JPS59194669A - Controlling method of single phase pwm inverter - Google Patents

Controlling method of single phase pwm inverter

Info

Publication number
JPS59194669A
JPS59194669A JP58067758A JP6775883A JPS59194669A JP S59194669 A JPS59194669 A JP S59194669A JP 58067758 A JP58067758 A JP 58067758A JP 6775883 A JP6775883 A JP 6775883A JP S59194669 A JPS59194669 A JP S59194669A
Authority
JP
Japan
Prior art keywords
control
signal
current
output
pwm inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58067758A
Other languages
Japanese (ja)
Other versions
JPH0421432B2 (en
Inventor
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58067758A priority Critical patent/JPS59194669A/en
Publication of JPS59194669A publication Critical patent/JPS59194669A/en
Publication of JPH0421432B2 publication Critical patent/JPH0421432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To enhance the output frequency of an inverter by displacing 180 deg. of an electric angle of the carrier for PWM controlling a pair of switching elements connected in series to the carrier for PWM controlling a pair of switching elements connected in series. CONSTITUTION:A compensating current detected value is compared by a comparator C1 with the instruction value, and a deviation is inputted to a control compensator H(S) to obtain a control input signal. This control input signal is inputted to comparators C2, C3, and compared with the output signal which is displaced at 180 deg. from a triangular wave generator TRG. The outputs of the comparators C2, C3 are applied to the GTO of a PWM inverter through Schmitt circuits SH1, SH2 and gate circuits GC1, GC2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は単相交流電流を出力する電圧形PWM(パルス
幅変調方式)インバータの制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of controlling a voltage-type PWM (pulse width modulation method) inverter that outputs a single-phase alternating current.

〔発明の技術的背景〕[Technical background of the invention]

電圧形PWMインバータは、直流電力を可変電圧可変調
周波数の交流電力に変換する電力変換器として知られて
おり、交流可変速電動機の駆動電源や、電源系統の無、
動電力などを補償するためのアクティブフィルター等に
使われている。
A voltage-type PWM inverter is known as a power converter that converts DC power to AC power with variable voltage and variable frequency, and is used as a drive power source for an AC variable speed motor or without a power supply system.
It is used in active filters to compensate for dynamic forces, etc.

第1図は、従来の単相PWMインバータを用いたアクテ
ィブフィルター装置の構成図を示すものである。
FIG. 1 shows a configuration diagram of an active filter device using a conventional single-phase PWM inverter.

図中、■sは単相交流電源ミLsは交R’)アクドル、
INVはPWMインバータ本体、coは直流平滑コンデ
ンサを示す。PWMインバータINVば、ゲートターン
オフサイリスク(以下、GTOと略す)S1〜S4、ホ
イーリングダイオードD1〜Dい゛中間り′ツブ付直流
すアクトルL、−L2からなっている。
In the figure, ■s is a single-phase AC power supply (Ls is AC R'),
INV is the PWM inverter body, and co is the DC smoothing capacitor. The PWM inverter INV consists of gate turn-off switches (hereinafter abbreviated as GTO) S1 to S4, wheeling diodes D1 to D, and DC actuators L and -L2 with protrusions in between.

また制御回路として、補償電流Icを検出する変流器C
T1比較器C1、C2、制御補償回路H(s)、三角波
発生器TRG、シュミット回路SH、ゲート回路GCか
ら成っている。
Also, as a control circuit, a current transformer C that detects the compensation current Ic
It consists of T1 comparators C1 and C2, a control compensation circuit H(s), a triangular wave generator TRG, a Schmitt circuit SH, and a gate circuit GC.

比較器C3により、補償電流の検出値ICとその指令値
■すを比較し、偏差ε、−=建ICを次の制御補償回路
H(s)に入力する。制御補償回路H(s)は比例要素
あるいは積分要素などからなり、制御系の安定化及び応
答性を考慮してその定数が選択される。
The comparator C3 compares the detected value IC of the compensation current with its command value 2, and inputs the deviation ε, -= IC to the next control compensation circuit H(s). The control compensation circuit H(s) is composed of a proportional element or an integral element, and its constant is selected in consideration of stability and responsiveness of the control system.

制御補償回路H(S)の出力信号e1と、三角波発生器
TRGからの出力信号aを比較器C2によって比較し、
その偏差ε2=e、−aを次のシュミット回路SRに入
力する。シュミット回路5H(d偏差ε2が正の時゛1
”の出力信号を偏差ε2が負の時”0”の出力信号を発
生し、ゲート回路GCを介して、GTO81〜S4に点
弧信号を与える。
The output signal e1 of the control compensation circuit H(S) and the output signal a from the triangular wave generator TRG are compared by a comparator C2,
The deviation ε2=e, -a is input to the next Schmitt circuit SR. Schmitt circuit 5H (when d deviation ε2 is positive ゛1
When the deviation ε2 is negative, an output signal of "0" is generated, and an ignition signal is given to the GTOs 81 to S4 via the gate circuit GC.

第2図は、上記三角波発生器TRGの出力信号aと制御
補償回路H(s)の出力信号e1及びゲート回路GCの
出力信号Xの関係を示したもので、そのときのインバー
タINVの出力電圧e。を単位化して表わしている。
FIG. 2 shows the relationship between the output signal a of the triangular wave generator TRG, the output signal e1 of the control compensation circuit H(s), and the output signal X of the gate circuit GC, and the output voltage of the inverter INV at that time. e. is expressed in units.

三角波発生器TRGの出力信号aはPWMインバータの
搬送波となるもので、l kHz程度の三角波となって
いる。また、制御補償回路H(s)の出力信号e1はP
WMインバータの制御入力信号となるもので、入力蜜、
正値e、に比例した電圧e0をインバータINVから発
生させる。
The output signal a of the triangular wave generator TRG serves as a carrier wave for the PWM inverter, and is a triangular wave of about 1 kHz. Furthermore, the output signal e1 of the control compensation circuit H(s) is P
This is the control input signal for the WM inverter.
A voltage e0 proportional to the positive value e is generated from the inverter INV.

ε2=e、−aが正のとき、GTOサイリスタSIと8
4にオン信号が与えられ、S2とSsにはオフ信号が与
えられる。故に第1図の主回路で、電流Icが矢印の方
向に流れている場合、直流コンデンサC。
When ε2=e, -a is positive, GTO thyristor SI and 8
An on signal is given to S2 and Ss, and an off signal is given to S2 and Ss. Therefore, in the main circuit of Fig. 1, if the current Ic is flowing in the direction of the arrow, the DC capacitor C.

(+)→サイリスタS、−+直流すアクトルL1→交流
リアクトルLII→交流電源Vs→直流リアクトルL、
→サイリス′りS4→直流コンデンサCo(−)の経路
で流れる。ここで、直流コンデンサCoの電圧Vcを電
源電圧VBの最大値V++(m−x)より大きくしてお
けば、ε2〉0のとき補償電流Icを矢印の方向に増加
きせる。電流Icの方向が矢印と逆の向きに流れている
場合電流は、直流コンデンサCo(−)→ダイオードD
4→直流リアクトルL2→交流電源Vs→交流リアクト
ルLs−+直流リアクトルL1→ダイオードD、→直流
コンデンサCo(+)の経路に流れる。この場合電流I
cは減少していく。従って62〉0の場合インバータI
NVの出力電圧Eoは第1図の矢印の向きになり、補償
電流Icを矢印の方向に流すように働らく。
(+) → Thyristor S, -+ DC actor L1 → AC reactor LII → AC power supply Vs → DC reactor L,
Flows through the path of → silice S4 → DC capacitor Co(-). Here, if the voltage Vc of the DC capacitor Co is made larger than the maximum value V++ (m-x) of the power supply voltage VB, the compensation current Ic can be increased in the direction of the arrow when ε2>0. When the direction of current Ic is flowing in the opposite direction to the arrow, the current flows from DC capacitor Co(-) to diode D.
4→DC reactor L2→AC power supply Vs→AC reactor Ls−+DC reactor L1→diode D,→DC capacitor Co(+). In this case the current I
c is decreasing. Therefore, if 62>0, the inverter I
The output voltage Eo of NV is in the direction of the arrow in FIG. 1, and acts to cause the compensation current Ic to flow in the direction of the arrow.

52= et −aが負のとき、G T OS、と5s
VrCオン信号が与えられ、S、と84にはオフイ=号
が与えられる。
52= When et −a is negative, G T OS, and 5s
A VrC on signal is given, and an off signal is given to S and 84.

故に第1図の主回路で、電流Icが矢印の方向に流れて
いる場合、直流コンデンサCo(−)→ダイオードD2
→直流リアクトルL1→交流リアクトルLs→交流電源
Vs→直流リアクトルL2→ダイオードD3→直流コン
デンサCo (+)の経路で流れ電流Icを減少させる
。また電流Icが矢印と逆向きに流れている場合、直流
コンデンサCo(+)→サイリスタS、→直流すアクト
ルL2→交流電源vIl→交流リアクトルLs→直流リ
アクトルL1→サイリスタS2→直流コンデンサCo 
(−)の経路で流れ、肖該方向に電流を増加きせるよう
に動作する。
Therefore, in the main circuit of Fig. 1, if current Ic is flowing in the direction of the arrow, DC capacitor Co(-) → diode D2
→ DC reactor L1 → AC reactor Ls → AC power supply Vs → DC reactor L2 → diode D3 → DC capacitor Co (+) to reduce the flowing current Ic. In addition, when the current Ic is flowing in the opposite direction to the arrow, DC capacitor Co (+) → Thyristor S → DC actuator L2 → AC power supply vIl → AC reactor Ls → DC reactor L1 → Thyristor S2 → DC capacitor Co
It flows along the (-) path and operates to increase the current in the corresponding direction.

補償電流の指令値■↑を正の値に設定L%I?>Icと
した場合、偏差ε1−1c−Icは正の値となって制御
補償回路H(s)を介して、制御入力信号e、を増加さ
せる。PWMインバータINVの出力電圧Eoは入力信
号e、の値に比例して第1図の矢印の向きに増加する。
Compensation current command value ■ Set ↑ to a positive value L%I? >Ic, the deviation ε1-1c-Ic becomes a positive value and increases the control input signal e through the control compensation circuit H(s). The output voltage Eo of the PWM inverter INV increases in the direction of the arrow in FIG. 1 in proportion to the value of the input signal e.

その結果、補償電流の実際値Icが増加し、Ic =I
cになるように制御される。
As a result, the actual value Ic of the compensation current increases, Ic = I
c.

米 Ic〈■Cとなった場合、制御入力信号e、は減少しイ
ンバータINVの出力電圧Eoを減少させる。
When Ic<■C, the control input signal e decreases, causing the output voltage Eo of the inverter INV to decrease.

故に、実電流Icが減少しやはりIC= Ieとなるよ
うに制御される。
Therefore, the actual current Ic decreases and is controlled so that IC=Ie.

米 電流指令値ICを正弦波状に変化きせれば、それに追従
して、集電bF I Cも正弦波状に変化する。
If the current command value IC changes in a sinusoidal manner, the current collection bF I C also changes in a sinusoidal manner following it.

PWMインバータINV−Qアクティブフィルターとし
て使う場合、上記補償電流の指令値Icは電#電圧Va
に同期した有効電流、無効電流はもちろんのこと、種々
の高調波成分まで含まれており、電流制御系の追従性の
良いものが必要となる。
When using the PWM inverter INV-Q as an active filter, the compensation current command value Ic is equal to the voltage Va.
It includes not only active current and reactive current synchronized with the current, but also various harmonic components, so a current control system with good followability is required.

〔背景技術の問題点〕[Problems with background technology]

上記電流制御系の応答特性は、PWMインバータINV
の制御周波数f、に依存しfcが筒いほど、追従性の良
い制御が可能となる。
The response characteristics of the above current control system are PWM inverter INV
It depends on the control frequency f, and the longer fc becomes, the better the control becomes possible.

制御周波数fcは三角波発生器T RGの出力周波数そ
のものであり、通常l kHz程度に選ばれる。
The control frequency fc is the output frequency itself of the triangular wave generator TRG, and is usually selected to be about 1 kHz.

従って周波数fcをさらに高くすればそれだけ、制御応
答特性が改善されるが、PWMインバータを構成するG
TOのスイッチング特性等を考慮するとやはり1 kH
z程度が妥当な値となっている。
Therefore, if the frequency fc is made higher, the control response characteristics will be improved accordingly, but the G
Considering the switching characteristics of TO, it is still 1 kHz.
A value of about z is a reasonable value.

従って、従来のPWMインバータをアクティブフィルタ
ー装置に適用した場合、電源電圧■8の基本波成分(5
Q Hz又は60 Hz )に対しては充分追従できる
が、高調波成分(第3次、第5次、第7次・・・・・・
)等に対しては、満足な補償を行うことができなくなる
欠点があった。
Therefore, when a conventional PWM inverter is applied to an active filter device, the fundamental wave component (5
Q Hz or 60 Hz) can be tracked sufficiently, but harmonic components (3rd, 5th, 7th...
), etc., had the disadvantage that satisfactory compensation could not be provided.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みてなされたもので、PWMイン
バータを構成するGTOのスイッチング周波数を高める
ことなく、インバータの出力周波数を2倍に高められる
、単相PWMインバータの制御方法を提供することを目
的とする。
The present invention has been made in view of the above points, and an object thereof is to provide a control method for a single-phase PWM inverter that can double the output frequency of the inverter without increasing the switching frequency of the GTO that constitutes the PWM inverter. With the goal.

〔発明の概要〕[Summary of the invention]

本発明は、半導体スイッチング素子を少なくとも2個直
列接続した対を2組設け、それらを直流筒、圧υ劇に対
し並列に接続し、前記直列接続の中間点から交流出力電
圧を得るようにした単相PWMインバータにおいて、上
記一対の直列接続スイッチング素子のPWM制御の搬送
波をもう一対の直列接続スイッチング素子のPWM制御
の搬送波に対し、電気角で180°ずらして与えるよう
にした。
The present invention provides two pairs in which at least two semiconductor switching elements are connected in series, and connects them in parallel to a DC cylinder and a pressure drop, so that an AC output voltage is obtained from the midpoint of the series connection. In the single-phase PWM inverter, the PWM-controlled carrier waves of the pair of series-connected switching elements are shifted by 180 degrees in electrical angle from the PWM-controlled carrier waves of the other series-connected switching elements.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の単相PWMインバータの実施例を示す
構成図である。
FIG. 3 is a configuration diagram showing an embodiment of the single-phase PWM inverter of the present invention.

主回路構成は第1図と同様である。制御回路においてC
hC2、C3は比較器、H(s)は制御補償回路T R
G B三角波発生器、5L−(、,5Hzl’j:シュ
ミット回路、GCl、GC2Hゲート制御回路である。
The main circuit configuration is the same as that shown in FIG. C in the control circuit
hC2 and C3 are comparators, H(s) is a control compensation circuit T R
GB triangular wave generator, 5L-(, 5Hzl'j: Schmitt circuit, GCl, GC2H gate control circuit.

比較器C1によって補償電流検出値Icとその指令糸 値ICを比較し、偏差ε+=Ic  Icを制御補償回
路n(s)に入力踵比例増幅あるいは積分増幅等を行っ
て制御入力信号e、を得ているのは従来と同じである。
The comparator C1 compares the compensation current detection value Ic and its command thread value IC, and inputs the deviation ε+=IcIc to the control compensation circuit n(s), which performs heel proportional amplification or integral amplification to obtain the control input signal e. What you get is the same as before.

制御入力信号e1は比較器C2とC8に入力され、三角
波発生器TRGからの出力信号a及びbと比較器れる。
The control input signal e1 is input to comparators C2 and C8 and is compared with the output signals a and b from the triangular wave generator TRG.

出力信号aに対し、出方(fi号すは電気角で180°
だけ位相がずれている。簡単には、a信号を反転するこ
とによりb信号が得られる。
For output signal a, the output direction (fi is 180° in electrical angle)
only the phase is shifted. Simply, the b signal is obtained by inverting the a signal.

シュミット回路SH,は制御入力信号elが上記搬送波
(三角波)aより大きいとき1”の信号を出力し、次の
ゲート回路GCi Q介してG T OS。
The Schmitt circuit SH outputs a 1" signal when the control input signal el is larger than the carrier wave (triangular wave) a, and outputs a signal of 1" to GT OS via the next gate circuit GCiQ.

にオン信号をGTO82にオフ信号を与える。逆にe。An on signal is given to the GTO 82 and an off signal is given to the GTO 82. On the contrary, e.

〈aのとき、SH,ノ出力は0°′となり、5tlCオ
フ信号、Stにオン信号を与える。
At the time of <a, the output of SH becomes 0°', giving an on signal to the 5tlC off signal and St.

シュミット回路SH2は制御入力信号eiが上記搬送波
(三角波)bより大きいとき、“1”の信号を出力し、
ゲート回路GC2を介してG T OS、にオフ信号G
 T OSsにオフ信号を与える。逆にe、(bのとき
、SH2の出力は0”となりS4にオフ信号、S3にオ
ン信号を与える。
The Schmitt circuit SH2 outputs a signal of "1" when the control input signal ei is larger than the carrier wave (triangular wave) b,
An off signal G is sent to GTOS through the gate circuit GC2.
Give an off signal to the T OSs. Conversely, when e, (b), the output of SH2 becomes 0'', giving an off signal to S4 and an on signal to S3.

第4図は第3図の各部波形を示したもので、搬送波a、
bに対【7て制御l入力信号eiを与えることによりゲ
ート回路GC,及びGC2の出力信号は各々X及びyの
波形とナリ、出力、電圧(単位化して表わしている)は
e。の如くなる。まだ制御入力信号がeiのように負の
11なのときのGC,1GC2の出力信号はX′、y′
のようになりそのときの出力電圧はべのようになる。
Figure 4 shows the waveforms of each part in Figure 3, with carrier waves a,
By applying the control l input signal ei to [7], the output signals of the gate circuits GC and GC2 are equal to the waveforms of X and y, respectively, and the output and voltage (expressed in units) are e. It will be like this. When the control input signal is still negative 11 like ei, the output signals of GC, 1GC2 are X', y'
The output voltage at that time will be as shown below.

制御入力信号e1が正の値のときG T OSlのオン
期間はG T OStのオン期間より長くなりまたGT
O84のオン期間はG T OS、のオン期間より長く
なる。
When the control input signal e1 has a positive value, the on period of G T OSl is longer than the on period of G T OSt, and the on period of G T OS
The on period of O84 is longer than the on period of G T OS.

しかもG T OS、のオン期間中にG T OS、の
オン期間が一度だけ発生し、GTO8,のオン期間中に
GT OStのオン期間か−8度だけ発生する。従って
次の3つのモードが発生する。
Moreover, the ON period of GT OS occurs only once during the ON period of GT OS, and the ON period of GT OSt occurs only -8 times during the ON period of GTO8. Therefore, the following three modes occur.

イ)  Stオン(82オフ)、84オン(S、オフ)
→ SIオン(82オフ)、83オン(84オフ)ノう
 82オン(Stオフ)、84オン(S、オフ)上記イ
)のモードではコンデンサ電圧VCが出力端子に発生し
、E9 = + Vcとなる。ol及びノ9のモードで
は出力端子は短絡されEo == 0となる。従って出
力電圧Eoを単位化した場合第4図のeのような波形と
なる。出力電圧eは常に正の値でその平均値は制御入力
電圧e、に比例した値となっている。
B) St on (82 off), 84 on (S, off)
→ SI on (82 off), 83 on (84 off), 82 on (St off), 84 on (S, off) In mode A) above, capacitor voltage VC is generated at the output terminal, E9 = + Vc becomes. In modes ol and 9, the output terminals are short-circuited and Eo==0. Therefore, if the output voltage Eo is unitized, it will have a waveform like e in FIG. 4. The output voltage e is always a positive value, and its average value is a value proportional to the control input voltage e.

出力電圧e。の制御周波数fcはGTO3,〜S4のオ
ンオフ周波数すなわち搬送波周波数の2倍になっている
のがわかる。
Output voltage e. It can be seen that the control frequency fc is twice the on/off frequency of GTO3, ~S4, that is, the carrier wave frequency.

また制御入力信号が負の値e/、となった場合、今度は
、G T OS、のオン期間がG T OS、のオン期
間より長くなり、さらにGTO83のオン期間がGTO
84のオン期間より長くなる。しかもG T OStの
オン期間中にG T OS、のオン期間が一度だけ発生
し、また、G T OS30オン期間中にGTO8,の
オン期間が一度だけ発生する。
Further, when the control input signal becomes a negative value e/, the on-period of GTO83 becomes longer than the on-period of GTO83, and the on-period of GTO83 becomes longer than the on-period of GTO83.
This is longer than the on period of 84. Furthermore, the ON period of GTO8 occurs only once during the ON period of GTOSt, and the ON period of GTO8 occurs only once during the ON period of GTOS30.

従ってこの場合は次の3つのモードが考えられる。Therefore, in this case, the following three modes are possible.

イ)81オン(82オフ)、Ssオン(84オフ)o)
  S2オy (S、オフ)、Ssオニy (S、オフ
)ノ982オン(Ssオフ)、84オン(S3オフ)上
記イ)及びノ9の二e−ドではインバータの出力端子は
短絡され出力電圧Eoは零となる。また→のモードでは
、出力端子に−vcの電圧が発生し、Eo==−Vcと
なる。従って出力電圧Eoを単位化して表わすと第4図
のeloのような波形となる。出力電圧eQは常に負の
値でその平均値は制御入力電圧el、に比例した値にな
っている。この場合も出力電圧e′の制御周波数fcは
GTO8,〜S4のスイッチング周波数すなわち搬送波
周波数の2倍になっているのがわかる。
b) 81 on (82 off), Ss on (84 off) o)
S2 (S, off), Ss (S, off), 982 on (Ss off), 84 on (S3 off) The output terminals of the inverter are short-circuited at The output voltage Eo becomes zero. In the → mode, a voltage of -vc is generated at the output terminal, and Eo==-Vc. Therefore, when the output voltage Eo is expressed in units, it has a waveform like elo in FIG. The output voltage eQ is always a negative value, and its average value is a value proportional to the control input voltage el. It can be seen that in this case as well, the control frequency fc of the output voltage e' is twice the switching frequency of the GTOs 8 to S4, that is, the carrier wave frequency.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の単相P W ivIインバータの
Ill 1ilt!方法によれば、従来の主回路植成を
変えることなく、インパークの出力電圧のlB11個1
局波数を構成素子のスイッチング周波数の2+f!rに
高めることができ、従って制御の′応答速度が高められ
、従来不可能であった高次の面周波成分まで補償するア
クティブフィルターにも使うことができる。
As described above, the Ill 1ilt! According to the method, without changing the conventional main circuit layout, the output voltage of impark can be reduced by 11 lbs.
The number of station waves is 2+f of the switching frequency of the constituent elements! Therefore, the response speed of the control is increased, and it can also be used in an active filter that compensates for high-order surface frequency components that were previously impossible.

さらに出力電圧の仙j御周波数を高めることによシ、補
償′電流Icの脈動が小ざくなり、その結果、交流リア
クトルも小さなもので済むようになる。
Furthermore, by increasing the control frequency of the output voltage, the pulsation of the compensation current Ic becomes smaller, and as a result, the AC reactor can also be made smaller.

′止だ、第2図(従来)と第4図(本発明)の出力電圧
e を比較した場合、従来装置でばeは6+1′′か”
−1゛′であったのに対し、本発明のeは”+1”と“
0”と”−1”の3段階に制御されている。すなわち、
出力電圧e。の変化が小きくなりその点からも補償電流
Icの脈動を小さくする効果がある。さらにまた、制御
入力信号eiが零のとき、従来装置では出力電圧eが“
°+1”の期間と”−1”の期間が同じになるだけで、
常時゛+1”と−1”の間を変化している。これに対し
不発明の制御方法によれば、e、=OのときSlオン(
82オフ)のと*、Ssオン(84オフ)となり82オ
ン(S、オフ)のとき、84オン(ssオフ)となって
、eは當に0”となる。すなわち出力電圧脈動は零とな
る。従って出力電流(補償電流1.)の脈動もなくなる
``Stop! If you compare the output voltage e in Figure 2 (conventional) and Figure 4 (invention), e is 6+1'' in the conventional device.''
-1′′, whereas e of the present invention is “+1” and “
It is controlled in three stages: 0" and "-1". In other words,
Output voltage e. The change in the compensation current Ic becomes smaller, which also has the effect of reducing the pulsation of the compensation current Ic. Furthermore, when the control input signal ei is zero, in the conventional device, the output voltage e is “
The only difference is that the period of “°+1” and the period of “-1” are the same,
It constantly changes between +1" and -1". On the other hand, according to the uninvented control method, when e,=O, Sl is on (
82 off) and *, Ss is on (84 off) and when 82 is on (S, off), 84 is on (ss off) and e becomes 0''. In other words, the output voltage pulsation is zero. Therefore, the pulsation of the output current (compensation current 1.) also disappears.

尚、本発明の単相PWMインバータ(はアクティブフィ
ルター装置としてはもちろんのこと、次のような装置に
も適用することができる。
Note that the single-phase PWM inverter of the present invention can be applied not only to an active filter device but also to the following devices.

例えば、第3図の直流コンデンサCOに負荷を接続し、
当該コンデンサ電圧Vcがほぼ一定になるように電源か
らの入力電流Icを制御するもので、当該入力端子Ic
iは電源電圧VIIと同相の正弦波電流が流れるように
fa制御した、入力力率=1の交直電力変換装ji’1
’ (コンバータ)として動作きせることかできる。
For example, if a load is connected to the DC capacitor CO in Figure 3,
It controls the input current Ic from the power supply so that the capacitor voltage Vc becomes almost constant, and the input terminal Ic
i is an AC/DC power converter ji'1 with an input power factor of 1, which is fa-controlled so that a sinusoidal current in phase with the power supply voltage VII flows.
' (converter).

また、1jj、 jp、 VsO代りに単相負荷を接続
し、直流コンデンザCof直流電源に置き換えて負荷電
、流Icンー11i制御するiff父霜力変換装置(イ
ンノく一タ)として巾力作心ぜらγしることは−6うま
でもない。
In addition, we are working hard to connect a single-phase load instead of 1jj, jp, and VsO, and to use a DC capacitor Cof DC power supply to control the load current and current Ic-11i. It goes without saying that it is -6.

【図面の簡単な説明】[Brief explanation of drawings]

舶1図に従来の単相PWMインノ(−夕の応用例を示す
構成図、第2図は第1図の装置の動作を説明するだめの
タイムチャート図、第3図は本発明の単相PWMインバ
ータの実施例を示す構成図、蕗4図は第3図の装置の動
作を説明するためのタイムチャ)−ト図である。 ■8・・・交流電源     Ls・・・交流リアクト
ルI NV −−−P’WMイア パーク本体Co・・
・直流コンデンサ S1〜S4・・・GTOサイリスタ L、、L、・・・直流リアクトル D1〜D4・・・ホイーリングダイオードCT・・・変
流器     CI・・・C3・・・比較器H(s)・
・・制御補償回路 TRG/・・・三角波発生器SH,
,SH2・・・シュミット回路 GC11GC2・・・ゲート制御回路
Fig. 1 is a configuration diagram showing an example of the application of a conventional single-phase PWM system, Fig. 2 is a time chart diagram for explaining the operation of the device shown in Fig. FIG. 4 is a block diagram showing an embodiment of the PWM inverter, and FIG. 4 is a time chart for explaining the operation of the device shown in FIG. ■8...AC power supply Ls...AC reactor I NV ---P'WM ear Park body Co...
・DC capacitors S1 to S4...GTO thyristors L, L,...DC reactors D1 to D4...Wheeling diode CT...Current transformer CI...C3...Comparator H(s )・
...Control compensation circuit TRG/...Triangular wave generator SH,
, SH2... Schmitt circuit GC11GC2... gate control circuit

Claims (1)

【特許請求の範囲】[Claims] 半導体スイッチング素子を少なくとも2細面列接続した
対を2組設け、それらを直流電圧源に対して差動に接続
し、前記直列接続の中間点から交流出力電圧を得るよう
にした単相PWMインバータにおいて、上記一対の直列
接続スイッチング素子のPWM制御の搬送波をもう一対
の直列接続スイッチング素子のPWM制御の搬送波に対
し、電気角で180″′ずらして与えたことを特徴とす
る単相PWMインバータの制御方法。
In a single-phase PWM inverter, two pairs of at least two semiconductor switching elements connected in narrow plane rows are provided, and the pairs are differentially connected to a DC voltage source, and an AC output voltage is obtained from a midpoint of the series connection. , the control of a single-phase PWM inverter, characterized in that the carrier wave for PWM control of the pair of series-connected switching elements is shifted by 180'' in electrical angle with respect to the carrier wave for PWM control of the other pair of series-connected switching elements. Method.
JP58067758A 1983-04-19 1983-04-19 Controlling method of single phase pwm inverter Granted JPS59194669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067758A JPS59194669A (en) 1983-04-19 1983-04-19 Controlling method of single phase pwm inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067758A JPS59194669A (en) 1983-04-19 1983-04-19 Controlling method of single phase pwm inverter

Publications (2)

Publication Number Publication Date
JPS59194669A true JPS59194669A (en) 1984-11-05
JPH0421432B2 JPH0421432B2 (en) 1992-04-10

Family

ID=13354155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067758A Granted JPS59194669A (en) 1983-04-19 1983-04-19 Controlling method of single phase pwm inverter

Country Status (1)

Country Link
JP (1) JPS59194669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663702A (en) * 1984-10-12 1987-05-05 Kabushiki Kaisha Toshiba Power converter apparatus and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125082A (en) * 1979-03-19 1980-09-26 Toshiba Corp Controlling method for three-phase current pulse width controlling inverter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125082A (en) * 1979-03-19 1980-09-26 Toshiba Corp Controlling method for three-phase current pulse width controlling inverter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663702A (en) * 1984-10-12 1987-05-05 Kabushiki Kaisha Toshiba Power converter apparatus and control method thereof

Also Published As

Publication number Publication date
JPH0421432B2 (en) 1992-04-10

Similar Documents

Publication Publication Date Title
US4193111A (en) Unity power factor converter
KR100430930B1 (en) Pwm controlled power conversion device
Nishida et al. A predictive instantaneous-current PWM controlled rectifier with AC-side harmonic current reduction
CN110752763B (en) Modular multilevel converter topology and modulation method thereof
CN113422518B (en) Three-phase direct AC-AC converter topology based on MMC and control method thereof
WO2023005489A1 (en) Switch power amplifier, control method therefor and control system thereof
CN110829870B (en) Control method of modular multilevel converter in low-frequency operation state
CN109546661B (en) Efficient T-type three-level APF modulation method based on hybrid modulation
CN107317343B (en) High-efficiency cascade H-bridge type dynamic voltage restorer and control method thereof
JPS59194669A (en) Controlling method of single phase pwm inverter
CN114204596B (en) Active power decoupling circuit and control method
Kikuchi et al. Complementary half controlled three phase PWM boost rectifier for multi-DC-link applications
Suresh et al. Three-level active neutral point clamped DSTATCOM with Interval Type-2 fuzzy logic controller
Hernandez et al. A generalized control scheme for active front-end multilevel converters
JPS60128870A (en) Pulse width modulation converter
Xu et al. A single-phase high-power-factor neutral-pointer clamped multilevel rectifier
Park et al. Development of a high performance single-phase voltage regulator composed of 3 arms bridge
JPH10225144A (en) Method of controlling gate of three-arm ups
Narukullapati et al. A survey comparision of switched inductor and switched inductor quasi ZSI topologies
JPS63245268A (en) Controlling method for current type pwm converter
CN211830228U (en) Capacitor split type static compensator circuit with zero sequence voltage-sharing bridge arm
Mustafar et al. A new space vector modulation technique for quasi Z-source B4 inverter
JP2874215B2 (en) Control method of PWM converter
Kedia et al. A Single Phase DC-AC Converter using Dual Active Bridge fed Unfolder Circuit with Current Stress Minimization
JPS60167685A (en) Frequency converter utilizing self-extinguishing element