JPS59195175A - Obstruction searching system for unmanned self- traveling body - Google Patents

Obstruction searching system for unmanned self- traveling body

Info

Publication number
JPS59195175A
JPS59195175A JP58070715A JP7071583A JPS59195175A JP S59195175 A JPS59195175 A JP S59195175A JP 58070715 A JP58070715 A JP 58070715A JP 7071583 A JP7071583 A JP 7071583A JP S59195175 A JPS59195175 A JP S59195175A
Authority
JP
Japan
Prior art keywords
self
propelled
sensor
data
functional unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58070715A
Other languages
Japanese (ja)
Inventor
Tsuneo Hisatake
久武 経夫
Hiroshi Komukai
小向 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Mitsubishi Ltd
Original Assignee
Caterpillar Mitsubishi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Mitsubishi Ltd filed Critical Caterpillar Mitsubishi Ltd
Priority to JP58070715A priority Critical patent/JPS59195175A/en
Publication of JPS59195175A publication Critical patent/JPS59195175A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable exact judgement of whether an external object provides an actual obstruction for traveling of a self-traveling body by providing an image sensor, ultrasonic sensor, turning angle sensor and vehicle speed sensor. CONSTITUTION:An obstruction searching system is provided with an image sensor 1, an ultrasonic sensor 2, a turning angle sensor 3 and a vehicle speed sensor 4, respectively. The sensor 2 is so arranged as to detect the distance and bearing of the external object detected by the sensor 1 from the self-traveling body. The sensor 3 is so arranged as to detect the steering angle during traveling of the self-traveling body. The sensor 4 detects the engine speed or the number of revolutions of the wheel provided to a final drive system during traveling of the self-traveling body. Whether the external object provides an obstruction to the self-traveling body or not is exactly decided according to such system.

Description

【発明の詳細な説明】 この発明は、建設機械や運搬機械およびその他の各種移
動物体等の如き無人で走行する自走体を対象とし、該自
走体が走行予定コースに従って走行する際に、そのコー
ス上に障害物があるか否かを自ら探索する待i突防止対
策としての障害物探索システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention targets self-propelled objects that run unmanned, such as construction machines, transport machines, and other types of moving objects. The present invention relates to an obstacle search system as a countermeasure to prevent collisions, which searches by itself to see if there is an obstacle on the course.

例えば、ローダ乃至ダンプトラック等の如き無人走行車
両の安全走行対策の一つとし”乙超音波や赤外線等を利
用した衝突防止装置は従来から知られている。
For example, collision prevention devices using ultrasonic waves, infrared rays, etc. have been known as one of the safety measures for unmanned vehicles such as loaders and dump trucks.

これらの従来装置は何れも機械乃至車両の移動方向もし
くは外部物体の接近を探知するだけのもので、次の如き
種々の問題点がある。
All of these conventional devices merely detect the moving direction of a machine or vehicle or the approach of an external object, and have various problems as follows.

何故ならば、上記の従来装置は一般に車両等の直進方向
(前進または後進)の物体探知のみを目的としたもので
、車両等の旋回時における旋回軌跡を考慮した障害物探
索を行なうまでには至っていない。
This is because the above-mentioned conventional devices are generally intended only for detecting objects in the straight direction (forward or backward) of a vehicle, etc., and cannot search for obstacles by considering the turning trajectory of the vehicle. Not yet reached.

即ち、第1図に示す車両Aが自らの走行予定コース(設
定軌道)Bに沿っ°ζカーブする際に、そのコースから
外れた車両直進方向前方の外部物体Cの存在に対して該
物体を障害物と判断してしまう。
That is, when the vehicle A shown in FIG. 1 makes a °ζ curve along its own planned travel course (set trajectory) B, if there is an external object C in front of the vehicle in the direction in which the vehicle is traveling straight, the object is deviated from the course. It is considered an obstacle.

更に、換言詳述すると、前記外部物体Cは車両Aの走行
予定コース外に存在しているため、実際には該車両走行
時の障害物とはならないが、それでもその物体を障害物
とし°ζ判断してしまうのである。
Furthermore, to explain in detail, the external object C exists outside the planned travel course of the vehicle A, so it does not actually become an obstacle when the vehicle is traveling; however, the object is still regarded as an obstacle. You end up making a judgment.

その判断の結果、車両Aは自動停止するため、該車両走
行による作業サイクルタイムを費やす結果となって作業
能率が大幅に低下する。
As a result of this determination, vehicle A will automatically stop, resulting in a work cycle time spent on running the vehicle, resulting in a significant drop in work efficiency.

このことは、車両等自走体の障害物に対する危険探索距
離を本来はそれらの自走体と障害物の相対速度によって
設定すべきであるにも拘わらず、上記従来装置の場合は
固定距離型であることに起因する。
This means that although the danger search distance for obstacles between self-propelled objects such as vehicles should originally be set based on the relative speed of those self-propelled objects and the obstacle, in the case of the conventional device described above, the distance search distance for obstacles is fixed distance type. This is due to the fact that

また、かかる障害物の探索距離設定には自走体の制動機
能(制動比@)を配慮することが極めて重要であるが、
上記従来装置ではそれが何等配慮されていない。
In addition, it is extremely important to consider the braking function (braking ratio) of the self-propelled vehicle when setting the search distance for such obstacles.
The above-mentioned conventional device does not take this into consideration at all.

このため、障害物探索時点において、その探索距離が車
両制動距離より短い場合には衝突する危険性を依然とし
て含んでいる。また、逆の場合においても車両が障害物
より遥かに手前で停止する結果となるなど、無人自走体
の走行作業上における種々のデメリットがある。
Therefore, when searching for an obstacle, if the search distance is shorter than the vehicle braking distance, there is still a risk of collision. Furthermore, even in the opposite case, there are various disadvantages in running the unmanned self-propelled body, such as the vehicle stopping far before the obstacle.

この発明は上記事情に鑑みて鋭意研究の結果、新たに発
案されたものである。
This invention was newly devised as a result of intensive research in view of the above circumstances.

この発明の主たる目的は、自走体の無人走行時に障害物
と判断され易い位置の外部物体を探索した際においても
、その物体が自走体走行上の実際の障害物となるか否か
を正確に判断できるようにした無人自走体の障害物探索
システムを提供するにある。
The main purpose of this invention is to determine whether or not the object will actually become an obstacle to the self-propelled vehicle when it searches for an external object in a position that is likely to be an obstacle during unmanned travel of the self-propelled vehicle. To provide an obstacle search system for an unmanned self-propelled vehicle that enables accurate judgment.

この発明のまたの目的は、前記外部物体を自走体走行上
の障害物と判断した際、その時点からの自走体の制動距
離と予測軌道とから該自走体の障害物に対する安全走行
領域を正確に判定し得る無人自走体の障害物探索システ
ムを提供するにある。
Another object of the present invention is to determine, when the external object is determined to be an obstacle to the running of the self-propelled body, the safe running of the self-propelled body against the obstacle based on the braking distance and predicted trajectory of the self-propelled body from that point in time. An object of the present invention is to provide an obstacle search system for an unmanned self-propelled vehicle that can accurately determine an area.

この発明の別の目的は、障害物探索時点において、該障
害物に対する自走体の接触乃至衝突のiiJ能性の有無
を正しく評価し、その結果、自走体を障害物回避の要否
に応じて適正自動制御させ得る無人自走体の障害物探索
システムを提供゛3″るにある。
Another object of the present invention is to correctly evaluate the possibility of a self-propelled object contacting or colliding with the obstacle at the time of searching for the obstacle, and as a result, determine whether or not the self-propelled object needs to avoid the obstacle. The object of the present invention is to provide an obstacle search system for an unmanned self-propelled vehicle that can perform appropriate automatic control according to the situation.

以F、この発明の好適実施例を第2図に基づいて説明す
る。
Hereinafter, a preferred embodiment of the present invention will be described based on FIG.

この発明のシステムは建設機械や運1ift機械および
その他の各種移動機械等の無人自走体に装備されるもの
で、第2図に例示したイメージセン+1、超音波セン+
2、旋回角センサ3、車速センサ4のそれぞれを備えて
いる。
The system of this invention is installed in unmanned self-propelled vehicles such as construction machines, 1ift machines, and other types of mobile machines.
2, a turning angle sensor 3, and a vehicle speed sensor 4.

こ才わらのセンサにおいて、イメージセンサ1は自走体
走行時におりる走行予定コース上またはその近傍におけ
る外部物体の存在を検II目゛る。
In this sensor, the image sensor 1 is used to detect the presence of an external object on or near the course the self-propelled vehicle is scheduled to travel on.

超音波センサ2は、イメージセンサ1で検出された外部
物体の自走体からの距1?i11と方位を検出する。
The ultrasonic sensor 2 detects the distance 1 from the self-propelled object of the external object detected by the image sensor 1. i11 and direction are detected.

旋回角センサ3は自走体走行時のステアリング角度を検
出する。
The turning angle sensor 3 detects the steering angle when the self-propelled vehicle is running.

車速センサ4は、自走体走行時のエンジン回転数、或い
はファイナルドライブ系ボイールの回転数等を検出する
The vehicle speed sensor 4 detects the engine rotation speed when the self-propelled vehicle is running, the rotation speed of the final drive system boiler, etc.

かかるセンサ1〜4のそれぞれはA/D変換器5〜8を
介してマイクロコンピュータシステムの演シ処理機構(
以下、CP[Jという)9の入力部に接続されている。
Each of these sensors 1 to 4 is connected to a processing mechanism (
It is connected to the input section of CP [J] 9 hereinafter.

CPU9は、自走体の機種や型式および仕様等の所謂、
自走体性能データと、自走体の総重量および走行指令プ
ログラムを予め設定しておくためのメモリ■0を備えて
いる。
The CPU 9 is responsible for information such as the model, model, and specifications of the self-propelled vehicle.
It is equipped with a memory 0 for presetting self-propelled body performance data, the total weight of the self-propelled body, and a running command program.

かかるCPU9は、前記各センサl〜4からの入力デー
タとメモリ10からの読み出しデータとに皓づく種々の
機能実現手段を有している。
The CPU 9 has various function implementation means based on input data from each of the sensors 1 to 4 and read data from the memory 10.

その機能実現手段は、第2図で一層詳細な如く、イメー
ジセンサ1の系統における物体判定機能部11と、その
パターン分類機能部12、超音波センサ2系統における
物体との距離と方位の算定機能部13、旋回角センサ3
系統の旋回角算定機能部14、車速センサ4系統の走行
速度算定機能部15、それらの機能部に加え゛ζ軌道予
測機能部16と、制動距離算定機能部17、および安全
走行領域の判定機能部18と、接触1可能性の有無を評
価する危険度判定機能部19、自走体回避の要否キリ定
機能部20のそれぞれからなっている。
As shown in more detail in FIG. 2, the means for realizing this function includes an object determination function section 11 in the image sensor 1 system, its pattern classification function section 12, and a function for calculating the distance and direction to the object in the two ultrasonic sensor systems. Part 13, turning angle sensor 3
System turning angle calculation function unit 14, traveling speed calculation function unit 15 of four vehicle speed sensor systems, in addition to these function units, a ζ trajectory prediction function unit 16, a braking distance calculation function unit 17, and a safe driving area determination function. 18, a risk determination function section 19 that evaluates whether there is a possibility of contact 1, and a function section 20 that determines whether or not self-propelled object avoidance is necessary.

斯くして、上記構成のシステムを無人自走体走行開始と
同時にスタートさせると、該自走体走行時における走行
予定コース上またはその近傍に外部物体が存在しζいる
場合、その物体をイメージセンサlが捉える。
In this way, if the system configured as described above is started at the same time as the unmanned self-propelled vehicle starts traveling, if an external object exists on or near the course scheduled for the self-propelled vehicle to travel, the object will be detected by the image sensor. l captures.

その結果のデータをCP tJ 9が入力することによ
り、その入力データから物体判定機能部11が前記外部
物体の形状を判定する。次いで、その判定データからパ
ターン分類機能部12は外部物体が如何なる種類(大き
さ等)のものかを判定する。
When the CP tJ 9 inputs the resulting data, the object determination function section 11 determines the shape of the external object from the input data. Next, the pattern classification function unit 12 determines what type (size, etc.) of the external object is based on the determination data.

それと同時に、CPU9は前述の如くイメージセンサl
が捕らえた外部物体の自走体との距離と方位を超音波セ
ンナ2からの入力データに基づいてその系統の算定機能
部13で算定する。
At the same time, the CPU 9 uses the image sensor l as described above.
The calculation function unit 13 of the system calculates the distance and direction of the external object captured by the self-propelled object based on input data from the ultrasonic sensor 2.

併せて、CPU9における旋回角算定機能部14はその
系統のセンサ3からの入力データに基づいた自走体ステ
アリング角度の算定を、かつ走行速度算定機能部15は
車速センサ4からの入力データに基づいた自走体走行速
度の算定をそれぞれ遂行している。
In addition, the turning angle calculation function section 14 in the CPU 9 calculates the self-propelled vehicle steering angle based on the input data from the sensor 3 of the system, and the traveling speed calculation function section 15 calculates the self-propelled vehicle steering angle based on the input data from the vehicle speed sensor 4. The calculation of the running speed of each self-propelled vehicle has been carried out.

そこで、軌道予測機能部16は、前記旋回角算定機能部
14及び、走行速度算定機能部15が11υ々に算定し
た結果のそれぞれのデータから自走体の走行予定コース
となる軌道予測を行う。これによって、自走体の実際の
走行方向が把握される。
Therefore, the trajectory prediction function section 16 predicts the trajectory of the planned course of the self-propelled object from the respective data calculated by the turning angle calculation function section 14 and the running speed calculation function section 15. This allows the actual running direction of the self-propelled object to be grasped.

また、制動距離算定機能部17は、メモリ10から自走
体の総重量および機種、形式、仕様等の性能データを読
出してその読出しデータと、走行速度算定機能部15か
らのデータとに基づいて自走体の走路条件にマツチした
制動距離を算定する。その結果の制動距離データと軌道
予測機能部16からのデータとに基づいて安全走行領域
判定機能部18は自走体の安全走行上必要な平面領域を
決定する。
Further, the braking distance calculation function section 17 reads performance data such as the total weight, model, type, and specifications of the self-propelled object from the memory 10, and based on the read data and the data from the traveling speed calculation function section 15. Calculate the braking distance that matches the road conditions of the self-propelled vehicle. Based on the resulting braking distance data and data from the trajectory prediction function section 16, the safe travel area determination function section 18 determines a plane area necessary for safe travel of the self-propelled vehicle.

次いで、危険度判定機能部19は、組合センサ2系統の
算定機能部13および安全走行領域判定機能部18のそ
れぞれが算定した結果のデータと、メモリ10から読出
した走行指令プログラムとから実際走行中の自走体が外
部物体に対して接触乃至(φi突する可能性があるか否
かを評価する。
Next, the risk level determination function unit 19 calculates the actual driving condition based on the data calculated by the calculation function unit 13 of the two combined sensor systems and the safe driving area determination function unit 18 and the driving command program read from the memory 10. It is evaluated whether there is a possibility that the self-propelled object will come into contact with or (φi) collide with an external object.

即ち、危険度判定機能部19は外部物体が自走体走行上
の障害物になるか否かを判定する。
That is, the risk level determination function unit 19 determines whether the external object becomes an obstacle for the self-propelled vehicle to travel.

そして、障害物になると判定した場合、その判定結果の
データと前記パターン分類機能部12からのデータとに
基づいて自走体を走行停止させるか或いは障害物に対し
て回避走行させるかを自走体回避の要否判定機能部20
が選択判定する。
If it is determined that the object will become an obstacle, the self-propelled object decides whether to stop running or to avoid the obstacle based on the data of the judgment result and the data from the pattern classification function unit 12. Body avoidance necessity determination function unit 20
makes a selection decision.

その判定結果が自走体走行停止の場合、該機能部20は
、自走体の制動系統に制御指令信号を伝送して該自走体
を自動停止させる。
If the determination result is that the self-propelled body stops running, the functional unit 20 transmits a control command signal to the braking system of the self-propelled body to automatically stop the self-propelled body.

また、上記機能部20の」′す定結果が障害物にり・1
する自走体の回避走行である場合、該機能部20は操向
指令信号を自走体の操向系統に送ってそのステアリング
を自動制御する。その自動制御により、自走体は障害物
を回避(迂回)しつつ安全な無人走行を継続する。
In addition, if the result of the function section 20
When the self-propelled body is in an evasive run, the functional unit 20 sends a steering command signal to the steering system of the self-propelled body to automatically control the steering. Through this automatic control, the self-propelled vehicle continues to run safely and unmanned while avoiding (detouring) around obstacles.

なお、上記実施例の障害物探索システムにおいて、物体
判定機能部11は外部物体の形状を把握Jるものに限ら
ず、単に該物体存在の有無をキリ定゛3−るだりのもの
であってよい。
In the obstacle search system of the above embodiment, the object determination function section 11 is not limited to the one that grasps the shape of an external object, but can simply determine the presence or absence of the object. good.

また、メモリlOに設定される自走体の総重量には、該
自走体がハゲソトローダやダンプトラック等の運tU機
械である場合、その積載重量を加味するごととする。
Furthermore, when the self-propelled body is a transport machine such as a bald sotroder or a dump truck, the loaded weight is added to the total weight of the self-propelled body set in the memory IO.

この場合、上記システムに積載電量自動計測手段を付加
しておき、該手段でδI測された重量値とメモIJ10
から読出した総重量値とを加算した結果のデータを制動
距離算定の場合の重量関係のデータとすればよい。
In this case, an automatic loading power measuring means is added to the above system, and the weight value δI measured by the means and a memo IJ10 are added.
The data obtained by adding the total weight value read from the total weight value may be used as the weight-related data in the case of braking distance calculation.

以上、この発明では、無人自走体の旋回角度と走行速度
とから1hlt道予測を行い且つ制動距離を配慮した障
害物探索を行うので、例えば自走体旋回時の走行予定コ
ース」二若しくはその近傍に存在する外部物体が自走体
の障害物となるか否かを正確に判定し得る。
As described above, in this invention, the 1hlt road is predicted based on the turning angle and traveling speed of the unmanned self-propelled vehicle, and the obstacle search is performed with consideration given to the braking distance. It is possible to accurately determine whether an external object existing nearby becomes an obstacle for the self-propelled object.

このため、外部物体が障害物と判定され易い位置にあっ
−(も、その存在位置が自走体の走行予定コース外にあ
る限り、前記外部物体を障害物と誤って判定するような
ことはなくなる。
Therefore, even if an external object is located in a position where it is likely to be determined as an obstacle, as long as the existing position is outside the planned travel course of the self-propelled object, there is no possibility that the external object will be mistakenly determined as an obstacle. It disappears.

従っζ、外部物体が障害物と判定されない限り、自走体
は濫りに自動停止することなく走行予定コースに沿う円
滑な無人走行を継続する。
Therefore, unless an external object is determined to be an obstacle, the self-propelled object will continue to run smoothly and unmanned along the planned course without automatically stopping.

また、外部物体が障害物と4′す定された場合であっ′
Cも、この場合の走路条件等に応じて自走体を自動停止
させることなく障害物に対し′ζ回避走行させることも
できる。
Also, if an external object is determined to be an obstacle,
In the case of C, it is also possible to make the self-propelled body run around obstacles without automatically stopping it, depending on the road conditions, etc. in this case.

従って、この発明のシステムによれば、無人自走体の安
全走行に大きく寄りし該自走体による作業能率の大幅向
」二が図れる。
Therefore, according to the system of the present invention, it is possible to significantly improve the safe running of an unmanned self-propelled body and to significantly improve the work efficiency of the self-propelled body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術を説明するための概1113図。 第2図はこの発明の好適実施例に係わるシステムの機能
)し1−チャートを兼ねたブl:I ツク図である。 出願人 久武経夫
FIG. 1 is a schematic 1113 diagram for explaining the prior art. FIG. 2 is a block diagram that also serves as a functional chart of a system according to a preferred embodiment of the present invention. Applicant Tsuneo Hisatake

Claims (1)

【特許請求の範囲】 (1)、走行軌道予測機能を有する各種の車両やその他
の移動物体等の如き無人自走体が自らの走行予定コース
上の障害物を探索するためのシステムにして、前記コー
ス上における外部物体の存在を検出するためのセンサと
、自走体と外部物体との距離および該物体の存在方位を
検出するためのセンサと、自走体の旋回角を検出するセ
ンサと、自走体の走行速度を検出するセンサと、自走体
の機種、形式、仕様等の性能データを入力設定する手段
と、自走体の走行指令情報を入力設定する機能部と、前
記センサ検出による自走体の旋回角データおよび走行速
度データのそれぞれから該自走体の走行軌道を予測する
機能部と、前記走行速度データを基に自走体の制動距離
を算定する機能部と、該機能部による制動距離データと
前記軌道予測機能部からのデータとに基づいて自走体の
安全走行領域を判定する機能部と、その領域判定結果の
データと前記走行指令情報および前記外部物体との距離
と方位とから該物体に対する自走体の接触可能性の有無
を評価する危険度判定機能部と、その評価データと前記
外部物体の種類とから該物体に対する°自走体回避の要
否を判定するための機能部とからなっていることを特徴
とした無人自走体の障害物探索システム。 (2、特許請求の範囲第1項記載のシステムにおいて、
制動距離算定機能部は自走体の性能データのほかに該自
走体の総重量データを加味して自走体制動距離を算定す
るようになっていることを特徴とした無人自走体の障害
物探索システム。 (3)、特許請求の範囲第1項記載のシステムにおいて
、自走体回避の要否判定機能部は、その判定結果のデー
タに基づいた制御指令信号で自走体の制動乃至操向系統
等を自動制御するようになっていることを特徴とした無
人自走体の障害物探索システム。
[Scope of Claims] (1) A system for unmanned self-propelled objects such as various vehicles and other moving objects having a traveling trajectory prediction function to search for obstacles on their own planned travel course, a sensor for detecting the presence of an external object on the course; a sensor for detecting the distance between the self-propelled object and the external object and the orientation of the object; and a sensor for detecting the turning angle of the self-propelled object. , a sensor for detecting the running speed of the self-propelled body, a means for inputting and setting performance data such as the model, type, and specifications of the self-propelled body, a functional unit for inputting and setting travel command information for the self-propelled body, and the sensor. a functional unit that predicts the traveling trajectory of the self-propelled body based on the detected turning angle data and traveling speed data of the self-propelled body; a functional unit that calculates the braking distance of the self-propelled body based on the traveling speed data; a functional unit that determines a safe travel area of the self-propelled object based on braking distance data from the functional unit and data from the trajectory prediction function unit; a risk determination function unit that evaluates whether there is a possibility of a self-propelled object coming into contact with the object based on the distance and direction of the object; and a risk determination function unit that evaluates the necessity of avoiding the self-propelled object with respect to the object based on the evaluation data and the type of the external object. An obstacle search system for an unmanned self-propelled vehicle, characterized by comprising a functional unit for determining. (2. In the system according to claim 1,
An unmanned self-propelled object characterized in that the braking distance calculation function section calculates the moving distance of the self-propelled object by taking into account the total weight data of the self-propelled object in addition to the performance data of the self-propelled object. Obstacle search system. (3) In the system set forth in claim 1, the self-propelled object avoidance necessity determination function section uses a control command signal based on the data of the determination result to control the braking, steering system, etc. of the self-propelled object. An obstacle search system for an unmanned self-propelled vehicle, which is characterized by automatic control.
JP58070715A 1983-04-21 1983-04-21 Obstruction searching system for unmanned self- traveling body Pending JPS59195175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070715A JPS59195175A (en) 1983-04-21 1983-04-21 Obstruction searching system for unmanned self- traveling body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070715A JPS59195175A (en) 1983-04-21 1983-04-21 Obstruction searching system for unmanned self- traveling body

Publications (1)

Publication Number Publication Date
JPS59195175A true JPS59195175A (en) 1984-11-06

Family

ID=13439538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070715A Pending JPS59195175A (en) 1983-04-21 1983-04-21 Obstruction searching system for unmanned self- traveling body

Country Status (1)

Country Link
JP (1) JPS59195175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288136U (en) * 1985-11-14 1987-06-05
JPS62221948A (en) * 1986-03-25 1987-09-30 Kokusan Kinzoku Kogyo Co Ltd Obstruction annunciator in vehicle
JPH06149374A (en) * 1992-11-06 1994-05-27 Toyota Central Res & Dev Lab Inc Collision preventing device for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162497A (en) * 1978-06-13 1979-12-24 Nec Corp Clash preventive unit
JPS5725001A (en) * 1980-07-21 1982-02-09 Shinko Electric Co Ltd Safety device of moving body
JPS57155700A (en) * 1981-03-20 1982-09-25 Mitsui Shipbuilding Eng Rear collision preventer for vehicle
JPS5853543A (en) * 1981-09-24 1983-03-30 Mitsubishi Electric Corp Collision prevention system for motorcar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162497A (en) * 1978-06-13 1979-12-24 Nec Corp Clash preventive unit
JPS5725001A (en) * 1980-07-21 1982-02-09 Shinko Electric Co Ltd Safety device of moving body
JPS57155700A (en) * 1981-03-20 1982-09-25 Mitsui Shipbuilding Eng Rear collision preventer for vehicle
JPS5853543A (en) * 1981-09-24 1983-03-30 Mitsubishi Electric Corp Collision prevention system for motorcar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288136U (en) * 1985-11-14 1987-06-05
JPS62221948A (en) * 1986-03-25 1987-09-30 Kokusan Kinzoku Kogyo Co Ltd Obstruction annunciator in vehicle
JPH06149374A (en) * 1992-11-06 1994-05-27 Toyota Central Res & Dev Lab Inc Collision preventing device for vehicle

Similar Documents

Publication Publication Date Title
CN112519763B (en) Automatic parking system
JP7188338B2 (en) automatic parking system
JP3865121B2 (en) Vehicle obstacle detection device
JP2636403B2 (en) Operation control device for unmanned vehicles
CN112706759B (en) Automatic parking system
US20190079537A1 (en) Automatic guided vehicle
JP6386412B2 (en) Transport vehicle
JP2007193495A (en) Mobile vehicle
CN112927550B (en) Automatic parking system
US11590965B2 (en) Automated valet parking system
JP2689113B2 (en) Obstacle monitoring system for unmanned self-propelled vehicles
KR20130056655A (en) A counter moving method for collision avoidance of unmanned automatic vehicle
JP2796949B2 (en) Automatic guided vehicle and its non-contact type obstacle detection method
JP2021144435A (en) Collision prevention device, mobile body, and program
JPS59195175A (en) Obstruction searching system for unmanned self- traveling body
JPH05203737A (en) Obstacle detector for vehicle
JP4745160B2 (en) Mobile robot
JPS62274313A (en) Commanding device for obstacle evading operation of unmanned vehicle
JP4745152B2 (en) Mobile robot
JP2000276228A (en) Control method for movable dolly
JPH0588746A (en) Safety device for automatically governed vehicle
JP2730520B2 (en) Electric vehicle
JP2006018636A (en) Obstacle detector and obstacle detection method
JPH05203739A (en) Obstacle detector for vehicle
JPH0358105A (en) Stering controller of self-running car