JPS59194028A - Cooling device for engine - Google Patents

Cooling device for engine

Info

Publication number
JPS59194028A
JPS59194028A JP6816383A JP6816383A JPS59194028A JP S59194028 A JPS59194028 A JP S59194028A JP 6816383 A JP6816383 A JP 6816383A JP 6816383 A JP6816383 A JP 6816383A JP S59194028 A JPS59194028 A JP S59194028A
Authority
JP
Japan
Prior art keywords
engine
cooling
compressor
air
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6816383A
Other languages
Japanese (ja)
Inventor
Nakanobu Seki
関 仲修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6816383A priority Critical patent/JPS59194028A/en
Publication of JPS59194028A publication Critical patent/JPS59194028A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • F01P9/06Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00 by use of refrigerating apparatus, e.g. of compressor or absorber type

Abstract

PURPOSE:To improve a cooling effect, by making a compressor usable as a vacuum pump deaerating the inside of a cooling system, in case of a device which cools an engine through evaporation of a cooling medium solution and, after pressurizing and heating the vapor with the compressor, cools it with the outside air. CONSTITUTION:In time of engine starting, in order to perform deaeration of a cooling system, first solenoid valve 19 is closed and each of solenoid valves 14 and 20 is opened, while a valve 22 is opened in addition, and a compressor 8 is driven as a vacuum pump is common. If so, air inside those of a water jacket 4, a vapor passage 7, a bypass passage 13, condensers 9 and 21 and a vapor passage 23 is exhausted via the solenoid valve 20. Next, when cooling medium vapor is generated due to a temperature rise after engine starting, the solenoid valve 20 is closed while these solenoid valves 14 and 19 are opened whereby the residual air is expelled to a subcondenser 21 by dint of vapor. Afterward, with the valve 22 closed, the cooling medium is circulated, making a cooling device perform its regular cooling operation.

Description

【発明の詳細な説明】 この発明は自動車などのエンジンの冷却装置に関する。[Detailed description of the invention] The present invention relates to a cooling device for an engine of an automobile or the like.

エンジンの冷却装置として、蒸発冷却システム全採用し
たものを、本出願人は実願昭57−169525号、特
開昭57−14312吟などに於いて既に提案している
。先ず、この例について述べると、以下の通りである。
The present applicant has already proposed an engine cooling system that employs an evaporative cooling system in Utility Model Application No. 57-169525 and Japanese Unexamined Patent Application Publication No. 57-14312. First, this example will be described as follows.

第1図および第2図はその構成全具体的に示し、/はエ
ンジン1.2はシリンダブロック、3はシリンダヘッド
、グはウォータジャケット、Jは吸気マニtルド、乙は
吸気マニホルドJの上部に形成した蒸気溜め室である。
Figures 1 and 2 show the entire configuration in detail. / is the engine 1.2 is the cylinder block, 3 is the cylinder head, G is the water jacket, J is the intake manifold, and O is the upper part of the intake manifold J. This is a steam storage chamber built in

この蒸気溜め室名および上記ウォータジャケット<zに
は適当な水位の液相冷却媒体、例えば水に若干の添加物
金加えた冷却水Wが貯溜されている。従って、この冷却
水Wはエンジン熱によって沸騰状態となって冷却媒体蒸
気s2発生し、その気化熱によって熱を奪いエンジン各
部全冷却する。ここで発生した冷却媒体蒸気Sは蒸気溜
め室2から蒸気通路7全通じて排出され、圧縮手段とし
てのコンプレッサどに導入される。
A liquid-phase cooling medium at an appropriate level, for example, cooling water W made by adding some additive gold to water, is stored in this steam storage chamber name and the above-mentioned water jacket <z. Therefore, this cooling water W is brought to a boiling state by the engine heat and generates cooling medium vapor s2, and the heat of vaporization removes heat and completely cools each part of the engine. The coolant vapor S generated here is discharged from the vapor storage chamber 2 through the entire steam passage 7, and is introduced into a compressor or the like as a compression means.

このコンプレッサgでは蒸気通路7を出念蒸気Sを断熱
圧縮し、エンジン排出時よジもさらに高温、高圧の状態
にして、放熱液化手段であるコンデンサ?に送出する。
In this compressor G, the steam passage 7 is used to adiabatically compress the steam S, and when it is discharged from the engine, the temperature and pressure are even higher, and the condenser is used as a heat dissipation liquefaction means. Send to.

このコンデンサワに導入さnた蒸気Sは空気流により冷
却され、凝縮液化して再び冷却水Wとなり、冷却水通路
10f通ってタンク//に回収される。さらに、この冷
却水は減圧弁72を経てウォータジャケントに戻る。
The steam S introduced into the condenser is cooled by the air flow, condensed and liquefied to become cooling water W again, which is collected into the tank through the cooling water passage 10f. Furthermore, this cooling water returns to the water jacket via the pressure reducing valve 72.

/3はコンプレッサざのバイパス通路テ、コノバイパス
通路にはエンジン負荷が小さいとき開かれる電磁弁/4
’が介装されている。/7は制御装置で、機関運転状態
に応じて冷却ファン/S1コンプレツサg、減圧弁/、
2、電1み弁/4/、および後述の各釉バA・ブ全作動
制御する。
/3 is the bypass passage of the compressor, and the solenoid valve in the cono bypass passage that is opened when the engine load is small /4
' is interposed. /7 is a control device that controls cooling fan/S1 compressor g, pressure reducing valve/, depending on the engine operating state.
2. Controls the entire operation of the electric valve /4/ and each glaze bar A and B described below.

上記冷却ファン/Sはコンデンサタの蒸気圧を検出する
蒸気圧センサ/乙からの信号に基づいそ上記制御装置/
7vCより駆動制御される。7gは蒸気溜め室Xに設け
た液面センサであジ、このセンサ出力に基づく減圧弁/
2の開閉制御により、ウォータジャケット4内の液相冷
却媒体の液面が一定に保たれる。
The cooling fan/S is based on the signal from the vapor pressure sensor/B that detects the vapor pressure of the condenser.
The drive is controlled by 7vC. 7g is a liquid level sensor installed in the steam storage chamber X, and the pressure reducing valve /
2, the liquid level of the liquid phase cooling medium in the water jacket 4 is kept constant.

また、蒸気量(庭弁/qは制御装置/7の出力信号によ
って動作する。すなわち、エンジン負荷が小さいときは
、発生蒸気量が少いのでコンプレッサgで加圧しなくて
も、コンデンサ?に於いて十分な液化凝縮が可能なため
、コンプレッサざが停止さ扛るとともに電磁弁/グが開
かれ、)くイノくス通路7を経て冷却媒体蒸気が直接コ
ンデンサqに送られ、液化凝縮さnる。
In addition, the amount of steam (garden valve /q) is operated by the output signal of the control device /7.In other words, when the engine load is small, the amount of steam generated is small, so even if the compressor g does not pressurize it, the condenser ? Since sufficient liquefaction and condensation is possible, the compressor is stopped and the solenoid valve is opened, so that the cooling medium vapor is directly sent to the condenser q through the exhaust passage 7, where it is liquefied and condensed. Ru.

また、上記コンプレッサざは真空ポンプとしても駆動で
きる構成となっておジ、これの吐出側には冷却媒体をコ
ンデンサ9vc送る際に開かれる切換え弁としての電磁
弁/りおよび空気抜き用の電(み弁20が接続されてい
て、この冷却系の通常運転時(Cは、制御装置/7によ
って電磁弁/り9.20が開か61電磁弁/りが閉じら
れる。4ところで、エンジン運転前は蒸気溜め室名の上
部および蒸気通路7、・くイノ(ス通路/3の内部に大
気圧の空気が残っており、この状態でエンジン全運転す
ると、冷却系内部は空気と冷却媒体蒸気との混合気体と
なり、空気が膨張することによって、ウォータジャケッ
ト<zから冷却媒体へ]伝熱、冷媒からコンデンサ9へ
の伝熱の効率が著るしく低下するので、上記の様にエン
ジン運転の開始時に電磁弁/りを閉じ、他の゛電磁弁/
11...20全開くとともに、コンプレッサ♂全真空
ポンプとして駆動することによって、エンジン側および
コンデンサタ側から冷却系内の空気を電θB弁−〇を通
って排出させうるもので1)、コンデンサ9の熱交換効
率が向上することとなる。
In addition, the above compressor is configured to be able to be driven as a vacuum pump, and on the discharge side there is a solenoid valve as a switching valve that is opened when sending 9 volts of cooling medium to a condenser, and an electric valve for air venting. Valve 20 is connected, and during normal operation of this cooling system (C, solenoid valve /9.20 is opened by control device /7, and solenoid valve /61 is closed.4) By the way, before engine operation, steam is Atmospheric pressure air remains in the upper part of the reservoir chamber and inside the steam passages 7 and 3, and if the engine is operated at full capacity in this state, a mixture of air and coolant vapor will occur inside the cooling system. As the air becomes a gas and expands, the efficiency of heat transfer from the water jacket <z to the cooling medium> and from the refrigerant to the condenser 9 is significantly reduced. Close the valve and close the other solenoid valve.
11. .. .. 20 When the compressor ♂ is fully opened, the air in the cooling system can be discharged from the engine side and the condenser side through the electric θB valve -〇 by driving the compressor ♂ as a full vacuum pump. 1) Heat exchange of the condenser 9 This will improve efficiency.

こりしてウオータジャクットクやコンデンサタの各内部
圧力全低下させ、空気による上記伝熱効率の低下を防止
することによって、通常のエンジン運転状況に於いて、
所期のエンジン冷却効果が得らnるとともに、コンプレ
ッサgの消費馬力全低減できることとなる。
Under normal engine operating conditions, the internal pressure of the water jack and condenser is completely reduced, and the heat transfer efficiency is prevented from decreasing due to air.
The desired engine cooling effect can be obtained, and the horsepower consumption of the compressor g can be completely reduced.

なお、一旦孕気を抜いておけば、エンジン運転中は冷却
系内が重圧に保たれ、空気が混入することはない。
Note that once the air is removed, the inside of the cooling system is kept under heavy pressure while the engine is running, and no air gets mixed in.

第3図はこの様な空気の混入によるコンデンサ9の放熱
特性の違いを示すものである。こ扛によればコンデンサ
タの入口温度を130°C,空気の分圧18mmHg、
含有突気量を350CCとした場合のコンデンサ放熱特
性線Aは、含有空気量ゼロの場合のコンデンサ放熱特性
線Bvc対して、図示の様になり、仮シに冷却風速を2
m/Sとした場合に、放熱量が約25〜26%も低下す
ることが分かる。
FIG. 3 shows the difference in heat dissipation characteristics of the capacitor 9 due to the inclusion of air. According to this article, the inlet temperature of the condenser is 130°C, the partial pressure of air is 18mmHg,
The capacitor heat radiation characteristic line A when the contained air volume is 350CC is as shown in the figure, compared to the capacitor heat radiation characteristic line Bvc when the contained air volume is zero.
m/S, it can be seen that the amount of heat radiation decreases by about 25 to 26%.

同様に、空気の分圧が9 mm Hg 、含有窒気量全
170CCとした場合のコンデンサ放熱特性線Cでは、
含有空気量ゼロの場合に比較して、冷却風速2m/Sで
、放熱量が10%未満程度低下することが分かる。
Similarly, in the capacitor heat radiation characteristic line C when the partial pressure of air is 9 mm Hg and the total nitrogen content is 170 CC,
It can be seen that when the cooling air velocity is 2 m/s, the amount of heat radiation decreases by about less than 10% compared to the case where the air content is zero.

しかしながら、コンプレワサビ全真空ポツプとして使う
ことにより、冷却系の空気抜きを行うものでは、コンプ
レッサざの性能上、ある限度以上に冷却系を負圧にする
ことが困難であり、僅かの空気がコンデンサ2など冷却
系に残留し、そのコンデンサ7による熱交換効率の同上
が阻害されるという問題があった。
However, when using Compressor Wasabi as a full-vacuum pot to bleed air from the cooling system, it is difficult to bring the cooling system to negative pressure beyond a certain limit due to the performance of the compressor, and a small amount of air flows into the condenser 2. There was a problem that the heat exchange efficiency of the condenser 7 was hindered by remaining in the cooling system.

この考案はかかる従来の問題点VcN目して成されたも
のでアシ、コンプレッサを真空ポンプとして使うことに
よって、冷却系の空気を抜くとともに、エンジンの発熱
にょ9生じた蒸気により、空気を冷却系内から全部排1
fjfることにょシ、コンデンサの放熱特性を大幅に改
善したエンジンの冷却装置を提供することを目的とする
This idea was made to address the problems of the conventional VcN, and by using a compressor as a vacuum pump, the air from the cooling system is removed, and the steam produced by the heat generated by the engine is used to pump air into the cooling system. Exclude everything from inside 1
The purpose of the present invention is to provide an engine cooling device in which the heat dissipation characteristics of a condenser are significantly improved.

このため、この発明はエンジン冷却システムのコンプレ
ッサを、真空ポンプとして使用しうる構成となし、この
コンプレッサの吐出側に、エンジン始動時に大気に開放
する切換え弁を設けるとともに、エンジン冷却システム
の放熱液化手段には、冷却媒体蒸気によって追い出した
冷却系の空気全収容する空気収容手段全接続した構成と
したのである。
For this reason, the present invention configures the compressor of the engine cooling system so that it can be used as a vacuum pump, and provides a switching valve on the discharge side of the compressor that opens to the atmosphere when the engine is started, as well as a heat dissipation liquefaction means for the engine cooling system. In this case, the air storage means for storing all the air in the cooling system that has been expelled by the cooling medium vapor are all connected.

以下に、この発明の実施例上図面について具体 的に説
明する。甫4図はその一実施例を示し、第1図に示した
ものと同一の構成部分には同−符号上付し”Cある。第
4図に於いて1.2/は空気収容手段としてのサブコン
デンサで、このサブコンデンサ、2/とコンデンサ2と
の間に、バJ・ブ、22を介装した蒸気通路、23が接
続されている。′l′た、このサブコンデンサ2/の底
部とタンク//との間VCは、バルブ、2グを介装した
冷却水通路2sが接続さ扛ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, the drawings of embodiments of the present invention will be specifically explained. Fig. 4 shows one embodiment of the same, and the same components as shown in Fig. 1 have the same reference numeral superscripted "C". In Fig. 4, 1.2/ is an air containing means. In the sub-condenser 2/, a steam passage 23 with a valve 22 is connected between the sub-condenser 2/ and the condenser 2. Between the bottom and the tank//VC, a cooling water passage 2s with a valve and 2g interposed is connected.

かかる構成になるサブコンデンサ金偏えた冷却装置の作
用は次の通りである。
The operation of the sub-condenser cooling device having such a structure is as follows.

先ず、エンジン始動時の冷却系の空気抜きを行う際には
、電磁弁/7を閉じ、電磁弁/4t、コ。
First, when venting air from the cooling system when starting the engine, close solenoid valve 7, and then close solenoid valve 4t.

を開くとともに、更に上記バルブ、2.2i開いて、コ
ンプレッサ?を真空ポンプとして駆動する。こラするこ
とにより、ウォータジャケット9、蒸気通路7、バイパ
ス通iN5/3、コンデンサ?、2/および蒸気通路、
2.3(7)円部の空気が、電磁弁20を介して排出さ
れる。この排出拗作によっても、上記各冷却系には空気
が微少量残留するが、エンジン始動後の温度上昇によっ
て冷却媒体蒸気が発生し、このとき上記電磁弁20を閉
じるとともに、電磁弁/”I、/9およびバルブ2ノ金
開くことによって、−上記蒸気通路7、バイパス通路/
3およびコンデンサ7内に残留する空気を、その冷却媒
体蒸気によって、サブコンデンサ2/に追い出すことが
できる。この後、上記バルブ、2.2を閉じることによ
り、上記冷却系に空気を含まない冷却媒体全循環させ、
正規のエンジン冷却動作全行わせつる。この場合に於い
て、サブコンデンサ、27に追い出された空気は、エン
ジン冷却動作中、このサブコンデンサJ/FEj17i
1:貯溜さ九ているが、必要に応じ空気抜き手段音用い
てサブコンデンサ、2/外に排出させることもできる。
As well as opening the above valve, 2.2i is opened and the compressor? is driven as a vacuum pump. By doing so, the water jacket 9, steam passage 7, bypass passage iN5/3, and condenser? , 2/ and steam passage;
2.3(7) Air in the circular portion is discharged via the solenoid valve 20. Due to this exhaustion, a small amount of air remains in each cooling system, but coolant vapor is generated due to the temperature rise after the engine starts, and at this time, the solenoid valve 20 is closed and the solenoid valve / , /9 and by opening the valve 2, - the steam passage 7, the bypass passage /
3 and the air remaining in the condenser 7 can be driven out to the sub-condenser 2/ by means of its cooling medium vapor. After that, by closing the valve 2.2, the cooling medium containing no air is completely circulated through the cooling system,
Perform all normal engine cooling operations. In this case, the air expelled to the sub-condenser 27 is transferred to the sub-condenser J/FEj17i during the engine cooling operation.
1: It is stored, but if necessary, it can be discharged to the outside using an air venting means.

また、エンジン停止後は、バルブ22.2’lを開くこ
とにより、サブコンデンサ27内の液化冷却媒体を、こ
れの重力によってタンク//内に戻し、再ヒエンジンの
ウォータジャケラ)lIVc送出することかできる。
Also, after the engine is stopped, by opening the valve 22.2'l, the liquefied cooling medium in the sub-condenser 27 is returned to the tank by its gravity, and is sent out to the water jacket of the engine. I can do it.

以上説明してきた様に、この発明によれば、コンプレッ
サ全真空ポンプとして使用し、コンプレッサの吐出側に
設けた切換え弁を通じて冷却系の空気を排出するととも
に、放熱液化手段としてのコンデンサには、エンジン運
転初期に冷却媒体蒸気によp追い出しfc冷却系の残留
突気の回収手段全接続したことによ夕、コンデンサに於
ける放熱効率が向上し、この結果、エンジンの冷却が効
果的となる等の効果が得られる。
As explained above, according to the present invention, the compressor is used as a full vacuum pump, and the air in the cooling system is discharged through the switching valve provided on the discharge side of the compressor. In the early stages of operation, the cooling medium vapor is used to expel the p air, and by fully connecting the recovery means for the residual air in the fc cooling system, the heat dissipation efficiency in the condenser is improved, and as a result, engine cooling becomes more effective. The effect of this can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエンジンの冷却装置を示すシステム図、
第2図は同じくエンジン部分のみを示す一部切欠斜視図
、第3図はコンデンサの放熱量特性図、@4図はこの発
明の冷却装置のシステム図である。 /・・・エンジン、t・・・ウォータジャケット、7・
・・蒸iam、♂・・・コンプレッサ、7・・・コンデ
ンサ、10・・・冷却水通路、//・・・タンク、7.
2・・・減圧弁、/り1.20・・・切換え弁1.2/
・・・サブコンデンサ1.22.2’t’・・・バルブ
、、2.7・・・m 気通路。
Figure 1 is a system diagram showing a conventional engine cooling system.
FIG. 2 is a partially cutaway perspective view showing only the engine portion, FIG. 3 is a heat radiation characteristic diagram of a condenser, and FIG. 4 is a system diagram of the cooling device of the present invention. /...Engine, t...Water jacket, 7.
...Steam iam, ♂...Compressor, 7...Condenser, 10...Cooling water passage, //...Tank, 7.
2...Pressure reducing valve, /1.20...Switching valve 1.2/
...Sub-condenser 1.22.2't'...Valve, 2.7...m Air passage.

Claims (1)

【特許請求の範囲】[Claims] エンジンのウォータジャケットに液相冷却媒体を貯溜し
、との液相冷却媒体の蒸発気化によってエンジンの冷却
を行う様に構成する一方、エンジン内部の冷却媒体蒸気
全コンプレッサによシ加圧して温度を上げた後、外気に
より冷却して凝縮液化せしめる放熱液化手段を持ち、こ
の液化した冷却媒体’i再びエンジンのウォータジャケ
ットに循環させる様にしたエンジンの冷却装置に於いて
、コンプレッサを真空ポンプとして使用できる構成とな
シ、ソのコンプレッサの吐出側に、エンジン始動時に大
気に開口する切換え弁を設けるとともに、上記放熱液化
手段には、エンジン運転初期に冷却媒体蒸気によって追
い出した冷却系の空気を収容する空気収容手段を接続し
たことを特徴とするエンジンの冷却装置。
A liquid-phase cooling medium is stored in the engine's water jacket, and the engine is cooled by evaporation of the liquid-phase cooling medium, while the temperature is controlled by pressurizing the cooling medium vapor by a compressor inside the engine. In an engine cooling system, a compressor is used as a vacuum pump in an engine cooling system that has a heat radiation liquefaction means that condenses and liquefies the coolant by cooling it with outside air, and circulates this liquefied cooling medium back to the engine water jacket. A switching valve is provided on the discharge side of the compressor that opens to the atmosphere when the engine starts, and the heat dissipation liquefaction means stores the air from the cooling system that is expelled by the coolant vapor at the beginning of engine operation. A cooling device for an engine, characterized in that an air storage means is connected thereto.
JP6816383A 1983-04-18 1983-04-18 Cooling device for engine Pending JPS59194028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6816383A JPS59194028A (en) 1983-04-18 1983-04-18 Cooling device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6816383A JPS59194028A (en) 1983-04-18 1983-04-18 Cooling device for engine

Publications (1)

Publication Number Publication Date
JPS59194028A true JPS59194028A (en) 1984-11-02

Family

ID=13365815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6816383A Pending JPS59194028A (en) 1983-04-18 1983-04-18 Cooling device for engine

Country Status (1)

Country Link
JP (1) JPS59194028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624221A (en) * 1984-09-29 1986-11-25 Nissan Motor Co., Ltd. Cooling system for automotive engine or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4624221A (en) * 1984-09-29 1986-11-25 Nissan Motor Co., Ltd. Cooling system for automotive engine or the like

Similar Documents

Publication Publication Date Title
US2467413A (en) Liquid oxygen pumping system
EP1059495A3 (en) Supercritical vapor compression cycle
JPS60164614A (en) Boiling-cooling device for engine with supercharger
JPS63105369A (en) Steam injection type refrigerator
US4535597A (en) Fast cycle water vapor cryopump
JPS6093117A (en) Boiling-cooling type intercooler
JPS61275522A (en) Evaporative cooling device for engine
US5067327A (en) Refrigerant recovery and recharging device
JPS6093116A (en) Evaporative cooling type intercooler
JP3015820B2 (en) Refrigerant recovery device
JPS59194028A (en) Cooling device for engine
US5722247A (en) Recovery system for very high-pressure refrigerants
EP0397760B1 (en) Method and apparatus for recovery of refrigerant
JPS6329147Y2 (en)
JP2004325013A (en) Refrigerating cycle device
JPH0333421A (en) Cooling device of engine
JP2005096757A (en) Air-conditioner, and method for operating the same
JPS6345519B2 (en)
JPH0526257Y2 (en)
JPH0519545Y2 (en)
SU1138536A1 (en) Cryosorption pump
JPH01342A (en) Stirling engine output control device
JPH0248663Y2 (en)
JPH0248660Y2 (en)
JPH0324828Y2 (en)