JPS59194052A - Fuel supply amount control device for internal- combustion engine - Google Patents

Fuel supply amount control device for internal- combustion engine

Info

Publication number
JPS59194052A
JPS59194052A JP6786783A JP6786783A JPS59194052A JP S59194052 A JPS59194052 A JP S59194052A JP 6786783 A JP6786783 A JP 6786783A JP 6786783 A JP6786783 A JP 6786783A JP S59194052 A JPS59194052 A JP S59194052A
Authority
JP
Japan
Prior art keywords
fuel
acceleration
driving
supply amount
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6786783A
Other languages
Japanese (ja)
Other versions
JPH0629586B2 (en
Inventor
Katsuhiko Hirose
雄彦 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58067867A priority Critical patent/JPH0629586B2/en
Publication of JPS59194052A publication Critical patent/JPS59194052A/en
Publication of JPH0629586B2 publication Critical patent/JPH0629586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve the response and the driverability for acceleration by controlling the supply of fuel in accordance with the supply amount of fuel for acceleration previously obtained according to the driving speed of a car when an aceleration driving is demanded. CONSTITUTION:During the peration of an engine, data to indicate a throttle opening ThS in accordance with a pulse signal from a throttle sensor 48 is provided in an MPU in a control circuit 30, and when these data ThS are greater than a fixed value E, it is judged that an acceleration driving is demanded. When this acceleration driving is demanded, whether a car speed VS obtained from the output of a car speed sensor 54 is greater than a fixed value or not is decided. When the decision is NO, an asynchronous injection pulse width TAU' to correspond to the car speed VS is referred and when YES, a comparatively great fixed value F is obtained as he asynchronous injection pulse width. Then, an injection pulse signal in accordance with the said asynchronous injection pulse width is supplied to a fuel injection valve 26 for injecting a proper amount of fuel.

Description

【発明の詳細な説明】 本発明は内燃機関の燃料供給量を制御する装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling the amount of fuel supplied to an internal combustion engine.

内燃機関が加速運転状態に入った際その都度燃料噴射を
行う加速時弁間)IAjQ射制御方式は周知である。こ
の方式によれば、機関の加速時応答特性を向上せしめる
ことができる。このような非同期噴射を行う場合、スロ
ットル弁の開速度に応じてその燃料噴射量を制御するこ
とは既に知られている。しかしながら、加速時非同期噴
射量を単にスロットル弁の開速度のみに応じて制御す乙
と、機関の負荷条件が変った際に最適の噴射量を与える
ことができない。例えば車速か高いときに最適な噴射量
で車速か低い場合の加速時非同期噴射を行うと大きなト
ルクショックを引き起してしまう。
An acceleration-time valve injection control system is well known, in which fuel is injected each time the internal combustion engine enters an accelerating operation state. According to this method, the response characteristics of the engine during acceleration can be improved. When performing such asynchronous injection, it is already known that the fuel injection amount is controlled according to the opening speed of the throttle valve. However, if the asynchronous injection amount during acceleration is controlled solely according to the opening speed of the throttle valve, it is not possible to provide the optimum injection amount when the engine load condition changes. For example, if the optimal injection amount is used when the vehicle speed is high, but asynchronous injection is performed during acceleration when the vehicle speed is low, a large torque shock will occur.

逆に車速が低いときに最適な噴射量で車速か高い場合の
加速時非同期噴射を行うともたつき等を生じて加速時応
答特性が大幅に悪化する。
On the other hand, if asynchronous injection during acceleration is performed when the vehicle speed is high and the optimal injection amount is used when the vehicle speed is low, sluggishness etc. will occur and the response characteristics during acceleration will be significantly deteriorated.

従って本発明は従来技術の上述の問題点を解決するもの
であり、本発明の目的は、加速時のドライバビリティ及
びレスポンスを共に向上せしめることのできる燃料供給
量制御装置を提供することにある。
Therefore, the present invention solves the above-mentioned problems of the prior art, and an object of the present invention is to provide a fuel supply amount control device that can improve both drivability and response during acceleration.

上述の目的を達成する本発明の栴成を第1図を用いて説
明すると、加速運転を要求しているか否かを検出する手
段aと、機関すの搭載される車両Cの走行速度を検出す
る手段dと、検出した車両走行速度に応じて加速時燃料
供給量全求める手段eと、加速運転が要求された際に該
求めた加速時燃料供給量に応じて機関に燃料供給を行う
手段fとを本発明装置は備えている。
The structure of the present invention that achieves the above-mentioned object will be explained using FIG. 1. Means a detects whether acceleration operation is requested or not, and detects the traveling speed of the vehicle C on which the engine is mounted. means d for determining the total fuel supply amount during acceleration in accordance with the detected vehicle running speed; and means e for supplying fuel to the engine in accordance with the determined fuel supply amount during acceleration when acceleration driving is requested. The device of the present invention is equipped with f.

以下実施例によう本発明の詳細な説明する。The present invention will be explained in detail with reference to Examples below.

第2図には本発明の一実施例として、電子制御燃料噴射
式内燃機関の一例が概略的に表わされている。同図(C
おいて、10は機関本体全表わしており、12は吸気通
路、14は一つの気筒の燃焼室、16は排気通路をそれ
ぞれ表わしている。図示しないエアクリーナを介して吸
入される吸入空気は、エアフローセンサ18によってそ
の流量が検出される。吸入空気θ[コ童は、図示しない
アクセルRダルに連動するスロットル弁20によって制
御される。スロットル弁20を通過した吸入空気は、ザ
ージタンク22及び各吸気弁24を介して各気筒の燃焼
室14に層、かれる。
FIG. 2 schematically shows an example of an electronically controlled fuel injection type internal combustion engine as an embodiment of the present invention. The same figure (C
10 represents the entire engine body, 12 represents an intake passage, 14 represents a combustion chamber of one cylinder, and 16 represents an exhaust passage. The air flow sensor 18 detects the flow rate of intake air taken in through an air cleaner (not shown). The intake air θ is controlled by a throttle valve 20 that is linked to an accelerator pedal (not shown). The intake air that has passed through the throttle valve 20 is stratified into the combustion chamber 14 of each cylinder via the surge tank 22 and each intake valve 24.

燃料噴射弁26は、実1祭には各気前毎に設けられてお
り、紳28を介して制御回路30から送シ込まれる電気
的な駆動パルスに応じて開閉制御せしめら扛、図示しな
い燃料供給系から送られるカロ圧燃料を吸気弁24近傍
の吸気通路12内(吸気ポート部)に間欠的に噴射する
The fuel injection valve 26 is provided for each fuel injection valve, and is controlled to open and close in response to an electrical drive pulse sent from a control circuit 30 via a valve 28 (not shown). Calorie pressure fuel sent from the fuel supply system is intermittently injected into the intake passage 12 (intake port portion) near the intake valve 24.

燃焼室14において燃焼した後の排気が2スは排気弁3
2及び排気通路」6を介して、さらに触媒コンバータ3
4を介して大気中に排出される。
After combustion in the combustion chamber 14, the exhaust gas flows through the exhaust valve 3.
2 and the catalytic converter 3 via the exhaust passage 6.
4 to the atmosphere.

エアフローセンサ18は、スロットル弁2017)上流
の吸気通路12に設けられ、吸入空気流線に応じた電圧
を発生する。この出力電圧は紛36を介して制御回路3
0に送り込まれる。
The air flow sensor 18 is provided in the intake passage 12 upstream of the throttle valve 2017, and generates a voltage according to the intake air flow line. This output voltage is applied to the control circuit 3 through the output voltage 36.
sent to 0.

機関のディストリビュータ38にはクランク角センサ4
0及び42が取付けられておυ、これらノセンザ40 
、42からit、クランク軸が30’。
A crank angle sensor 4 is installed in the distributor 38 of the engine.
0 and 42 are installed, these sensors 40
, 42 to it, crankshaft is 30'.

360”回転する毎にパルス信号がそれぞれ出力され、
これらのノ々ルス信号はIA 44 、46 ’cそれ
ぞれ介して制御回路30に送9込まれる。
A pulse signal is output each time it rotates 360",
These Norse signals are sent to the control circuit 30 via IAs 44 and 46'c, respectively.

スロットル弁20と連動するスロノトルポノゾヨンセン
サ48からは、スロットル弁20が微少角度回動する毎
にパルス信号が出力され、この・ぞルス信号は線50に
介して制御回路30に送シ込まれる。
A pulse signal is output from the throttle valve 20 interlocked with the throttle valve 20 every time the throttle valve 20 rotates by a minute angle, and this pulse signal is sent to the control circuit 30 via a line 50. be included.

車速センサ54からは車両の出力シャフトが所定角回転
する毎にパルス信号が出力され、このパルス信号は線5
6を介して制御回路30に送り込まれる。
A pulse signal is output from the vehicle speed sensor 54 every time the output shaft of the vehicle rotates by a predetermined angle, and this pulse signal is shown on the line 5.
6 to the control circuit 30.

第3図は、第2図に示した制御回路30の一構成例を表
わすブロック図である。
FIG. 3 is a block diagram showing an example of the configuration of the control circuit 30 shown in FIG.

エア20−センサ18からの電圧信号はアナログマルチ
プレクサ機能を有するアナログ−デジタル(A/D)変
換器70に送シ込まれ、マイクロプロセッサユニット(
iVIPU)72からの指示に応じて2通信号に変換せ
しめられる。
The voltage signal from the air 20-sensor 18 is fed into an analog-to-digital (A/D) converter 70 with analog multiplexer functionality and is sent to the microprocessor unit (
iVIPU) 72, it is converted into two communication signals.

クランク角センサ40からのクランク角30°毎の・ぐ
ルス信号は、入出力回路(I10回路)74を介してM
PU72に送シ込咬れてクランク角30゜処理ルーチン
の割込み要求信号となると共にI10回路74内に設け
られたタイミングカウンタの歩進用クロックとなる。ク
ランク角センサ42からのクランク角360°毎のパル
ス信号は上記タイミングカウンタのリセット信号として
′動く。このタイミングカウンタから得られる噴射開始
タイミング信号はMPU72に送り込まれ同期鳴動用の
噴射処理ルーチンの割込み要求信号となる。
The signal from the crank angle sensor 40 at every 30 degrees of crank angle is sent to the M
The signal is sent to the PU 72 and becomes an interrupt request signal for the 30° crank angle processing routine, and also serves as a clock for incrementing the timing counter provided in the I10 circuit 74. A pulse signal every 360° of crank angle from the crank angle sensor 42 acts as a reset signal for the timing counter. The injection start timing signal obtained from this timing counter is sent to the MPU 72 and becomes an interrupt request signal for the injection processing routine for synchronous sounding.

車速センサ54からのノ々ルス信号はIlo  回路7
4を介してMPU72に送シ込まれ、車速計算用処理ル
ーチンの割込み要求信号となる。
The nose signal from the vehicle speed sensor 54 is connected to the Ilo circuit 7.
4 to the MPU 72, and becomes an interrupt request signal for the vehicle speed calculation processing routine.

スロットルポジションセンサ48からのパルス信号もI
lo 回路74を介してMPU72に送り込まれスロッ
トル開速度計算用処理ルーチンの割込み要求信号となる
The pulse signal from the throttle position sensor 48 is also I
The signal is sent to the MPU 72 via the lo circuit 74 and becomes an interrupt request signal for the processing routine for calculating throttle opening speed.

入出力回路(I10回路)76内には、MPU72から
送シ込ま社る唄射パルス幅TAU’に相当する持続時間
を有する1ビツトの噴射パルス信号を受け、これを駆動
信号に変換する駆動回路が設けられている。この駆動回
路からの駆動信号は燃料噴射弁26a〜26dに送り込
まれてこれらを付勢する。その結果、パルス幅TAUに
応じた量の燃料が噴射せしめられる。
In the input/output circuit (I10 circuit) 76, there is a drive circuit that receives a 1-bit injection pulse signal having a duration corresponding to the injection pulse width TAU' sent from the MPU 72 and converts it into a drive signal. is provided. A drive signal from this drive circuit is sent to the fuel injection valves 26a to 26d to energize them. As a result, an amount of fuel corresponding to the pulse width TAU is injected.

A/D  変換器70、及びI10回路74及び76は
、マイクロコンビーータの主構成要素であるMPU72
、ランダムアクセスメモリ(RAM)78、及びリード
オンリメモリ(ROM)80にパス82を介して接続さ
れており、このバス82を介してデータの転送が行われ
る。
The A/D converter 70 and the I10 circuits 74 and 76 are connected to the MPU 72, which is the main component of the microconbeater.
, a random access memory (RAM) 78, and a read only memory (ROM) 80 via a path 82, and data transfer is performed via this bus 82.

ROM80内には、後述するメイン処理ルーチンプログ
ラム、クランク角30°毎の割込み処理ルーチンプログ
ラム、車速剖算用割込み処理ルーチンプログラン・、ス
ロットル開速度計算用割込み処fi /l/−チンプロ
グラム、及びその他のプログラム、さらにそれらの演算
過程で用いられるデータ及びテーブル等があらかじめ記
憶源れている。
The ROM 80 contains a main processing routine program to be described later, an interrupt processing routine program for every 30 degrees of crank angle, an interrupt processing routine program for calculating vehicle speed, an interrupt processing program for calculating throttle opening speed, and Other programs, as well as data and tables used in their calculation processes, are stored in advance as a storage source.

次に、第4図〜&18図のフローチャー)k用いて上述
のマイクロコンピュータの動作を説明する。
Next, the operation of the above-mentioned microcomputer will be explained using the flowcharts in FIGS. 4 to 18.

MPU72は、クランク角センザ40から30゜クラン
ク角毎のパルス信号が送り込まれると、第4図の割込み
処理ルーチンを実行し、機関の回転速度NEを表わすデ
ータを形成する。1ずステップ90において、MPU7
2内に設けられているフリーランカウンタの内容を読み
取り、その値を030 とする。次のステップ91にお
いて、前回割込み時に読み取った値03gと今回の値C
so  との差△Cを△C=C,。−Cs5から算出し
、次のステップ92においてその差△Cの逆数を算出し
て回転速度NEを得る。即ちNE −Z、Cの演算を行
う゛。ただしAは定数である。このようにして得られた
NEはRAIVI78の所定位置に格納される。次のス
テップ93は、今回のカウンタの内容C9を次の割込み
処理時に前回の読取シ値として用いるように、CJ+−
C3o  の処理を行う。以後必要な他の処理を実イj
’Lfc後この割込み処理ルーチンからメインルーチン
に復帰する。
When the MPU 72 receives a pulse signal every 30 degrees of crank angle from the crank angle sensor 40, it executes the interrupt processing routine shown in FIG. 4 and forms data representing the rotational speed NE of the engine. 1. At step 90, the MPU 7
Read the contents of the free run counter provided in 2 and set the value to 030. In the next step 91, the value 03g read at the previous interrupt and the current value C
The difference △C from so is △C=C. -Cs5, and in the next step 92, the reciprocal of the difference ΔC is calculated to obtain the rotational speed NE. That is, the calculations NE-Z and C are performed. However, A is a constant. The NE thus obtained is stored at a predetermined location in the RAIVI 78. The next step 93 is to use the current counter content C9 as the previous read value at the next interrupt processing.
Perform C3o processing. Carry out other necessary processing from now on.
'After Lfc, the interrupt processing routine returns to the main routine.

また、MPU72は、車速センサ54からパルス信号が
送り込まれると第5図の割込み処理ル−テンを実行して
車速VSを表わすデータを形成する。この第5図の処理
ルーチンは第4図のものとほぼ同様であるので説明を省
略する。ただし、同図においてBは定数である。
Further, when the MPU 72 receives a pulse signal from the vehicle speed sensor 54, it executes the interrupt processing routine shown in FIG. 5 to form data representing the vehicle speed VS. The processing routine shown in FIG. 5 is almost the same as that shown in FIG. 4, so a description thereof will be omitted. However, in the figure, B is a constant.

さらにMPU72は、スロソトルポヅションセンサ48
からパルス信号が送り込ま扛ると第6図の割込み処理ル
ーチンを実行してスロットル開速度Th5k表わすデー
タを形成する。この第6図の処理ルーチンも第4図のも
のとほぼ同様であるので説明を省略する。た/どし、同
図においてDfd定数である。
Furthermore, the MPU 72 has a slot position sensor 48.
When a pulse signal is sent from , the interrupt processing routine shown in FIG. 6 is executed to form data representing the throttle opening speed Th5k. The processing routine shown in FIG. 6 is also substantially the same as that shown in FIG. 4, so the explanation thereof will be omitted. In the figure, it is the Dfd constant.

なお−A/D変換器70からのA/D変換完了割込みが
生じると、MPU72は機関の吸入空気流XQを表わす
データを取p込み、RAM78の所定位置に格納する。
Note that when an A/D conversion completion interrupt occurs from the A/D converter 70, the MPU 72 takes in data representing the intake air flow XQ of the engine and stores it in a predetermined location in the RAM 78.

一方、メイン処理ルーチンの途中でMPU72は第7図
の処理を実行する。即ち、第6図の割込み処理ルーチン
で作成され、Fl、AM78に格納されているスロット
ル開運? Ths *表わすデータと一定値Eとを比較
し、加速運転を要求しているか否かを判別する。ThS
≦Eの場合はアクセルペダルの踏み込み速度が遅く加速
運転が要求されてないと判断してそのままメインルーチ
ンを続行する。
On the other hand, the MPU 72 executes the process shown in FIG. 7 during the main processing routine. That is, the throttle opening ? created by the interrupt processing routine shown in FIG. 6 and stored in Fl and AM78. The data represented by Ths * is compared with a constant value E to determine whether accelerated driving is requested. ThS
If ≦E, it is determined that the accelerator pedal depression speed is slow and acceleration operation is not required, and the main routine continues.

ThS>Eの場合は、アクセルペダルの踏み込み速度が
速く、加速運転が要求されているとして加速割込み処理
全要求する。
If ThS>E, it is assumed that the accelerator pedal depression speed is high and accelerated driving is required, and all acceleration interrupt processing is requested.

第8図はこの加速割込み処理ルーテンを示している。上
述のように、MPU72は、スロットル開速変ThSが
一定値Eより大きい場合この加速割込み処理全実行する
。まずステップ100において、第5図の割込み処理ル
ーチンで作成された車速VSを表わすデータ¥r:RA
M78よシ読み出す。
FIG. 8 shows this accelerated interrupt processing routine. As described above, the MPU 72 executes the entire acceleration interrupt process when the throttle opening speed change ThS is larger than the constant value E. First, in step 100, data representing the vehicle speed VS created in the interrupt processing routine of FIG.
Read M78.

次のステップ10」では、この車速VSが2 Km /
 hより小さいか否かを判別する。V S (2Km 
/ hの場合はレーシングが行われているとしてステツ
1102へ進み、非同期の燃料噴射・々ルス幅TAU’
として比較的大きな一定値Fを与える。レーシング中は
無負荷であるためある程度条目の燃料を噴射してもトル
クショックは生じないためである。
In the next step 10, this vehicle speed VS is 2 Km/
It is determined whether or not it is smaller than h. VS (2Km
/ h, it is assumed that racing is taking place, and the process proceeds to stage 1102, where the asynchronous fuel injection and pulse width TAU' are performed.
A relatively large constant value F is given as . This is because during racing there is no load, so even if a certain amount of fuel is injected, no torque shock will occur.

一方、VS≧2Km/hの場合:rf ステップ103
へ進み、車速VSに対応する非同期噴射パルス幅TAU
’を求める。ROM80内にはVSに対するT A U
’の一次元の関数テーブルがあらかじめ格納されておシ
、ステップ103では内挿法等を用いてVSに対するT
AU”z求める。次のステップ104ではこのT A 
U’に相当する持続時間を有する噴射パルス信号が作成
され燃料の非同期噴射が実行される。噴射パルス信号の
作成方法として、例えばステップ104で噴射パルス信
号7−.1′1#に反転させると共にその時のフリーラ
ンカウンタの内容を知シ、それからT A U’経過後
のこのカウンタの値全コンベアレソスタにセットしてお
く。
On the other hand, if VS≧2Km/h: rf step 103
Proceed to the asynchronous injection pulse width TAU corresponding to the vehicle speed VS.
'Seek.' ROM80 contains T A U for VS.
' A one-dimensional function table is stored in advance, and in step 103, an interpolation method or the like is used to calculate T for VS.
AU”z is determined. In the next step 104, this T A
An injection pulse signal having a duration corresponding to U' is generated and an asynchronous injection of fuel is carried out. As a method for creating the injection pulse signal, for example, in step 104, the injection pulse signal 7-. 1' and 1#, the contents of the free run counter at that time are known, and the value of this counter after T AU' has elapsed is set in the total conveyor counter.

フリーランカウンタの内容がコンベアレソスタの内容に
等しくなった時点で割込みを発生させ噴射パルス信号音
゛0#に反転させる。これによシTAU′に相当するパ
ルス幅を有する非同期の噴射パルス信号が加速毎に形成
されることになる。
When the content of the free run counter becomes equal to the content of the conveyor counter, an interrupt is generated and the injection pulse signal sound is inverted to "0#". As a result, an asynchronous injection pulse signal having a pulse width corresponding to TAU' is generated at each acceleration.

なお、MPU72は、所定クランク角、例えば180℃
Aあるいは360℃A1毎に回転速)l、吸入空気流量
等に応じて同期噴射用の!@射パルス信号全形成し、こ
れによυ通當の燃料噴射制御を行っている。
Note that the MPU 72 operates at a predetermined crank angle, for example, 180°C.
A or 360℃A1 every rotation speed) l, intake air flow rate, etc. for synchronous injection! All injection pulse signals are generated and the fuel injection is controlled accordingly.

第9図は前述の如くして算出さノする非同期臆射パルス
幅TA口′の対車速vS%性を表わしている。
FIG. 9 shows the relationship of the asynchronous pulse width TA' with respect to the vehicle speed vs. S% calculated as described above.

車速か2 Km/ h未満の場合は、レーシングが行わ
れているとして比較的多量の燃料が非同期噴射され、−
万、車速か2Km/h以上の場合は、そのときの車速に
応じた量の燃料が非同期噴射される。
If the vehicle speed is less than 2 km/h, a relatively large amount of fuel is injected asynchronously, assuming that racing is taking place.
If the vehicle speed is 2 km/h or more, fuel is injected asynchronously in an amount corresponding to the vehicle speed at that time.

この場合、車速が大きい方が小さい場合に比して多量の
燃料が非同期噴射される。その結果車速の大きい場合は
加速時に回転速度の上昇、トルクの増大が素早く行われ
ることとなシ加速時応答特性が向上する。また、車速の
小さい場合は、非同期噴射燃料量が少ないため加速時の
トルクショック発生が防止できる。
In this case, a larger amount of fuel is injected asynchronously when the vehicle speed is higher than when the vehicle speed is lower. As a result, when the vehicle speed is high, the rotational speed and torque are quickly increased during acceleration, and the response characteristics during acceleration are improved. Furthermore, when the vehicle speed is low, the amount of asynchronously injected fuel is small, so it is possible to prevent torque shock from occurring during acceleration.

なお、前述した実施例では、加速時の非同期噴射燃料量
全車速のみに応じた値に制御しているが、本発明では、
これを車速及びスロットル開速度の両方に応じて制御し
ても良い。
In addition, in the above-mentioned embodiment, the amount of asynchronously injected fuel during acceleration is controlled to a value that corresponds only to the full vehicle speed, but in the present invention,
This may be controlled according to both the vehicle speed and the throttle opening speed.

以上詳細に説明したように本発明によれば加速時の燃料
供給量が車速に応じて可変制御されるため、加速時のレ
スポンス向上及びトルクショック軽減を共に図ることが
できる。
As described above in detail, according to the present invention, the amount of fuel supplied during acceleration is variably controlled in accordance with the vehicle speed, so that it is possible to improve response during acceleration and reduce torque shock.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を表わす図、第2図は本発明の一
笑施例の概略図、第3図は第2図の制御回路を詳細に表
わすブロック図、第4図〜第8図は第3図の制御回路の
制御プログラムの一部のフローチャート、第9図は第2
図の実施例における非同期噴射燃料量の特性図である。 18・・・エアフローセンサ、2o・・・スロットル弁
、26・・・燃料噴射弁、30・・・制御回路、40 
、42・・・クランク角センサ、48・・・スロットル
ボッジョンセンサ、54・・・車速センサ、72・・・
MPU。 74 、76−I10回路、78・ RAM、80−・
・ROM。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士  山 口 昭 之 第6藺
FIG. 1 is a diagram showing the configuration of the present invention, FIG. 2 is a schematic diagram of an embodiment of the present invention, FIG. 3 is a block diagram showing the control circuit in FIG. 2 in detail, and FIGS. 4 to 8 is a flowchart of a part of the control program of the control circuit in FIG. 3, and FIG.
FIG. 3 is a characteristic diagram of the amount of asynchronously injected fuel in the embodiment shown in the figure. 18... Air flow sensor, 2o... Throttle valve, 26... Fuel injection valve, 30... Control circuit, 40
, 42... Crank angle sensor, 48... Throttle motion sensor, 54... Vehicle speed sensor, 72...
M.P.U. 74, 76-I10 circuit, 78・RAM, 80-・
・ROM. Patent Applicant Toyota Motor Corporation Patent Application Agent Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Akira Yamaguchi 6th Patent Attorney

Claims (1)

【特許請求の範囲】[Claims] 1、加速運転を要求しているか否かを検出する手段と、
機関の搭載される車両の走行速度を検出する手段と、検
出した車両走行速度に応じて加速時燃料供給量ヲ求める
手段と、加速運転が要求された際に、該求めた加速時燃
料供給量に応じて機関に燃料供給を行う手段とを備えた
ことk ’f!j徴とするI71燃機関の燃料供給量制
御装置。
1. Means for detecting whether accelerated driving is requested;
means for detecting the running speed of a vehicle in which the engine is mounted; means for determining the fuel supply amount during acceleration according to the detected vehicle running speed; and means for determining the determined fuel supply amount during acceleration when acceleration driving is requested. k'f! A fuel supply amount control device for an I71 fuel engine with the following characteristics.
JP58067867A 1983-04-19 1983-04-19 Fuel supply control device for internal combustion engine Expired - Lifetime JPH0629586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067867A JPH0629586B2 (en) 1983-04-19 1983-04-19 Fuel supply control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067867A JPH0629586B2 (en) 1983-04-19 1983-04-19 Fuel supply control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS59194052A true JPS59194052A (en) 1984-11-02
JPH0629586B2 JPH0629586B2 (en) 1994-04-20

Family

ID=13357300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067867A Expired - Lifetime JPH0629586B2 (en) 1983-04-19 1983-04-19 Fuel supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0629586B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575519A1 (en) * 1984-12-28 1986-07-04 Suzuki Motor Co METHOD FOR ADJUSTING FUEL INJECTION IN A MOTOR
JP2007263577A (en) * 2006-03-27 2007-10-11 Tokyo Electric Power Co Inc:The Measuring system by potentiometric method, and connecting member used therein

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119134A (en) * 1981-01-19 1982-07-24 Toyota Motor Corp Method of injecting fuel into internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119134A (en) * 1981-01-19 1982-07-24 Toyota Motor Corp Method of injecting fuel into internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575519A1 (en) * 1984-12-28 1986-07-04 Suzuki Motor Co METHOD FOR ADJUSTING FUEL INJECTION IN A MOTOR
JP2007263577A (en) * 2006-03-27 2007-10-11 Tokyo Electric Power Co Inc:The Measuring system by potentiometric method, and connecting member used therein

Also Published As

Publication number Publication date
JPH0629586B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JPS5813131A (en) Air-fuel ratio control method
JPS588239A (en) Control method of fuel injection amount for fuel injection engine
JPS5848728A (en) Method of and apparatus for supplying fuel to electronically controlled fuel-injection engine
JPH0251052B2 (en)
JPS59194052A (en) Fuel supply amount control device for internal- combustion engine
JPH04166637A (en) Air-fuel ratio controller of engine
JPS60138245A (en) Fuel injection control device of engine
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6062627A (en) Method of correcting fuel injection amount
JPS59194054A (en) Fuel supply amount control device for internal-combustion engine
JPH0475382B2 (en)
JP2589583B2 (en) Electronic control fuel injection device
JPS6146442A (en) Fuel injection control device
JPS62214247A (en) Device for controlling air-fuel ratio for internal combustion engine
JP2503055Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS6035148A (en) Air-fuel ratio control device
JPS6125931A (en) Control of fuel injection amount of internal-combustion engine
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JP2526617B2 (en) Fuel supply control device for internal combustion engine
JPS60187731A (en) Control device for fuel injection of engine
JPS58217734A (en) Digital control method of internal-combustion engine
JPS5996446A (en) Non-synchronous fuel injection method for internal- combustion engine under acceleration
JPS61185647A (en) Intake pressure detecting device for internal-combustion engine
JPS5928028A (en) Electronic fuel injection controlling method of internal combustion engine
JPH0742882B2 (en) Fuel supply control device for internal combustion engine