JPS59194405A - Manufacture of ferrite magnet - Google Patents

Manufacture of ferrite magnet

Info

Publication number
JPS59194405A
JPS59194405A JP58069043A JP6904383A JPS59194405A JP S59194405 A JPS59194405 A JP S59194405A JP 58069043 A JP58069043 A JP 58069043A JP 6904383 A JP6904383 A JP 6904383A JP S59194405 A JPS59194405 A JP S59194405A
Authority
JP
Japan
Prior art keywords
approximately
temperature
partial pressure
mill
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58069043A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Ryoji Uno
良治 宇野
Mikio Yamamoto
幹夫 山本
Masayoshi Kawamura
川村 昌芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58069043A priority Critical patent/JPS59194405A/en
Publication of JPS59194405A publication Critical patent/JPS59194405A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To utilize easily obtainable mill-scale as iron raw material by a method wherein the mill-scale which is included in Fe components composing elements is oxidized beforehand and a W-type ferrite magnet is composed. CONSTITUTION:Mill-scale and BaCO3 are subjected to wet pulverization and mixing using denatured alcohol. The mixture is dried at the room temperature. Then the mixture is subjected to thermal-oxidization in the air. The mixture is temporarily baked while the temperature and the oxygen partial pressure are varied within the range of 1,270-1,400 deg.C and 0.002-0.03atm respectively. After approximately 0.5wt% of SiO2 is added to the temporarily baked powder, the powder is pulverized in acetone. The pulverized powder is compressed and molded by the pressure of approximately 500kg/cm<2> in the static magnetic field of approximately 8,000Oe. Then the partial pressure of oxygen is varied within approximately 0.02X10<-2>-1.0X10<-2>atm and the temperature is increased approximately upto 1,170 deg.C. The molded body is sintered at the temperature 1,190-1,230 deg.C for approximately 60sec. The partial pressure of oxygen is varied when the temperature is rising and then the molded body is cooled.

Description

【発明の詳細な説明】 本発明はW−フェライト相からなるフェライト磁石の製
造方法に関する特開昭57−18305号公報に記載の
如く、W型フェライトとは基本的には下1記(1)式 %式%(1) Ni 、Mn 、Mgの1種又は2種以上により表わさ
れる化学量論的組成を有するフェライト相な意味する。
DETAILED DESCRIPTION OF THE INVENTION As described in Japanese Unexamined Patent Publication No. 57-18305 regarding a method for manufacturing a ferrite magnet consisting of a W-ferrite phase, W-type ferrite basically consists of the following 1 (1). Formula % Formula % (1) means a ferrite phase having a stoichiometric composition represented by one or more of Ni, Mn, and Mg.

M/ (A2+ +F e3+ )”’ 1 / 18
であるW型フェライトにおいては、例えば、Bickf
ordJr、、 L  kL、、 J−Appl、 P
hys 51259 S (1960)K 報告gれて
いるように、A2+の大部分がCOZ+より成るCQ2
+−W型フェライトの場合を除き、磁化容易軸は、六方
晶系のC軸に平行であり、通常のM型フェライトと同様
の結晶磁気異方性を有する。W型7エライトの内A2+
がFez+であるFe2Wフエライトにライては、例え
ばWizn、H,P、J、、Nature 17070
7(1952)に示されるように20℃における飽和磁
化(4πI S ) 20°Cは5220 Gであり、
通常のM型7エライトの理論値、すなわちBa −7エ
ライトで47750、Sr−フェライトで4652Gに
比較して本質的に、高い残留磁束密度(Br)が期待さ
れる。
M/ (A2+ +F e3+)"' 1/18
In the W-type ferrite, for example, Bickf
ordJr,, L kL,, J-Appl, P
hys 51259 S (1960)K As reported, CQ2, in which most of A2+ consists of COZ+
Except in the case of +-W type ferrite, the easy axis of magnetization is parallel to the C axis of the hexagonal system, and has the same magnetocrystalline anisotropy as normal M type ferrite. A2+ of W type 7 elite
For Fe2W ferrite where is Fez+, for example, Wizn, H, P, J, Nature 17070
7 (1952), the saturation magnetization (4πI S ) at 20°C is 5220 G,
Essentially higher residual magnetic flux density (Br) is expected compared to the theoretical values of normal M-type 7 elite, that is, 47750 for Ba-7 elite and 4652 G for Sr-ferrite.

事実、特開昭57−18505号公報においては、Ba
C0,とFe2O,とを出発混合物として、BaFe、
8027で示されるW型7エライトを作成し、Br=4
770GHc = 17000e、(BH)m = 4
.2  77)特性値が報告されている。
In fact, in Japanese Patent Application Laid-Open No. 57-18505, Ba
Using C0, and Fe2O, as a starting mixture, BaFe,
Create a W-type 7 elite indicated by 8027, and set Br=4
770GHc = 17000e, (BH)m = 4
.. 2 77) Characteristic values are reported.

W型フェライトは前記(1)式から明らかなように2価
の金属イオンを含む。したがって2価のイオ・ンが鉄イ
オンの場合には、酸素分圧によってpe2+= Ii’
e3+十e−の反応が生じるため酸素分圧を制御した条
件下で焼成をおこなわなければならない。
W-type ferrite contains divalent metal ions, as is clear from the above formula (1). Therefore, if the divalent ion is an iron ion, pe2+ = Ii' due to the oxygen partial pressure
Since the e3+10e- reaction occurs, the firing must be carried out under conditions where the oxygen partial pressure is controlled.

一方、W型フェライト磁石の主原料のひとつにFe、0
.が挙げられる。このFe2O,は主として銅板の酸洗
工程により得られるFeC1,−nH2O又はFe50
゜・7H,0などを焙焼することによって作られる。然
るに、鉄鋼業界の減産体制と酸洗工程そのものがショツ
トブラスト法やイシタリン方式などの乾式脱スケール方
式へと変更されて行くことから、今後Fe2O3の供給
は長期的に見て厳しくなると予想される。したがって、
将来的には、フェライト磁石の鉄原料を上記Fe2O3
以外に求める必要が生じてくると予想される。
On the other hand, one of the main raw materials for W-type ferrite magnets is Fe, 0
.. can be mentioned. This Fe2O is mainly FeC1, -nH2O or Fe50 obtained through the pickling process of copper plates.
It is made by roasting ゜・7H,0, etc. However, the supply of Fe2O3 is expected to become tighter in the long term due to the steel industry's production cutbacks and the change in the pickling process itself to dry descaling methods such as shot blasting and isitalin. therefore,
In the future, the iron raw material for ferrite magnets will be made from the above Fe2O3.
It is expected that there will be a need to look for other things.

本発明の目的は、このような状況に鑑み、主原料の少な
くとも一部に入手容易な鉄原料を用いてもFe2O,を
用いた場合と実質的に同等の磁気特性を有するW型フェ
ライト磁石が得られるフェライト磁石の製造方法を提供
することである。
In view of this situation, an object of the present invention is to create a W-type ferrite magnet that has substantially the same magnetic properties as when Fe2O is used, even if an easily available iron raw material is used as at least a part of the main raw material. An object of the present invention is to provide a method for manufacturing the obtained ferrite magnet.

本発明者等はこの目的を達成するために種々検討した結
果、熱間圧延工程において発生するスケール(以下ミル
スケールと称する)をW型フェライト磁石製造用の鉄原
料として用いてもFe2O3を用いた場合と実質的に同
等の磁気特性を有するW型フェライト磁石が得られるの
を見出した。ミルスケールは発生時の条件にもよるが、
成分的にはほぼFeOとFe3O4とから形成されその
重量比率は略FeO/Fe50.’ 2/8〜515程
度であり、Fe2+を多く含む。W型フェライトは、前
述の如く、酸素分圧(PO2)を制御しながら焼結する
必要がありその範囲は焼成流度にもよるが、Po2=1
0−3〜10”atm程度である。このPO,範囲は、
Fe3O4相が比較的安定に存在する範囲であり、例え
ばBaCO3とミルスケールとから上記PO2下で直接
W型フェライト磁石を単相状態で生成させることは困難
である。そこで本発明者等は種々検討?おこなった結果
、予めミルスケールを単独に、またはミルスケールトB
aC0,との混合物をミルスケールの酸化が生じる温度
にまで昇温し、全鉄量に対するFe2+の含有比率Fe
2” / (F e” 十F e”” )が略20%以
下、より好ましくは略15%以下になるまで予備酸化を
施すことによってW相フェライト用原料として適用でき
ることを見い出した。勿論ミルスケールの一部を通常の
Fe2O3と併用して用(・ることも可能である。
As a result of various studies to achieve this objective, the present inventors have found that Fe2O3 can be used even if scale generated during the hot rolling process (hereinafter referred to as mill scale) is used as the iron raw material for manufacturing W-type ferrite magnets. It has been found that a W-type ferrite magnet can be obtained which has magnetic properties substantially equivalent to those of the conventional method. Mill scale depends on the conditions when it occurs, but
Component-wise, it is formed from approximately FeO and Fe3O4, and the weight ratio is approximately FeO/Fe50. ' It is about 2/8 to 515 and contains a lot of Fe2+. As mentioned above, W-type ferrite needs to be sintered while controlling the oxygen partial pressure (PO2), and the range depends on the firing flow rate, but Po2 = 1
It is about 0-3 to 10" atm. This PO range is:
This is a range in which the Fe3O4 phase exists relatively stably, and it is difficult to directly generate a W-type ferrite magnet in a single-phase state from BaCO3 and mill scale under the above-mentioned PO2, for example. Therefore, the inventors of the present invention have conducted various studies. As a result, it is possible to use mill scale alone or mill scale B in advance.
The mixture with aC0, is heated to a temperature at which mill scale oxidation occurs, and the content ratio of Fe2+ to the total iron content Fe
It has been found that the material can be used as a raw material for W-phase ferrite by performing preliminary oxidation until 2"/(Fe" 0F e"") becomes approximately 20% or less, more preferably approximately 15% or less. Of course, it is also possible to use part of the mill scale in combination with ordinary Fe2O3.

以下本発明の詳細を実施例により説明する。The details of the present invention will be explained below with reference to Examples.

実施例1 FeO/Fe304= 0.70710.295(モル
1モル)(’FeO/Fe50. = 707H) w
t% ) ナルミyv ス’r−ル669.63g<平
均粒度1.5μm)t−3よびBaC0,100,OO
g(平均粒度2/jm)’Y秤取しく Ba/Fe =
 1/1B原子比率)、媒体に変成アルコールを用(・
て湿式粉砕混合をおこなった。混合終了後、室温で乾燥
をおこない、空気中800°C×05〜2hrの条件で
カロ熱酸化をおこなった。次いで、粉砕生成物を温度お
よび酸素分圧(PO2)をそれぞれ1270〜1400
°Cおよび2X10−”〜5X10−2atm の範囲
で変化させて仮焼をおこなった。Ba−W型フェライト
の単相が生成する温度範囲は、Po7が高くなるに従っ
て高沸側へと移行するが、その範囲を例示すると第1表
に示すようになる。
Example 1 FeO/Fe304 = 0.70710.295 (1 mole) ('FeO/Fe50. = 707H) w
t%) Narumi yv s'r-ru 669.63g<average particle size 1.5μm) t-3 and BaC0,100,OO
g (average particle size 2/jm)'Y weigh Ba/Fe =
1/1B atomic ratio), using denatured alcohol as the medium (・
Wet pulverization and mixing was carried out. After the mixing was completed, the mixture was dried at room temperature, and calothermal oxidation was performed in air at 800°C for 05 to 2 hours. Then, the pulverized product was heated to a temperature and oxygen partial pressure (PO2) of 1270 to 1400, respectively.
℃ and 2×10-” to 5×10-2 atm.The temperature range in which a single phase of Ba-W type ferrite is formed shifts to the high-boiling side as Po7 increases. , an example of the range is shown in Table 1.

第   1   表 本実験では、実用的見地から1400°C以上の高温領
域での検討はおこなっていない。なお、第1表に示す生
成相の同定はCo−にα線による粉末X線回折法でおこ
なった。第1表に示す各Po2の条件下で仮焼温度が表
中のそれよりも低流側では、α−Fe20.およびM型
7 z 5イトBaO−6Fe、O,が混相となって生
成する。また高温側では、FeO。
Table 1 In this experiment, from a practical standpoint, no study was conducted in a high temperature range of 1400°C or higher. The produced phases shown in Table 1 were identified by powder X-ray diffraction using α-rays for Co-. Under each Po2 condition shown in Table 1, when the calcination temperature is lower than that in the table, α-Fe20. and M type 7 z 5ite BaO-6Fe, O, are generated as a mixed phase. Also, on the high temperature side, FeO.

Fe3O4の回折線が観測された。なお、本実施例で用
いたミルスケールの上記800°CX50〜2hの条件
で行なった加熱酸化後の残存FeZ+量は、Fe2+/
(pe2++p63+ ) = 5〜10%程度でアッ
タ。コノ残存量はミルスケールと通常のFe、03とを
混合使用した場合にもあてはまることを確認した。
A diffraction line of Fe3O4 was observed. The amount of FeZ+ remaining after the heating oxidation of the mill scale used in this example was carried out at 800°C for 50 to 2 hours was determined by Fe2+/
(pe2++p63+) = Atta at about 5-10%. It was confirmed that the residual amount of Kono applied to the case where mill scale and ordinary Fe, 03 were mixed and used.

第   2   表 仮焼後のBa−W型フーライト相の飽和磁化4πIs。Table 2 Saturation magnetization 4πIs of Ba-W type fullite phase after calcination.

全Fe量およびFe2+量の一部を例示したのが上記の
第2表である。Ba−W型フェライトのFe2+量は化
学量論組成で7.09wt%であるが、第2表の結果も
含めて、X線回折的にBa−W型フェライト単相を示す
範囲のFeZ+量は1,29〜8.56wt%の範囲で
変化しておりFe2+/Fe3+の組成不定比が生じて
いるとも考えられる。事実、Fe”t1711]と共に
C軸方向の格子定数Coも大となる。第2表で4πIs
 = 4850および4770Gを示す試料のCoはC
o=32.93Aである。
Table 2 above shows a part of the total Fe amount and Fe2+ amount. The amount of Fe2+ in Ba-W type ferrite is 7.09 wt% in stoichiometric composition, but including the results in Table 2, the amount of FeZ+ in the range that shows Ba-W type ferrite single phase in X-ray diffraction is 7.09 wt%. It varies in the range of 1,29 to 8.56 wt%, and it is considered that a non-stoichiometric ratio of Fe2+/Fe3+ occurs. In fact, the lattice constant Co in the C-axis direction increases with Fe"t1711]. In Table 2, 4πIs
= Co of the samples showing 4850 and 4770G is C
o=32.93A.

次いで、仮焼粉にSin、を0.5 w t%添加後、
これらの粉末をボールミルによりアセトン中で粉砕し、
粉砕粉をa o 000eの静磁場中、500ゆ/cr
lの圧力で圧縮成形して外径25mmφ、厚さ5 Tn
WLの成形体を得た。
Next, after adding 0.5 wt% of Sin to the calcined powder,
These powders were ground in acetone using a ball mill,
The pulverized powder was heated at 500 Yu/cr in a static magnetic field of a o 000e.
Compression molded at a pressure of 25 mm in outer diameter and 5 Tn in thickness.
A WL molded body was obtained.

この成形体をPo2= 0.02X10−2〜1、QX
l 00−2atの範囲内で順次Po2を変化しながら
1170°Cまで昇流をおこ、なった。次いで1190
°C〜1260°Cの温度範囲で60騙保持して焼結し
たのち、上記Po2範囲で順次PO□を変化させ乍ら冷
却をおこなつfこ。
Po2=0.02X10-2~1,QX
The temperature was increased to 1170°C while changing Po2 sequentially within the range of 100-2at. then 1190
After sintering at a temperature range of 60°C to 1260°C, cooling is performed while sequentially changing PO□ within the above Po2 range.

得られた磁石の磁気特性を第5表に示す。なお、第5表
に示した磁気特性は第2表における黒5゜6及び8の条
件で仮焼した粉末を用いた場合の値である。
Table 5 shows the magnetic properties of the obtained magnet. The magnetic properties shown in Table 5 are the values obtained when powders calcined under conditions of black 5°6 and 8 in Table 2 are used.

第     5     表 第6表の特性は、通常のM型Baフェライト飽和磁化理
論値4πl5=4775Gを越えるものであり、工業的
にもマグネトロン等の高性能磁石に適用することができ
る。また、将来的に、酸化鉄が不足した場合にも、ミル
スケールを少く共鉄原料の一部として用(・てW型フェ
ライトを製造することができる。また、本実施例におい
ては、予めBaCO3とミルスケールとを混合した後酸
化をおこなうだが、ミルスケールを予め単独に酸化して
含有p 62+量を全Fe量に対して略20%以下とし
だ後B a CO,と混合し、仮焼を行っても、第1表
から第3表までに示すものとほぼ同等の条件、特性乞得
ることができることも確認した。
The properties shown in Table 5 and Table 6 exceed the theoretical saturation magnetization value of normal M-type Ba ferrite, 4πl5=4775G, and can be applied industrially to high-performance magnets such as magnetrons. In addition, even if there is a shortage of iron oxide in the future, W-type ferrite can be produced by using a small amount of mill scale as part of the iron raw material. The oxidation is performed after mixing the mill scale with the mill scale, but after oxidizing the mill scale alone to reduce the p62+ content to approximately 20% or less of the total Fe content, it is mixed with B a CO, and calcined. It was also confirmed that almost the same conditions and characteristics as those shown in Tables 1 to 3 can be obtained even if the above steps are carried out.

実施例2 Fe07Fe、O,= 0.70710.293(% 
ルア モル) −Qするミルスケール66.9.65g
C平均粒径15〜20μm)を秤取し、ガス炉中800
°C×05〜3h(PO□略10%)でFe”/(Fe
”−)−Fe” )が15%以下になるまで予備酸化を
おこなった。次いで小型ヘンセルミキサによりS rc
o、 74.81 gと混合後実施例1と同様にしてボ
ールミル中で粉砕混合した後PO□制御下、種々の条件
で仮焼をおこなった。5r−W型フェライト単相の生成
するPo、と仮焼温度の関係は第4表に示す通りである
Example 2 Fe07Fe, O, = 0.70710.293 (%
Lua mole) -Q mill scale 66.9.65g
C average particle size 15 to 20 μm) was weighed and placed in a gas furnace at 800 μm.
Fe”/(Fe
Pre-oxidation was carried out until the content of "-)-Fe") became 15% or less. Then, using a small Hensel mixer, S rc
After mixing with 74.81 g of O, the mixture was pulverized and mixed in a ball mill in the same manner as in Example 1, and then calcined under various conditions under PO□ control. The relationship between the 5r-W type ferrite single phase Po produced and the calcination temperature is shown in Table 4.

第4表 第4表と第1表とを比較して明らかなようにSr−W型
フェライトの単相が生成される温度範囲およびPO,範
囲は、Ba−W型7エライトのそれに比較して狭いこと
がわかる。特にPo2の制御が5r−W型フェライトの
単相を得るうえで重要である。単相生成条件と4π工S
、残存Fe2+量との関係を第5表に示す。
Table 4 Comparing Table 4 and Table 1, it is clear that the temperature range and PO range in which single phase is generated in Sr-W type ferrite are higher than those in Ba-W type 7 ferrite. I know it's narrow. In particular, control of Po2 is important in obtaining a single phase of 5r-W type ferrite. Single phase generation conditions and 4π engineering S
, and the amount of residual Fe2+ are shown in Table 5.

第   5   表 5r−W型フェライトの化学量論組成では p62+含
有量は7.50 W t%であるが、本実施例では第5
表から明らかなように3.73〜9.18wt%の範囲
で変化している。
Table 5 In the stoichiometric composition of r-W type ferrite, the p62+ content is 7.50 W t%, but in this example, the p62+ content is 7.50 W t%.
As is clear from the table, it varies in the range of 3.73 to 9.18 wt%.

次に第5表に示す焼粉を実施例1と略同様の条件で粉砕
、磁場中成形および焼結して5r−W型フェライト磁石
を得た。この磁石の代表特性は第6表に示す通りであっ
た。第6表から明らかなように5r−W型フェライト磁
石の特性はB a−W型フェライト磁石のそれと比較し
て低特性である。
Next, the sintered powder shown in Table 5 was crushed under substantially the same conditions as in Example 1, compacted in a magnetic field, and sintered to obtain a 5r-W type ferrite magnet. The typical characteristics of this magnet were as shown in Table 6. As is clear from Table 6, the characteristics of the 5r-W type ferrite magnet are lower than those of the Ba-W type ferrite magnet.

第   6   表 本実施例で検討した限りにおいては、5r−W型フェラ
イト磁石の場合、Ba−W型フェライト磁石に比較して
最適焼結条件となるPo、範囲が02×10”” 〜0
.5X10−2 atnと極めて狭いためPO,をこの
範囲に制御することが困難であり、これが、第6表に示
す程度の磁気特性にとどまりたものと考えられる。
Table 6 As far as the study in this example is concerned, in the case of a 5r-W type ferrite magnet, the optimum sintering conditions Po, compared to a Ba-W type ferrite magnet, range from 02 x 10'' to 0.
.. It is difficult to control PO within this range because it is extremely narrow at 5×10 −2 atn, and this is considered to be the reason why the magnetic properties remained as shown in Table 6.

以上実施例で述べたように、ミルスケールを鉄原料とす
ることによっても、従来のFe203Y出発原料とする
場合と同等の磁気特性を有するBa−W型フェライト磁
石を製作することができた。Sr −W型フェライト磁
石に関する磁気特性については、公知例が無いため、現
状では従来材との比較検討をすることができない。評価
については将来を待つことになるが、ミルスケールを原
料として使用することは十分に可能である。
As described in the examples above, by using iron raw material as the mill scale, it was possible to produce a Ba-W type ferrite magnet having magnetic properties equivalent to those of the conventional Fe203Y starting material. Since there are no known examples regarding the magnetic properties of Sr-W type ferrite magnets, it is currently not possible to compare them with conventional materials. Although we will have to wait for the future to evaluate it, it is quite possible to use mill scale as a raw material.

なおミルスケールをフェライト磁石の原料として用いる
ことは公知(特公昭44−971号公報。
The use of mill scale as a raw material for ferrite magnets is known (Japanese Patent Publication No. 44-971).

特公昭49−28077号公報等参昭)であるが、本発
明の如くW形7エライト磁石(使用した例はない。
Japanese Patent Publication No. 49-28077 (see Japanese Patent Publication No. 49-28077, etc.), but there is no example of using a W-type 7-elite magnet as in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、  Fe成分構成要素の少なくとも一部としてミル
スクールを含むW−フェライト相を形成する1原料混合
物をミルスケールの酸化が生じる濃度で加熱後所定の酸
素分圧を有する酸素含有雰囲気中で仮焼し、仮焼粉を粉
砕後磁場中で圧縮成形し、得られた成形体を所定の酸素
分圧を有する酸素含有雰囲気中で焼結することを特徴と
す1)るフェライト磁石の製造方法。
1. A raw material mixture forming a W-ferrite phase containing mill scale as at least part of the Fe component is heated at a concentration that causes mill scale oxidation, and then calcined in an oxygen-containing atmosphere having a predetermined oxygen partial pressure. 1) A method for producing a ferrite magnet, comprising: pulverizing the calcined powder, compression molding it in a magnetic field, and sintering the obtained compact in an oxygen-containing atmosphere having a predetermined oxygen partial pressure.
JP58069043A 1983-04-19 1983-04-19 Manufacture of ferrite magnet Pending JPS59194405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58069043A JPS59194405A (en) 1983-04-19 1983-04-19 Manufacture of ferrite magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58069043A JPS59194405A (en) 1983-04-19 1983-04-19 Manufacture of ferrite magnet

Publications (1)

Publication Number Publication Date
JPS59194405A true JPS59194405A (en) 1984-11-05

Family

ID=13391158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58069043A Pending JPS59194405A (en) 1983-04-19 1983-04-19 Manufacture of ferrite magnet

Country Status (1)

Country Link
JP (1) JPS59194405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648893U (en) * 1991-04-30 1994-07-05 克己 桑原 Cleaner / sterilizer circulation device for bath water
US5387356A (en) * 1993-09-28 1995-02-07 Sumitomo Special Metals Co., Ltd. Process of producing calcined materials for ferrite magnet
KR20010018868A (en) * 1999-08-23 2001-03-15 윤세원 A manufacturing method of ferrite complex oxidised substance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648893U (en) * 1991-04-30 1994-07-05 克己 桑原 Cleaner / sterilizer circulation device for bath water
US5387356A (en) * 1993-09-28 1995-02-07 Sumitomo Special Metals Co., Ltd. Process of producing calcined materials for ferrite magnet
KR20010018868A (en) * 1999-08-23 2001-03-15 윤세원 A manufacturing method of ferrite complex oxidised substance

Similar Documents

Publication Publication Date Title
US2864734A (en) Magnetic flake core and method of
JP6860285B2 (en) Manufacturing method of Ca-La-Co-based ferrite sintered magnet and Ca-La-Co-based ferrite sintered magnet
JP4858941B2 (en) Method for manufacturing magnetic material
Huang et al. Development of optimum preparation conditions of Fe-deficient M-type Ca–Sr–La system hexagonal ferrite magnet
JP2018030751A (en) Ferrite compound
US2929787A (en) Ferrite with constricted magnetic hysteresis loop
JPS59194405A (en) Manufacture of ferrite magnet
JP2007031240A (en) METHOD FOR MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JPH0261121B2 (en)
Chien et al. Preparation and Properties of Barium Ferrite Using Hot‐Rolled Mill Scale
JP2020161815A (en) Ferrite sintered body, ferrite sintered magnet, and production method thereof
US3291739A (en) Ferromagnetic materials and methods of fabrication
JP2929125B2 (en) Ferromagnetic material
KR102587856B1 (en) Ferrite calcined body and method for manufacturing sintered ferrite magnet
JP6732158B1 (en) MnZn-based ferrite and method for producing the same
JP7396137B2 (en) Ferrite calcined body, sintered ferrite magnet and manufacturing method thereof
JPS59219905A (en) Ferrite magnet and manufacture thereof
US3180833A (en) Molybdenum oxide containing high permeability zinc-manganese ferrite
JP3467329B2 (en) Manufacturing method of sintered core and sintered core
JPS59213105A (en) Manufacture of oxide permanent magnet material
US3096288A (en) Ferri-magnetic spinel bodies
JP2001284113A (en) Permanent magnet and manufacturing method for the same
JPH043089B2 (en)
JP2022156380A (en) Hexagonal ferrite magnetic powder for bond magnet and manufacturing method thereof, and bond magnet and manufacturing method thereof
WO2020189036A1 (en) MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME