JPS59194542A - Method for detecting interference quantity of same frequency - Google Patents

Method for detecting interference quantity of same frequency

Info

Publication number
JPS59194542A
JPS59194542A JP58068428A JP6842883A JPS59194542A JP S59194542 A JPS59194542 A JP S59194542A JP 58068428 A JP58068428 A JP 58068428A JP 6842883 A JP6842883 A JP 6842883A JP S59194542 A JPS59194542 A JP S59194542A
Authority
JP
Japan
Prior art keywords
frequency
wave
interference
sampled
fading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58068428A
Other languages
Japanese (ja)
Other versions
JPH0119779B2 (en
Inventor
Shigeru Kozono
小園 茂
Keiichi Ishikawa
恵一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58068428A priority Critical patent/JPS59194542A/en
Priority to US06/541,842 priority patent/US4561114A/en
Priority to EP83307195A priority patent/EP0117946B1/en
Priority to DE8383307195T priority patent/DE3379252D1/en
Publication of JPS59194542A publication Critical patent/JPS59194542A/en
Publication of JPH0119779B2 publication Critical patent/JPH0119779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE:To detect quantitatively an interference quantity during communication by sampling an envelope square detecting output of a received wave and finding out low frequency and high frequency components to process these components. CONSTITUTION:A receiver 10 receives fading FD produced by a required wave D wave and an interference wave U wave, the intermediate frequency signal IF is amplified by an amplifier 11 and the envelope square of the received wave is detected by a detector 12. The output of the detector 12 is sampled and the average value is found out to derive a low frequency component having a frequency component almost equal to the FD frequency. The envelope square detected output is sampled by A/D converters 13, 14 respectively at time (t) and time t+DELTAt, a high frequency component to be varied at the frequency higher than the FD frequency is sampled at delay time DELTAt which makes the product of two sampled values zero and the square average of the difference of two sample values at the time t and t+DELTAt is found out to derive the high frequency component. After finding out the average of the low frequency components and the high frequency component, a computer 15 calculates an interference D/U ratio from these values.

Description

【発明の詳細な説明】 (技術分野) 本発明は無線通信方式の同一周波干渉量の検出方式に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for detecting the amount of co-frequency interference in a wireless communication system.

(背景技術) 従来の干渉検出方式では、送信側で干渉検出のために各
周毎に異iっだ周波数の信号を通信帯域外に入れて電波
を送出する。受信側では通信帯域外で複数の干渉検出用
周波数を受信できる受信機を用意し、通信の相手局以外
の干渉検出用周波数が受信された時干渉有りと判断する
方法であった。
(Background Art) In a conventional interference detection method, the transmitting side sends out radio waves by putting signals of different frequencies outside the communication band every round in order to detect interference. On the receiving side, a receiver capable of receiving multiple interference detection frequencies outside the communication band is prepared, and when an interference detection frequency other than that of the communication partner is received, it is determined that there is interference.

この方式は通信信号の他に通話帯域外で干渉検出用信号
を送受信しなければならないため送信機に何710装置
をつけなければならない欠点があった。
This system has the disadvantage that, in addition to the communication signal, an interference detection signal must be transmitted and received outside the communication band, so that several 710 devices must be attached to the transmitter.

また、従来の干渉検出は干渉の有無相反しか判断できな
かったため、ある通信品質以下となる干渉量が生じた場
合、高品質な通信を給付するために、干渉量を定量的に
検出して他チャネルに切替えるような高度な匍」御はで
きなかった。
In addition, conventional interference detection could only determine the presence or absence of interference, so if the amount of interference that falls below a certain communication quality occurs, in order to provide high-quality communication, it is necessary to quantitatively detect the amount of interference. Advanced control such as switching channels was not possible.

(発明の課題) 本発明はこれらの欠点を除くため、通信中に干渉:縫を
定量的に検出できるよりにしたもので、その肋敵は、希
望波と妨害波を同時受信したとき、角度変調又は搬送波
周波数のオフセットによって、その包絡線がフェージン
グ周v数より高い周波数で変動するようになされた無線
通信方式において、受(n彼の包絡線2呆検彼出力をサ
ンプリングしその平均類をとることによりフェージング
周波数とほぼ等しい周波数成分を有する低JM彼成分を
求め、また包絡線2乗検波出力を時刻tとt十Δtにサ
ンプリングした値がフェージングに対しては同値とみな
せ、上記フェージング周波数より高い周波数で変動する
高周波成分に対しては2つのサンプリング1直の槓が零
とみl+!:るよつな遅延時間Δt でサンプリングし
、t(!:t+Δtのサンプリング値の差の2乗平均を
とることによって高周波成分を求め、これら低周波成分
及び高周波成分から干渉量を検出するごとき同一周波干
渉量検出方式にある。
(Problems to be solved by the invention) In order to eliminate these drawbacks, the present invention is capable of quantitatively detecting interference during communication. In a wireless communication system whose envelope fluctuates at a frequency higher than the fading frequency due to modulation or carrier frequency offset, it is possible to sample the envelope output and calculate its average. By calculating the low JM component having a frequency component almost equal to the fading frequency, the values obtained by sampling the envelope square law detection output at times t and t + Δt can be regarded as the same value for fading, and the above fading frequency For high-frequency components that fluctuate at higher frequencies, the two sampling points in one rotation are assumed to be zero, l+!: Sampling is performed with a different delay time Δt, and the square mean of the difference between the sampling values of t(!: t+Δt This is a co-frequency interference detection method in which a high frequency component is obtained by taking the following, and the amount of interference is detected from these low frequency components and high frequency components.

(発明の構成および作用) 干渉量検出の原理及び実施例を以下に示す。(Structure and operation of the invention) The principle and examples of interference amount detection are shown below.

再度変調された希望波(D波)と干渉波(U彼)は式(
1) 、 (2)で表わされる。
The re-modulated desired wave (D wave) and interference wave (U) are expressed by the formula (
1) and (2).

7′2 ここでE;+ (t) 、 E2(t)はD波及びU波
の振幅でその振幅はレイリー分布する。ω1.ω2及び
Δω1.Δω2はD波及びU彼の角速度、周波数偏移、
Pl、P2はD及びU波の変調信号の周波数である。φ
はD波に対するU彼の位相差、θはD波変調彼に対する
U彼変調波の位相差である。
7'2 Here, E;+ (t) and E2(t) are the amplitudes of the D wave and the U wave, and the amplitudes have a Rayleigh distribution. ω1. ω2 and Δω1. Δω2 is the angular velocity of D wave and U wave, frequency deviation,
Pl and P2 are the frequencies of the D and U wave modulation signals. φ
is the phase difference between the U-wave modulated wave and the D-wave modulated wave, and θ is the phase difference between the U-wave modulated wave and the D-wave modulated wave.

D及びU彼が受信機に入力されるとその合ノ戎波eは式
(3)となる。
When D and U are input to the receiver, the combined wave e becomes Equation (3).

e=e(十e2 −CE、”Ct)+E:(t)+2’EICt)E2(
t)rmψ<t)〕”世し ψ(t)−(ω2−ωl)
t+φA =E1/ E2             
    (5)合成波を受信した受信機のIF比出力2
乗検波するとその包絡源出力は式(6)となる。
e=e(10e2-CE,"Ct)+E:(t)+2'EICt)E2(
t)rmψ<t)〕”World life ψ(t)−(ω2−ωl)
t+φA =E1/E2
(5) IF ratio output 2 of the receiver that received the composite wave
When multiplicative detection is performed, the envelope source output becomes equation (6).

R<t>−E”<t>+g (t)→−2E+ (t)
E2(t)co!+ψ(t)    (6)受信機IF
の包絡線検波出力を図1に示す。曲線1は検波出力、曲
線2のE (t)+E”(t> は車速、電波の波長等
により定するフェージングのオーダで変化する低周波成
分で900 MHz帯自動車電話の場合、車速4.OK
+n/hで走行すると約30Hz程度である。2 EI
(t)L(t)cosψ(t)u式(4)かられかるよ
うに変調度、ビート周波数(ω2−ω1)/2π等によ
!l1足1す、一般にレイリーフェージングより十分高
い高周波成分をもつよ’)’I/(送信側で角度変調″
!l−たけキャリアをオフセットすることにより構成で
きる。
R<t>-E"<t>+g (t)→-2E+ (t)
E2(t)co! +ψ(t) (6) Receiver IF
Figure 1 shows the envelope detection output. Curve 1 is the detection output, curve 2 is E (t) + E"(t> is a low frequency component that changes on the order of fading determined by vehicle speed, radio wave wavelength, etc.). In the case of a 900 MHz band car phone, the vehicle speed is 4. OK.
When running at +n/h, the frequency is about 30Hz. 2 EI
(t)L(t)cosψ(t)uAs seen from equation (4), depending on the modulation degree, beat frequency (ω2-ω1)/2π, etc.! Generally, it has a high frequency component that is sufficiently higher than Rayleigh fading.')'I/(Angle modulation on the transmitting side'
! It can be constructed by offsetting the carrier by l-.

本発明は、この周波数特性を以下のよりに2台のAlD
F換器によってサンプリングしく高速のA / I)俊
侯器なら一台でl−J ) 、低周波分の平均< E;
:(t)十E:(t) >、高周波成分の平均<EI 
(t)g2(t)>を求めた俊、演X器によシ干渉量D
lU比を針具するものである。
The present invention improves this frequency characteristic by using two AlD
High-speed A/I) sampling by F converter (1-J) with one high-speed converter, average of low frequency <E;
:(t) 10E:(t) >, average of high frequency components <EI
Shun, who found (t)g2(t)>, the amount of interference D to the operator
This is a device that adjusts the lU ratio.

サンプリング方法は図1に示すよう時刻tKA/D変換
器Iでサンプリングしり後、ΔtF¥f間遅れてA/D
KmaIIでサンプリングする。その各々の値をR(t
)、R(t+Δt)で衣ゎす。
The sampling method is as shown in Fig. 1, after sampling at time tKA/D converter I, the A/D is delayed by ΔtF¥f.
Sample with KmaII. Let each value be R(t
), R(t+Δt).

搬送波が角度変調されるが、又はA/D変換器Iのサン
プリング間隔をランダムにとると〈部ψ〉=OK’lZ
ることを考麗しR(t)をN回サンプリングし、その平
均値をとるとXが求壕る。
If the carrier wave is angularly modulated, or if the sampling interval of A/D converter I is set randomly, <part ψ> = OK'lZ
Taking this into consideration, sampling R(t) N times and taking the average value yields X.

N <R(t)>ニー ΣR・(t) N、−夏   に <E >十<E>=X          (8)く〉
は平均をあられす。
N <R(t)>knee ΣR・(t) N, -summer <E>10<E>=X (8) Ku>
Hail the average.

次に高周波成分を求める。Next, find the high frequency component.

R(t)とR(を十Δt)の差の2乗平均をとると−<
 ((E、z −E”、、l + F2−E2A )+
2(Esb2%ψ−El、、E2□魚ψΔt)〕2ン 
 (9)ここで、サンプリング遅延時間ΔLをRayl
eigh変d功するEl + ’!’ 2に対し”I 
#EIJ  ”2#E2.+       (10)変
動周期の早い邸ψに対して (cosψ・ωSψΔ〉蝙o          (1
1)とlるよりにΔtを選ぶと式(9)は次のようKな
る0<[7i!(t)−yx(t+Δt)〕2>−4<
E”、><E:>=y      (12) D汲とU彼の振幅の2乗比(DlU比)をFr=<p:
”、>i〈E:ン          (13)とする
と、式(8)、 (+2) 、 (+3)からFについ
ての式(III )を得る。
If we take the root mean square of the difference between R(t) and R(with Δt), we get -<
((E,z −E”,,l + F2−E2A)+
2 (Esb2%ψ−El,,E2□fishψΔt)]2
(9) Here, the sampling delay time ΔL is
El+' that makes a huge difference! 'I for 2
#EIJ ”2 #E2.+ (10) For a residence ψ with a fast fluctuation period (cosψ・ωSψΔ〉fly o (1
If we choose Δt rather than 1), equation (9) becomes K such that 0<[7i! (t)-yx(t+Δt)]2>-4<
E”, ><E:>=y (12) The square ratio of the amplitudes of D and U (DlU ratio) is Fr=<p:
”,>i<E:n (13), we obtain equation (III) for F from equations (8), (+2), and (+3).

7”−2Kr+ 1 =O(1’4) 故に r−、−に十\、:に2−1            
  (15)但し に=2X2/Y−1 に≧1のため式(15)は実数となシ干渉蛍pを求める
ことが出来る。
7”-2Kr+ 1 = O(1'4) Therefore r-, - to 1\, : to 2-1
(15) However, since =2X2/Y-1 is ≧1, equation (15) is not a real number, and the interference fluorescence p can be obtained.

遅延時間Δtについて検討する。Let us consider the delay time Δt.

Fについての式(14)はサンプリング遅延時間Δtで
サンプリングしたとき式(10)、(11)が成立する
条件下で導き出されたものである。従って式(10) 
、 (11)が成立しないときPK誤差を生じる。
Equation (14) for F was derived under the condition that Equations (10) and (11) hold when sampling is performed with a sampling delay time Δt. Therefore, formula (10)
, (11) does not hold, a PK error occurs.

そこでFに与えるΔtの影響を検討し、Δtの範囲を明
ら力・にする必要がある。
Therefore, it is necessary to consider the influence of Δt on F, and to set the range of Δt to be .

ここで以下の条件を用いる。これらの条件は移動通信に
おいては容易に成立し得る条件である。
Here, the following conditions are used. These conditions can be easily met in mobile communications.

1ず式(8)かられかるように、X = <R(t)ン
はΔtに影響されない。
As can be seen from equation (8), X = <R(t) is not affected by Δt.

YはΔtによって影響され、この時のYをY′とするO )”、−< (R<t)−R(t+Δt))”>、、<
z2>+4<F::><E:ン(1−2<邸ψ・(欝φ
Δ〉)・・・(18)但し Z=E”、 −E:、+E
: −E:□ΔLの影響がない時のY式(12)と、Δ
tの影響力;ある時のY′式(18)を比1vすると、
Y′はくZ2ン。
Y is affected by Δt, and let Y at this time be Y'.
z2>+4<F::><E:n (1-2<Residence ψ・(欝φ
Δ〉)...(18) However, Z=E", -E:, +E
: -E:□Y formula (12) when there is no influence of ΔL and Δ
Influence of t: If the ratio of Y' equation (18) at a certain time is 1v,
Y'hak Z2n.

−8<g:><’g:><罵ψ・可ψΔ〉の項〃;新た
に刀日わっている0 4tが大きい場合の影響 この場合〈囲ψ・eosψΔン′;0 と考えること7
5ぶできるため y=<z”>−ト4くE;ン(747z、ン     
 (19)となる。従ッて〈Z2〉について検討するO
<z”>は式(20)で表わされる0 <J”ン−8b;〔F2(1−ρ:)−1−(1−ρ:
)]    (20)但し、b、”==<E:ン/8.
ρはEl (t)、 F2(t)の自己相関々叔で ρ−・シ、(2π、fおΔ、       (21)f
はフェージング周波数f77L−υ(速さ)/λ(波長
)??? 式(21)からΔtはf、Inとの手賞でYに影響を与
える。Δtの影響がないときのYで正規化した<Z”>
/Yを図2に示す。f−・Δtの影響はFによって異な
pFが大きい11どその影#は大きい。
−8<g:><'g:><expletive ψ・possible ψΔ>term〃; Effect when 4t is large 7
5 can be done, so y=<z”>-t4kuE;n (747z, n
(19). Therefore, let's consider <Z2>
<z"> is 0 <J"n-8b; [F2(1-ρ:)-1-(1-ρ:
)] (20) However, b,”==<E:n/8.
ρ is the autocorrelation cousin of El (t) and F2(t), and ρ-・shi, (2π, f and Δ, (21) f
Is the fading frequency f77L−υ (speed)/λ (wavelength)? ? ? From equation (21), Δt affects Y in combination with f and In. <Z”> normalized by Y when there is no influence of Δt
/Y is shown in FIG. The influence of f-.Δt differs depending on F.The shadow # is large in 11 where pF is large.

また、Fに与えるΔtの影響を図3に実線で示す。Further, the influence of Δt on F is shown by a solid line in FIG.

横は真のD/U=rtX縦軸はΔtの影響があるときの
D/U二FMである。
The horizontal axis is true D/U=rtX, and the vertical axis is D/U2FM when there is an influence of Δt.

FMはf7n・Δtが大きくなると小きく表われ、特に
Fの大きいところでその影響度は太きくなつている。r
t=15dB以下で1dB以内の検出誤差におさえるに
はfm・Δt<0.03としなければならない。尚、図
3はρ1−ρ2として計算した。
FM appears smaller as f7n·Δt increases, and its influence becomes particularly strong where F is large. r
In order to suppress the detection error to within 1 dB when t=15 dB or less, fm·Δt<0.03 must be satisfied. In addition, FIG. 3 was calculated as ρ1−ρ2.

Δtが小さい場合 y = 4 <g: ><g:> < 1−2<□□□
ψ・部ψΔ>)   (22)となる。従って〈房ψ・
―φΔ〉を検討する。
When Δt is small, y = 4 <g: ><g:><1-2<□□□
ψ・part ψΔ>) (22). Therefore 〈fusa ψ・
- Consider φΔ〉.

〈魚ψ・瀉ψΔ〉は式(23)によって衣わされる。<Fish ψ・〉ψΔ> is given by equation (23).

く咲ψ・匹ψ、l>−−Jo(Z+)・Jo(Z2 )
+Σ[cos(2nθ2−2mθ+)J2n(Z2)J
2−(Z+)〕−Σ[cos((2n+1 )θ2−(
2m+1)θ1)J2n+1(Z2)12m+1(Zl
)〕・・・(23) 但し、第2項ハnP2−rn、P1、第3項は(2n+
1)P2= (2m+ 1 ) Plなるn、mの定数
(m=n)O)  が成立するとき有効である。
Kusaki ψ, animal ψ, l>--Jo (Z+), Jo (Z2)
+Σ[cos(2nθ2−2mθ+)J2n(Z2)J
2-(Z+)]-Σ[cos((2n+1)θ2-(
2m+1)θ1)J2n+1(Z2)12m+1(Zl
)]...(23) However, the second term P2-rn, P1, and the third term are (2n+
1) It is effective when P2=(2m+1) Pl, a constant of n, m (m=n)O) holds true.

但し、 θ+ ”jan−’ (5inP1Δt / (cns
P1Δt−1))θ2−二−−’((cOsθ−cos
(P2Δを十θ))/(s=θ−81n(Pzt十θ)
乃Z + ” J−2’ (’−1−coSP+Δ′t
、)−Δωl/PIZz 二J2 (]  cmP2t
 )   Δω2/P21ネ14は2〈焦ψ・房ψΔ〉
とΔLの関係を示す一例で、Δω1” 1000 Hz
 、Δω、、−1010H2,fg波は正弦鼓信号でP
1= 200 fiz 、P2= ] 95〜205 
fiz lid、化さぜた場合である。2〈邸ψ・魚ψ
Δ〉ばΔtとともに減少するが、P2の周波数の変化に
は影響されず、Δt :0.4 ms 11近でOとな
り、それ以後は振幅しながら減表して行く。一般に変調
波は単一周波ではないが、f調波の周波数スペクトルの
低周波域が変調度に対して小さい場合は図に示す特性を
示す。すなわちΔtが小さい」場合はく匹ψ・cosψ
Δ〉は[に近いが、Δtが大きくなると小さくなりその
汝仁丁、変調波のスペクトル、変調度により様子は;、
l、!、る。。
However, θ+ "jan-' (5inP1Δt / (cns
P1Δt-1)) θ2-2-'((cOsθ-cos
(P2Δ to 10θ))/(s=θ−81n(Pzt10θ)
乃Z + "J-2'('-1-coSP+Δ't
,)-Δωl/PIZz 2J2 (] cmP2t
) Δω2/P21 ne 14 is 2〈focus ψ・fusa ψΔ〉
An example showing the relationship between and ΔL, Δω1” 1000 Hz
, Δω, , -1010H2, fg wave is a sine drum signal and P
1=200 fiz, P2=] 95~205
fiz lid, this is the case when it is morphed. 2〈House ψ・Fish ψ
Δ> decreases with Δt, but is not affected by changes in the frequency of P2, becomes O near Δt: 0.4 ms 11, and thereafter decreases with increasing amplitude. Generally, a modulated wave does not have a single frequency, but when the low frequency region of the frequency spectrum of the f harmonic is small relative to the degree of modulation, it exhibits the characteristics shown in the figure. In other words, if Δt is small, the fish ψ cos ψ
Δ〉 is close to [, but as Δt increases, it becomes smaller.The situation depends on the spectrum of the modulated wave and the degree of modulation;
l,! ,ru. .

2く魚ψ・邸ψΔ〉は式(18)かられかるように、Δ
t が小さい場合のYに対する減少分を表わしている。
As can be seen from equation (18), 2ku fish ψ・house ψΔ> is Δ
It represents the decrease in Y when t is small.

図5は図4に示した条件下で、ΔtがFに与゛える影響
を示したものである。Δtが小さくなるとFは見かけ上
大きくなシ、特にFが小さい時にその影響は大きい。F
が見かけ上大きくなるのは、Δtが小さいとYが小さく
なるためである。
FIG. 5 shows the influence of Δt on F under the conditions shown in FIG. When Δt becomes smaller, F appears to be larger, and this effect is particularly large when F is small. F
The reason why Y appears to be large is because Y becomes small when Δt is small.

図6は本発明を確認するための室内実験系で破線部が本
発明の干渉量検出部である。図において3.6はD波及
びU波を発生するための標準信号発生器、4,7は擬似
伝搬路をつくるためのフェージングシュミレータである
。5,8は減衰器、9は合成器、10は受信機、11は
瑠巾器、12は検波器、13.14はアナログ−ディジ
タル変換器(A7v変換器)、15は演算器である。
FIG. 6 shows an indoor experiment system for confirming the present invention, and the broken line portion is the interference amount detection unit of the present invention. In the figure, 3.6 is a standard signal generator for generating D waves and U waves, and 4 and 7 are fading simulators for creating pseudo propagation paths. 5 and 8 are attenuators, 9 is a combiner, 10 is a receiver, 11 is a filter, 12 is a detector, 13 and 14 are analog-to-digital converters (A7v converters), and 15 is an arithmetic unit.

図7は演算器15のフローチャートを示す。サンプル数
N1遅延時間Δt を設定し、サンプリングをカウント
するiをi=1にする。A/D変換器13 、14 で
サンプリングし、オロΣR(t)との差の2乗和Σ(R
(t)−R(t+Δt))2をとる。i=Nでなければ
さらにA/D変換器でサンプリングする。
FIG. 7 shows a flowchart of the arithmetic unit 15. The number of samples N1 and the delay time Δt are set, and i for counting sampling is set to i=1. The A/D converters 13 and 14 sample the sum of squares Σ(R
Take (t)-R(t+Δt))2. If i=N, further sampling is performed using an A/D converter.

i −、N VcなったらX、Yを算出しん金言1Nす
る。
When i -, N Vc, calculate X and Y.

h2−1>oなら干渉量r2算出する。もしに2−1(
OならFは算出せず1−=lにもど、bvfrたなPの
計算を開始する。
If h2-1>o, the amount of interference r2 is calculated. Moshi 2-1 (
If O, F is not calculated, the value is returned to 1-=l, and the calculation of bvfr is started.

O、UWはフェージングシュミレータ、減衰器全通りハ
イシ゛リッドで合成された後受信される。
O and UW are received after being synthesized in a high-fidelity manner through all fading simulators and attenuators.

受信機IF出力は2乗検波されA/D変換器によりサン
プリングされ演算器に入力される。変調信号(PN信号
)は最大周波数偏移Δω1−Δω2−1、KIJz、D
、U波のキャリア差fb= O(H2)として実験を行
った。
The receiver IF output is square-law detected, sampled by an A/D converter, and input to an arithmetic unit. The modulation signal (PN signal) has a maximum frequency deviation Δω1−Δω2−1, KIJz, D
, the experiment was conducted with the U wave carrier difference fb=O(H2).

寸ずΔtが大きい場合の影響についてΔt=0.4w、
S一定とし、フェージング周波数ム2を変化させて実験
を行った。図3にその実測値を示す。各プロット点はサ
ンプリング数N=1000、サンプリング周波数18=
 80 、Hzで実測したβイ約10個のデータの平均
値を示しである。
Regarding the influence when the size difference Δt is large, Δt=0.4w,
Experiments were conducted with S constant and the fading frequency M2 varied. Figure 3 shows the measured values. Each plot point has sampling number N=1000, sampling frequency 18=
The average value of approximately 10 pieces of β data measured at 80 Hz is shown.

干渉量を検出でき、理論値と実測11σはよく一致して
いる。しかし、Ftの大きい方の実測値が理論値よp大
きく出るf頃向にある。これは測定系のS/Hの問題で
Yに干渉ビートの地熱雑音によるビートが加わシ、図2
で示した<Z”>/Yの値が小さくなると考えられる。
The amount of interference can be detected, and the theoretical value and the actual measurement 11σ are in good agreement. However, the actual measured value of Ft, which is larger, is around f, which is p larger than the theoretical value. This is due to the S/H problem of the measurement system, and the beat due to the geothermal noise of the interference beat is added to Y.
It is considered that the value of <Z">/Y shown by becomes smaller.

用いた測定系のS/Nは約45 dBでめる。The S/N of the measurement system used is approximately 45 dB.

以上より、fm・Δtが大きくなるとD/Uの実測+w
 rlMh、X(D D/U1M I’t、1: f:
>小す< Qbし、方式設計から要求されるFに対し、
Δtを設定できる。
From the above, when fm・Δt increases, the actual measurement of D/U +w
rlMh,X(D D/U1M I't, 1: f:
>small< Qb, and for F required from the system design,
Δt can be set.

次にΔtが小さい場合の影響についても実験を行った。Next, an experiment was conducted to examine the effect when Δt is small.

この場合はフェージング周波数fm = 20 Hz一
定とし”m・Δtにょる〈Z2〉の影響がほぼ無視でき
る値を選び、Δtを変化させて実験を行った。
In this case, the fading frequency fm was kept constant at 20 Hz, a value was chosen where the influence of <Z2> due to m·Δt could be almost ignored, and experiments were conducted by varying Δt.

結果を図5に示す。実測値は理論値とよく一致してお9
、Δtが小さい場合は実測値のrMは真のF4より大き
く現われるが、Δtが大きくなると設足値に対する実測
値の誤差は小さくなってΔLの影響は現われなくなる。
The results are shown in Figure 5. The measured values are in good agreement with the theoretical values9.
, Δt is small, the actual measured value rM appears larger than the true F4, but as Δt becomes larger, the error between the actual measured value and the established value becomes smaller and the influence of ΔL disappears.

 、 測定誤差を1 dB以内にするにはΔt>0.3mSと
する必要が必ろ○ (発明の効果) 以上説明したように本発明による干渉層検出方式V:裏
、#話中に干渉量を定−数的に検出できるため、干渉f
iかるる設定値以上になった場合、イ1クチャネルV(
−)替えて、通話品質の劣化を1ねくことなく高品賀な
通信を継続することが出来るオリ点がある。
, In order to keep the measurement error within 1 dB, it is necessary to set Δt > 0.3 mS (Effect of the invention) As explained above, the interference layer detection method V according to the present invention: can be detected constant, so the interference f
If the i Karuru setting value or more is reached, the i1k channel V (
-) On the other hand, there is an advantage in that high quality communication can be continued without any deterioration in call quality.

葦グね、不方式は自動車電話方式のよりに無線ゾーンを
3〜5−の小ゾーン方式にして周波叔の利用率向上を図
っているシステムにおいては、さらにMal ()!i
数のくり返し距1’illヲ小さくできるため1.:!
flvり4又利用率が向上し7/1.1人者谷11jの
J胃人に貝l駄することが出Xる。
In a system where the wireless zone is set to a 3 to 5 small zone system to improve the usage rate of the frequency band, Mal ()! i
1. Because the number repetition distance can be reduced by 1'ill. :!
The usage rate of flv R4 has improved, and it is possible to be disappointed in J stomach people of 7/1.1 people valley 11j.

4.1図1川の1h゛]4iな最己明 1ソIIは倹f反器出力のクリ、凶2はZ’/Yとf 
・Δtの関係ゲ示す図、図3はΔtが人さい場合の干渉
演出VC与える遅延時間Δtの彰′臂を示す1工、図・
1ば2〈四ψ・邸φΔ〉とΔtとの13!=j係を示す
1図、図5ばΔtが小さい場合の干渉検出に与えるJ4
7z4を時間の影片を′示す凶、1凶6は本発明をイi
4M認づ゛る/Cめの呈内実#装置のブロック図、図7
は図6における演算器15の動作フローを示す図である
4.1 Figure 1 River's 1h゛] 4i's most self-explanatory 1 So II is the cri of the f anti-vessel output, and the evil 2 is Z'/Y and f
・A diagram showing the relationship of Δt. Figure 3 is a diagram showing the effect of the delay time Δt given by the interference effect VC when Δt is small.
1ba2〈4ψ・HouseφΔ〉and Δt, 13! Figure 1 shows the =j coefficient, and Figure 5 shows the J4 effect on interference detection when Δt is small.
7z4 is a sign of the shadow of time, 1 and 6 is the present invention.
Block diagram of 4M recognition/C presentation actual # device, Figure 7
7 is a diagram showing an operation flow of the arithmetic unit 15 in FIG. 6. FIG.

特許出願人 日本電信電話公社 特許出願代理人 弁理士 山本恵− 幕1図 地2凹 fm・ΔL 尾A−図 0.0     (II!2     θ4    θ
6    0.f3     /:θ遅延MPJ A 
L  Crn Sec〕1f−5図
Patent applicant Nippon Telegraph and Telephone Public Corporation Patent agent Megumi Yamamoto - Curtain 1 Figure ground 2 concave fm・ΔL Tail A - Figure 0.0 (II!2 θ4 θ
6 0. f3/:θ delay MPJ A
L Crn Sec] 1f-5 diagram

Claims (1)

【特許請求の範囲】[Claims] 希望波と妨害波を同時受信したとき、角度変調又は)E
送波周波数のオフセントによって、その包結線がフェー
ジング周波数よ!ll冒い周e、数で変動するようにな
された無線通信方式において、受信板の包絡線2乗検波
出力をサンプリングしその平均(1i:jをとることに
よりフェージング周波数とほぼ等しい周波数成分を有す
る低周波成分を求め、寸た包絡線2乗検波出力を時刻t
とt+Δtにサンプリングした値がフェージングに対し
ては同値とみなせ、上記フェージング周波数より商い周
波数で変動する高周波成分に対しては2つのサンプリン
ゲイρの栢が零とみlせるよりな遅延11−テ間ΔLで
サンプリングし、tとt十Δtのサンプリング値の差の
2米才均をとることによって市周彼成分を求め、こ、h
ら低周波!戎分及び高周波成分を処理して干渉−1if
、’ f検出することを特徴とする同一・周波干渉量検
出方式。
When the desired wave and interference wave are received simultaneously, angle modulation or )E
Due to the offset of the transmission frequency, the envelope is the fading frequency! In a wireless communication system in which the frequency varies with the number of waves, the envelope square detection output of the receiving board is sampled and the average (1i:j) is taken, so that it has a frequency component approximately equal to the fading frequency. Find the low frequency component and output the squared envelope detection at time t.
The values sampled at and t + Δt can be considered to be the same value for fading, and for high frequency components that fluctuate at a frequency lower than the above fading frequency, the value of the two sampling gains ρ can be considered to be zero. By sampling at ΔL and taking the average of the difference between the sampled values of t and t + Δt, we obtain the Ichichu component.
Low frequency! Interference-1if by processing the spectral and high-frequency components
, ' A method for detecting the amount of same-frequency interference, which is characterized by detecting f.
JP58068428A 1983-02-08 1983-04-20 Method for detecting interference quantity of same frequency Granted JPS59194542A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58068428A JPS59194542A (en) 1983-04-20 1983-04-20 Method for detecting interference quantity of same frequency
US06/541,842 US4561114A (en) 1983-02-08 1983-10-14 Cochannel interference measurement system
EP83307195A EP0117946B1 (en) 1983-02-08 1983-11-24 Co-channel interference measurement system
DE8383307195T DE3379252D1 (en) 1983-02-08 1983-11-24 Co-channel interference measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068428A JPS59194542A (en) 1983-04-20 1983-04-20 Method for detecting interference quantity of same frequency

Publications (2)

Publication Number Publication Date
JPS59194542A true JPS59194542A (en) 1984-11-05
JPH0119779B2 JPH0119779B2 (en) 1989-04-13

Family

ID=13373407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068428A Granted JPS59194542A (en) 1983-02-08 1983-04-20 Method for detecting interference quantity of same frequency

Country Status (1)

Country Link
JP (1) JPS59194542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232642A (en) * 1987-03-20 1988-09-28 Nippon Telegr & Teleph Corp <Ntt> Method for measuring quantity of interference in mobile communication
EP2136489A1 (en) * 2008-06-17 2009-12-23 Harman Becker Automotive Systems GmbH Method and device for detecting an interfering adjacent channel signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232642A (en) * 1987-03-20 1988-09-28 Nippon Telegr & Teleph Corp <Ntt> Method for measuring quantity of interference in mobile communication
EP2136489A1 (en) * 2008-06-17 2009-12-23 Harman Becker Automotive Systems GmbH Method and device for detecting an interfering adjacent channel signal

Also Published As

Publication number Publication date
JPH0119779B2 (en) 1989-04-13

Similar Documents

Publication Publication Date Title
US8428529B2 (en) Method and system for uplink beamforming calibration in a multi-antenna wireless communication system
US7925217B2 (en) Receiving circuit and method for compensating IQ mismatch
TWI240507B (en) Signal, interference and noise power measurement
CN108549048B (en) Multi-frequency WiFi external radiation source radar coherent processing method
WO2005027358A3 (en) Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
JPS61240725A (en) Method and apparatus for measuring quality of wireless transmission channel
JP3442156B2 (en) Multi-propagation characteristics measurement device
JPS59194542A (en) Method for detecting interference quantity of same frequency
KR20120036748A (en) Apparatus for hybrid beam forming in wide band wireless communication system
JP2003134069A (en) Radio communication system, its transmission circuit and receiving circuit
JP6577650B1 (en) Synchronous broadcast measuring instrument
US8179314B2 (en) Enhanced calibration for multiple signal processing paths in a frequency division duplex system
JP6577648B1 (en) Synchronous broadcast measuring instrument
US2278779A (en) Method of reducing multipath effects
JP7097588B1 (en) FM relay device
JP3570571B2 (en) Wave field strength estimation method
JP2000324033A (en) Method and device for repeating identical frequency
JPH0347021B2 (en)
JPS59144232A (en) Detection system for identifical frequency interference amount
JP6577647B1 (en) Synchronous broadcast measuring instrument
US20240154752A1 (en) Positioning
Kawai et al. Propagation of test waves in plasmas with ion acoustic turbulence
JP6577646B1 (en) Synchronous broadcast measuring instrument
Alavirad et al. Over-the-Air LoS Propagation Characteristics of Various Indoor Materials at 28 GHz
TW200525924A (en) Method and apparatus for determining delay