waveguide (121 (131) is provided with a pair of phase modulation electrodes (16j or Si02 buffer layer if necessary). A voltage is applied.The reason why the guided light is subjected to phase modulation is to improve measurement accuracy in a region where the phase difference γ is small.

光導波路(11)にはレーザ光源(1)からのレーザ光
か導入される。レーザ光源(1)はたとえばレーザダイ
オードである。光導波路f121 f13iの一端には
−[二連の光フアイバコイル(3)の両端が光結合され
る。
Laser light from a laser light source (1) is introduced into the optical waveguide (11). The laser light source (1) is, for example, a laser diode. Both ends of two optical fiber coils (3) are optically coupled to one end of the optical waveguides f121 to f13i.

この光フアイバコイル(3)lこよって、先導波路+1
21(13)の一方からの光が他方(こ導かれる。光導
波路−の光出射端には光検出器(2)が設けられ、合波
、干渉された光信号を電気信号に変換する。光検出器(
2)の出力信号は増「1コ器(22)を経て各狭帯域通
過フィルタ(23)〜(2[il iこ入力する。これ
らのフィルタt23)〜(26)は上述の周波数成分8
1〜S4を抽出するものである。フィルタ(23)〜(
26)の出力は演算回路(27)に送られ、第(X8)
弐〜第t2[1j式の演所が行なわれる。演%回路!2
7)はたとえはマイクロプロセッサ(こよって構成する
こともできるが、加勢器、果算器、除算器等の組合せに
よっても構成することも可能である。増r1.+器(2
2)、フィルタ(23)〜(2G]および演算回路(2
7)によって処理装置(20)が構成されている。
This optical fiber coil (3)l thus leads to a leading waveguide of +1
Light from one of the optical waveguides 21 (13) is guided to the other. A photodetector (2) is provided at the light output end of the optical waveguide and converts the multiplexed and interfered optical signals into electrical signals. Photodetector (
The output signal of 2) is inputted to each narrow band pass filter (23) to (2[il i) through an amplifier (22).
1 to S4 are extracted. Filter (23) ~ (
26) is sent to the arithmetic circuit (27),
2nd to t2th [1j style performances are held. performance% circuit! 2
7) can be configured by a microprocessor (for example), but it can also be configured by a combination of adders, multipliers, dividers, etc.
2), filters (23) to (2G) and arithmetic circuit (2)
7) constitutes a processing device (20).

いま、レーザ光の波長λを0.8 PITI、光導波方
向に測った変調用電極(16)の長さを15聰、1対の
1(L極(16]間の間12.Mを157〕、夏11、
光ファイ/ダニイル(3)の半径Rを10cm、光ファ
イノくの長さL・を1km、とすると、光の変調に必要
な半波長′l庇圧V。
Now, the wavelength λ of the laser beam is 0.8 PITI, the length of the modulation electrode (16) measured in the optical waveguide direction is 15 cm, and the distance between a pair of 1 (L poles (16) is 12.M is 157 m). ], Summer 11,
Assuming that the radius R of the optical fiber (3) is 10 cm and the length L of the optical fiber is 1 km, the half wavelength 'l eave pressure V required for modulating the light.

はは+、a1.2 vとなる。またこのときt。−11
L/C(第(9)式)−5QpS である。変調用43
号として[1′d波数r = ω/ 2π”−HI M
Hz、電[E (a +こ対応)−=−1■を加えると
、周波数fを±05係変化させるか、または印加電圧を
変化さゼーると、σ−4Ht @ Sil+ (ωto
/2)(第(12)式)を絶対値で6以下の範囲で変化
させることか可能である。
Haha +, a1.2 v. At this time, t. -11
L/C (Equation (9))-5QpS. 43 for modulation
[1′d wave number r = ω/ 2π”−HI M
Hz, electric current [E (corresponding to a +) -=-1■ changes the frequency f by a factor of ±05 or changes the applied voltage, then σ-4Ht @Sil+ (ωto
/2) (Equation (12)) can be varied within a range of 6 or less in terms of absolute value.

位相差はγ−4πLRΩ/λC(第(15)式)%式%
)8 位411差γ(角速度Ω)が微小な場合【こは、変調用
の周波数fまたは印加電圧を調節してα−514とする
と、出力信号の周波数成分のうちの第2高調波成分52
−0 となり、第(20)式4式% (21 成分S3とSiとの測定(こより位相差γすなわち角速
度Ωの言1測が行なえる。
The phase difference is γ-4πLRΩ/λC (formula (15))% formula%
) 8th place 411 When the difference γ (angular velocity Ω) is minute [In this case, if the modulation frequency f or the applied voltage is adjusted to α-514, the second harmonic component 52 of the frequency components of the output signal
-0, Equation (20) 4 % (21 Measurement of component S3 and Si (From this, the phase difference γ, that is, the angular velocity Ω can be measured).

位相差γが大きい場合(こは、αミ3.83となるよう
(こ1.’il波数1または印加電圧を:n!] l1
ff+するとSよ−Oとなり、第(19)式より 1 = Lan ’ (0,958S3/ S2)  
  ”” t221となり、これよりγ、Ωの測定が行
なえる。
When the phase difference γ is large (this is so that α is 3.83 (this 1.'il wave number 1 or applied voltage: n!) l1
When ff+, S becomes -O, and from equation (19), 1 = Lan' (0,958S3/S2)
``'' t221, and from this point γ and Ω can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を角速度センサ、すなわちいわゆる光
フアイバジャイロ【こ適用した場′合の原理を説明する
だめの図、第2図はこの発明の実施例を示す構成図であ
る。 (10)・・・基板、(11)〜t14)−・光導波路
、(15]・・・結合部、(16+・・・変調用電極。
FIG. 1 is a diagram for explaining the principle when the present invention is applied to an angular velocity sensor, that is, a so-called optical fiber gyro, and FIG. 2 is a block diagram showing an embodiment of the present invention. (10)...Substrate, (11)-t14)--Optical waveguide, (15)...Coupling portion, (16+...Modulation electrode.

Claims (1)

【特許請求の範囲】 (1)1つの基板上に第1、第2、第3および第4の単
−モード光導波路が一体的(こ形成され、これらの光導
波路は、@1の先導波路を伝搬するレーザ光が第2およ
び第3の光導波路(こ分割して伝搬され、第2および第
3の光導波路を逆方向に伝搬するレーザ光か第4の先導
波路番こ合波、干渉させて導かれるように構成され、第
2および第3の光導波路を伝搬する光(こ位相変調を与
える手段が設けられている、(2)  第4の先導波路
の亀が他の光導波路の牛よりも狭くつくられている、特
許請求の範囲第(1)項記載の光学的検出装置。 (3)  位相変調手段によって、第2の光導波路を伝
播する光と第3の光導波路を伝播する光とにそれぞれ等
しい大きさで逆符号の位相変調が与えられる、特許請求
の範囲第(1)項記載の光学的検出装置。 (4)第4の光導波路からの出方光を光電変換する光検
出器と、光検出器の出方信号のうちの所要の周波数成分
を通過させる帯域通過フィルタとを備えている、特許請
求の範囲第(1)項記載の光学的検出装置。
[Claims] (1) First, second, third, and fourth single-mode optical waveguides are integrally formed on one substrate, and these optical waveguides are connected to the leading waveguide of @1. The laser beam propagating through the second and third optical waveguides is split and propagated, and the laser beam propagating in the opposite direction through the second and third optical waveguides is combined and interfered with by the fourth leading waveguide. The light propagating through the second and third optical waveguides is configured such that the light propagates through the second and third optical waveguides (means for imparting this phase modulation is provided). The optical detection device according to claim (1), which is made narrower than a cow. (3) The phase modulation means allows the light propagating through the second optical waveguide and the third optical waveguide to propagate. The optical detection device according to claim (1), wherein phase modulation of equal magnitude and opposite sign is applied to the light emitted from the fourth optical waveguide. (4) Photoelectric conversion of the light emitted from the fourth optical waveguide. An optical detection device according to claim 1, comprising: a photodetector for detecting a photodetector; and a bandpass filter for passing a desired frequency component of a signal output from the photodetector.
JP58070720A 1983-04-20 1983-04-20 Optical detector Granted JPS59195220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070720A JPS59195220A (en) 1983-04-20 1983-04-20 Optical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070720A JPS59195220A (en) 1983-04-20 1983-04-20 Optical detector

Publications (2)

Publication Number Publication Date
JPS59195220A true JPS59195220A (en) 1984-11-06
JPH0354283B2 JPH0354283B2 (en) 1991-08-19

Family

ID=13439675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070720A Granted JPS59195220A (en) 1983-04-20 1983-04-20 Optical detector

Country Status (1)

Country Link
JP (1) JPS59195220A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239016A (en) * 1986-04-11 1987-10-19 Agency Of Ind Science & Technol Optical fiber gyro
FR2613564A1 (en) * 1987-04-03 1988-10-07 Thomson Csf COHERENT SIGNAL PROCESSING DEVICE USING AN OPTICAL RETARD LINE
JPH02189412A (en) * 1989-01-18 1990-07-25 Hitachi Ltd Optical fiber gyroscope
WO1992004597A1 (en) * 1990-08-31 1992-03-19 Japan Aviation Electronics Industry Limited Optical interference angular velocity meter
US9389248B2 (en) 2009-12-10 2016-07-12 Kabushiki Kaisha Toshiba Sagnac interferometer-type fiber-optic current sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239016A (en) * 1986-04-11 1987-10-19 Agency Of Ind Science & Technol Optical fiber gyro
FR2613564A1 (en) * 1987-04-03 1988-10-07 Thomson Csf COHERENT SIGNAL PROCESSING DEVICE USING AN OPTICAL RETARD LINE
JPH02189412A (en) * 1989-01-18 1990-07-25 Hitachi Ltd Optical fiber gyroscope
WO1992004597A1 (en) * 1990-08-31 1992-03-19 Japan Aviation Electronics Industry Limited Optical interference angular velocity meter
US9389248B2 (en) 2009-12-10 2016-07-12 Kabushiki Kaisha Toshiba Sagnac interferometer-type fiber-optic current sensor

Also Published As

Publication number Publication date
JPH0354283B2 (en) 1991-08-19

Similar Documents

Publication Publication Date Title
CA2184496C (en) Lightwave phase control for reduction of resonator fiber optic gyroscope kerr effect error
JPS63503013A (en) Optical power splitter and polarization splitter
US4445780A (en) Fiber optic rotation-sensing gyroscope with (3×2) coupler
JP2779704B2 (en) Control of spectral change system error
CN101886925A (en) Multi-wavelength interference type optical fiber gyro based on carrier modulation
US11692827B2 (en) White light interferometric fiber-optic gyroscope based on rhombic optical path difference bias structure
US6154022A (en) Optical measuring method and optical measuring device for measuring an alternating magnetic field having intensity normalization
JPS59195220A (en) Optical detector
EP0078931B1 (en) Angular rate sensor
RU2762530C1 (en) Interferometric fiber-optic gyroscope
US4491413A (en) Fiber optic gyroscope with alternating output signal
JPH048727B2 (en)
JPS6212811A (en) Angular speed meter using optical interference
JPH0447214A (en) Optical fiber gyroscope
JPS595912A (en) Optical fiber gyroscope
RU2449246C2 (en) Optical circuit of ring interferometer for fibre-optic gyroscope
CA2011469A1 (en) Single-polarization, integrated optical components for optical gyroscopes
RU2117252C1 (en) Device measuring total vector of angular velocity of moving object
JPS63106519A (en) Optical fiber gyroscope
JP2511346B2 (en) Ring resonance type gyro
JPH0731059B2 (en) Ultra-sensitive optical fiber gyroscope
JPS61122516A (en) Optical fiber gyroscope
RU2473047C2 (en) Optical circuit of ring interferometer for reducing polarisation error in fibre-optic gyroscope
Chenchen et al. Asymmetric Mach-Zehnder prism interferometer coupler-based combined fiber ring resonator system for a Brillouin gyroscope
JPS60218020A (en) Total single-polarization fiber rotary sensor