JPS59193656A - Burst signal receiver - Google Patents

Burst signal receiver

Info

Publication number
JPS59193656A
JPS59193656A JP6803583A JP6803583A JPS59193656A JP S59193656 A JPS59193656 A JP S59193656A JP 6803583 A JP6803583 A JP 6803583A JP 6803583 A JP6803583 A JP 6803583A JP S59193656 A JPS59193656 A JP S59193656A
Authority
JP
Japan
Prior art keywords
signal
output
circuit
code
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6803583A
Other languages
Japanese (ja)
Other versions
JPH0376622B2 (en
Inventor
Nobuyuki Tokura
戸倉 信之
Yoshiro Hakamata
袴田 吉朗
Kimio Oguchi
喜美夫 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6803583A priority Critical patent/JPS59193656A/en
Priority to US06/597,867 priority patent/US4562582A/en
Priority to CA000451667A priority patent/CA1209211A/en
Priority to GB08409887A priority patent/GB2139051B/en
Priority to DE19843414768 priority patent/DE3414768A1/en
Priority to FR8406122A priority patent/FR2544570B1/en
Publication of JPS59193656A publication Critical patent/JPS59193656A/en
Publication of JPH0376622B2 publication Critical patent/JPH0376622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1403Digital recording or reproducing using self-clocking codes characterised by the use of two levels
    • G11B20/1407Digital recording or reproducing using self-clocking codes characterised by the use of two levels code representation depending on a single bit, i.e. where a one is always represented by a first code symbol while a zero is always represented by a second code symbol
    • G11B20/1419Digital recording or reproducing using self-clocking codes characterised by the use of two levels code representation depending on a single bit, i.e. where a one is always represented by a first code symbol while a zero is always represented by a second code symbol to or from biphase level coding, i.e. to or from codes where a one is coded as a transition from a high to a low level during the middle of a bit cell and a zero is encoded as a transition from a low to a high level during the middle of a bit cell or vice versa, e.g. split phase code, Manchester code conversion to or from biphase space or mark coding, i.e. to or from codes where there is a transition at the beginning of every bit cell and a one has no second transition and a zero has a second transition one half of a bit period later or vice versa, e.g. double frequency code, FM code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/046Speed or phase control by synchronisation signals using special codes as synchronising signal using a dotting sequence

Abstract

PURPOSE:To detect easily collision of signals by applying partial response conversion to a receiving signal, converting the result into an AC signal and performing signal identification by means of a binary identification device at the latter half code time corresponding to the Manchester code converted into two codes. CONSTITUTION:A transmission signal A inputted to a terminal 11 of an optical burst signal transmitter 10 is subject to the Manchester code conversion 14 by a clock signal f0, electrooptic-converted 15 via an enable signal 13 and transmitted as an optical signal 6. On the other hand, the signal 6 is photo-electric- converted 2 at an optical burst signal receiver 20, is subject to partial response code conversion 21 and an output D not including a DC component is amplified 3' in terms of AC. Nonlinear extraction is attained from the output at a timing extraction circuit 22, and signal identification is performed for a binary identification device 4 at the latter half code time corresponding to the Manchester code converted into the two codes by an output signal I of a 1/2-frequency division circuit.

Description

【発明の詳細な説明】 この発明は強度変調を受けたバースト信号、特に光バー
スト信号の受信に適する受信装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a receiving device suitable for receiving intensity-modulated burst signals, particularly optical burst signals.

〈従来技術〉 従来の強度変調を受けた光バースト信号の受信装置は第
1図に示すように構成されていた。即ち受信光バースト
信号1は、光電気変換回路2で電気に変換され、その電
気信号は増幅回路3で増幅された後、識別回路4で識別
されて受信信号出力端子5に出力される。
<Prior Art> A conventional receiving apparatus for receiving an optical burst signal subjected to intensity modulation was constructed as shown in FIG. That is, the received optical burst signal 1 is converted into electricity by a photoelectric conversion circuit 2, and the electrical signal is amplified by an amplifier circuit 3, then identified by an identification circuit 4, and outputted to a received signal output terminal 5.

第2図に第1図の各部の信号波形を示す。第2図Aは光
入力信号1、第2図Bは増幅回路3が直流増幅形式の場
合の出力、第2図Cは増幅回路3が交流増幅形式の場合
の出力である。第2図Aに示したように受信光バースト
信号1は光強度変調のため、信号には負の成分が無い。
FIG. 2 shows signal waveforms at each part of FIG. 1. 2A shows the optical input signal 1, FIG. 2B shows the output when the amplifier circuit 3 is of the DC amplification type, and FIG. 2C shows the output when the amplifier circuit 3 is of the AC amplification type. As shown in FIG. 2A, since the received optical burst signal 1 is optical intensity modulated, there is no negative component in the signal.

よって第2図Bに示したように直流まで増幅でさる増幅
回路3を用いる場合は識別回路4への入力信号の直流レ
ベルの変動が生じない、このため識別回路4の最適識別
レベルは点線ZS+のように一定であるが、この増幅回
路3としては高利得、広帯域増幅を必要とするだめ、直
流増幅を用いることは実際には困難であり、交流増幅回
路が用いられる。この場合、交流増幅回路の出力は第2
図Cに示したように、光入力バースト信号に対して直流
遮断による過渡応答が生じ、識別回路4の最適識別レベ
ルが点線tS2で示すように変動する33通常の識別回
路4の識別レベルは固定であり、定常状態において41
となるレベルに設定し、このレベルはゼロレベルに近ず
くだめ、バースト信号の初めの部分が正常に識別できな
くなる欠点があった。またこの過渡応答時間領域を小さ
くするため、交流増幅回路3の遮断周波数を高くする方
法かあるが、遮断周波数を高くすることによシ定常状態
において増幅回路3の出力に波形歪が生じ、これにより
アイパターンが劣化し、識別誤りが多くなる欠点があつ
た。
Therefore, as shown in FIG. 2B, when using the amplifier circuit 3 that can amplify up to DC, there is no fluctuation in the DC level of the input signal to the discrimination circuit 4. Therefore, the optimum discrimination level of the discrimination circuit 4 is as shown by the dotted line ZS+. However, since the amplifier circuit 3 requires high gain and wideband amplification, it is actually difficult to use DC amplification, so an AC amplifier circuit is used. In this case, the output of the AC amplifier circuit is
As shown in Figure C, a transient response occurs due to DC interruption to the optical input burst signal, and the optimum discrimination level of the discrimination circuit 4 changes as shown by the dotted line tS2.33 The discrimination level of the normal discrimination circuit 4 is fixed. and in steady state 41
However, this level approaches the zero level, which has the disadvantage that the beginning part of the burst signal cannot be correctly identified. In order to reduce this transient response time region, there is a method of increasing the cutoff frequency of the AC amplifier circuit 3, but increasing the cutoff frequency causes waveform distortion in the output of the amplifier circuit 3 in a steady state. This has the disadvantage that the eye pattern deteriorates and identification errors increase.

一方、2ケ所以上から光信号を同時に受イ言(光信号の
衝突)した場合、それらの光信号にある程度以上のレベ
ル差があると、テイジタル信号の識別誤りが生じない。
On the other hand, when optical signals are simultaneously received from two or more locations (collision of optical signals), if there is a level difference of more than a certain level between the optical signals, an error in identifying the digital signal will not occur.

これはテイジタル信号伝送の利点であるが、信号の衝突
の情報を得ることカニできず、パケット伝送手順の1つ
であるC8MA/CD方式〔文献R,M、M、etCa
lfe and 1)−R,BOggS+” Ethe
rnet : DiStributed Packet
 Switchingfor I、ocal Comp
uter Networks” 、Comrnunic
ationsof the ACM、 Vol、19 
、 no、7.July 1976:]を適用できない
欠点があった。つまり信号衝突力玉虫じた場合に、例え
ばそのすべての送信源からの光送信を停止し、異なる適
当な時間をおいて再送イgさせるが、1つの送信源の機
能が低下して送信出力が小さくなっていると、前述した
ように信号衝突が検出されず、そのレベル低下した送信
器よりの情報は受信装置に受信されない甘\になる。
Although this is an advantage of digital signal transmission, it is not possible to obtain information on signal collisions, and the C8MA/CD method, which is one of the packet transmission procedures [References R, M, M, etCa]
lfe and 1)-R, BOggS+” Ethe
rnet: Distributed Packet
Switchingfor I,ocal Comp
uter Networks”, Communic
ations of the ACM, Vol. 19
, no, 7. July 1976:] was not applicable. In other words, if the signal collision force becomes too strong, for example, the optical transmission from all the transmitting sources is stopped and the transmission is restarted after a different appropriate time, but the function of one transmitting source deteriorates and the transmitting output decreases. If the level is low, signal collision will not be detected as described above, and the information from the transmitter whose level has decreased will not be received by the receiving device.

〈発明の概要〉 この発明の第1の目的は交流増幅回路を用い、しかもバ
ースト信号受信における過渡応答時間を小さクシ、かつ
2値識別を可能としたバースト信号受信装置を提供する
ことにある。
<Summary of the Invention> A first object of the present invention is to provide a burst signal receiving device that uses an AC amplifier circuit, has a short transient response time in burst signal reception, and is capable of binary discrimination.

この発明の第2の目的は信号衝突を比較的簡単な構成で
・検出することができるバースト信号受信装置を提供す
ることにある。
A second object of the present invention is to provide a burst signal receiving device that can detect signal collisions with a relatively simple configuration.

この発明によればマンチェスタ符号、即ちダイパルス符
号とされた信号により強度変調したバースト信号を受信
する装置において、受信信号をパーシャルレスポンス変
換PR(1、−1) (バイポーラ変換)回路を通すこ
とにより、交流信月に変換し、この交流信号を2値識別
器で、2符号に変換されたマンチェスタ符号に対応する
後半の符号時刻に行い、その出力をバースト信号の受信
装;樅出力とする。
According to the present invention, in a device for receiving a burst signal intensity-modulated by a Manchester code, that is, a dipulse code signal, by passing the received signal through a partial response conversion PR (1, -1) (bipolar conversion) circuit, This AC signal is converted into an AC signal, and this AC signal is processed by a binary discriminator at the latter code time corresponding to the Manchester code converted into a binary code, and the output is used as a burst signal receiving device; a fir output.

更に前記2値識別器の識別レベルを零よシわずかずらし
たものを用い、かつ各入力符号時刻ごとに識別を行い、
その識別した符号列の遷移則違反を遷移則違反検出回路
で検出し、この検出出力をバースト信号の異常、例えば
信号衝突、同期異常として検出する。゛つまり2行号に
変換されたマンチェスタ符号に対応する前半の71号時
刻の1つおきにパーシャルレスポンス変換により3値の
アイパターンが生じ、小さいレベルの信号が大きいレベ
ルの信号に衝突すると、前記3[直アイノ々クーン部分
のレベルが相対的に大きく影響を受け、この部分の2値
識別が遷移則違反となり、1個の2値識別器で遷移則違
反の検出が可能となる。以上の説明より理解されるよう
にこの発明の受信装置の前提として送信側では送信デー
タをマンチェスタ符号に変換し、そのマンチェスタ符号
データで光や電波などの搬送波を強度変調して、/く−
スト信号として送信する。
Furthermore, the discrimination level of the binary discriminator is slightly shifted from zero, and discrimination is performed for each input code time,
A transition rule violation in the identified code string is detected by a transition rule violation detection circuit, and the detection output is detected as an abnormality in the burst signal, such as a signal collision or a synchronization abnormality. In other words, a ternary eye pattern is generated by the partial response conversion at every second No. 71 time in the first half corresponding to the Manchester code converted to a two-line code, and when a small level signal collides with a large level signal, the above-mentioned 3. The level of the direct Ainokuhn part is relatively greatly affected, and the binary identification of this part results in a transition rule violation, making it possible to detect the transition rule violation with one binary classifier. As can be understood from the above explanation, the premise of the receiving device of the present invention is that on the transmitting side, transmission data is converted into Manchester code, and the Manchester code data is used to intensity modulate a carrier wave such as light or radio wave.
Send as a strike signal.

〈第1実施例〉 第3図はこの発明を光通信方式に適用した例を示す。<First example> FIG. 3 shows an example in which the present invention is applied to an optical communication system.

光バースト信号送信器10の送信データ入力端子11に
入力された伝送信号A(例えば第4fdA)はマンチェ
スタ符号変換回路14に入力される。
The transmission signal A (for example, the fourth fdA) input to the transmission data input terminal 11 of the optical burst signal transmitter 10 is input to the Manchester code conversion circuit 14.

伝送信号Aと同期したクロック信号(fo)もクロソり
入力端子12からマンチェスタ符号変換回路14に入る
。このマンチェスタ符号変換則は第5図に示すようにパ
0″′入力に対し変換出力は”10”。
A clock signal (fo) synchronized with the transmission signal A also enters the Manchester code conversion circuit 14 from the cross input terminal 12. As shown in FIG. 5, this Manchester code conversion rule gives a conversion output of "10" for an input of 0"'.

”1″入力に対し変換出力はパ01″′である。送信可
入力端子13の人力Bが第4図Bに示すように時点t1
よシ立上ると、マンチェスタ符号変快回路14の出力C
(第4図C)はバースト状の信号になり電気・光変換回
路15で光強IW変調を受けて光信号6となり、光バー
スト信号送信器10から送り出される。
The conversion output for the input "1" is P01"'.The human power B of the transmittable input terminal 13 is at time t1 as shown in FIG. 4B.
When it rises up, the output C of the Manchester code conversion circuit 14
The signal (FIG. 4C) becomes a burst signal, undergoes optical intensity IW modulation in the electrical/optical conversion circuit 15, becomes an optical signal 6, and is sent out from the optical burst signal transmitter 10.

この光信号6はこの発明が適用された光バースト信号受
1言器20の光・電気変換回路2で電気に変換される。
This optical signal 6 is converted into electricity by the optical-to-electrical conversion circuit 2 of the optical burst signal receiver 20 to which the present invention is applied.

その電気信号出力はノ々−ンーヤルレスポンス符号変侯
回路21で第4図りに示すように直流成分が除かれた信
号りに変換される。この変換則は第5図に示すように”
 1 ”入力に対し1゜−1″、”0″入力に対し”o
 、 o ”の各2符号にわたる変換を行う。パーシャ
ルレスポンス符号変換回路21゛はアナログ回路で構成
され、入力を1ビット分遅延して極性反転したものと、
遅延しない入−力とを加算する機能をもち、直流成分を
除去する一種の一波特性を示す。このような構成である
から例えば”10″入力は”1.−1”と“00″とに
変換されるが、その後半の−1″と前半の“0″は重な
るため”1−10”に変換される。連続するテークの場
合はこの変換出力の第1時刻の”1″はその前の符号に
依存する値Xとなる。いまこの前の符号に依存する出力
をX、正の振幅出力を+、負の振幅出力を−とじて示す
と、第5図に示すように符号”1010 ′は“x−+
−”に変換される。これと対応する出力波形は第5図中
の識別器入カバターンの欄の対応するものとなる。
The electrical signal output is converted into a signal from which the direct current component has been removed, as shown in the fourth diagram, by a universal response sign conversion circuit 21. This conversion rule is shown in Figure 5.
1 “1゜-1” for “input”, “o” for “0” input
, o''.The partial response code conversion circuit 21' is composed of an analog circuit, which delays the input by one bit and inverts the polarity.
It has a function of adding inputs with no delay, and exhibits a type of single-wave characteristic that removes DC components. With such a configuration, for example, an input of "10" will be converted to "1.-1" and "00", but since the second half -1" and the first half "0" overlap, it will be converted to "1-10". In the case of continuous takes, "1" at the first time of this conversion output is a value X that depends on the previous sign.Now, the output that depends on the previous sign is X, and the positive amplitude is When the output is shown as + and the negative amplitude output is shown as -, the code "1010' becomes "x-+" as shown in FIG.
-". The output waveform corresponding to this is the one corresponding to the column of the cover pattern input to the discriminator in FIG.

このようにパーシャルレスポンス変換は一種のバイポー
ラ変換であって、パーシャルレスポンス変換を受けた信
号は交流増幅器31で増幅しても直流成分が無いことよ
り第2図Cに示しだような最適識別レベルの変動は生じ
ない。この交流増幅器3′の増幅出力信号りは識別器4
とタイミング抽出回路22とに入力される。タイミング
抽出回路22では非線形抽出(全波整流第4図E)を行
うことにより情報伝送りロック(fo)の2倍の周波数
2fOを有する信号F(第4図F)が得られ、これは1
/2分周回路23とキャリア検出回路24とに入力され
る。キャリア検出回路24は情報伝送りロックの2倍の
周波数2fO成分の有無によりキャリア(光バースト信
号受信器の入力)を検知する。
In this way, partial response conversion is a type of bipolar conversion, and since there is no DC component even if the signal subjected to partial response conversion is amplified by the AC amplifier 31, it is possible to achieve the optimal discrimination level as shown in Figure 2C. No fluctuations occur. The amplified output signal of this AC amplifier 3' is output to the discriminator 4.
and is input to the timing extraction circuit 22. The timing extraction circuit 22 performs nonlinear extraction (full-wave rectification (FIG. 4E)) to obtain a signal F (FIG. 4F) having a frequency 2fO, which is twice the information transmission lock (fo).
The signal is input to the /2 frequency divider circuit 23 and the carrier detection circuit 24. The carrier detection circuit 24 detects the carrier (input of the optical burst signal receiver) based on the presence or absence of a 2fO component with a frequency twice that of the information transmission lock.

この検知出力Gは第4図Gに示すように15j点t1よ
り、クロックFの半周>91分遅れて立上り、単安定マ
ルチバイブレーク25に入る。単安定マルチバイブレー
タ25の出力H(第4図H)は同期/%ターン検出回路
26に入力される。
As shown in FIG. 4G, this detection output G rises from point 15j at point t1 with a delay of >91 minutes by half a cycle of clock F, and enters the monostable multi-bi break 25. The output H (H in FIG. 4) of the monostable multivibrator 25 is input to the synchronization/% turn detection circuit 26.

一方、1/2分周回路23の出力■(第4図1)は情報
伝送りロック(fO)と同じ周波数となり、同準」パタ
ーン検出回路26、クロック出力端子27及び識別器4
へ出力する。識別器4では1/2分周回路23のクロツ
クエで交流増幅器3′の出力りを識別し、その第4図J
に示すN RZ符号の識別出力Jは受信信号出力端子5
と同期パターン検出回路26とに供給される。同期パタ
ーン検出回路26はキャリア検出から一定時間(単安定
マルチバイブレータ25の出力Hが高レベルの時間T1
)、同期検出動作を行う。つtbクロツクエの立上りで
識別出力Jをサンプリングして0をサンプリングするま
で1/2分周回路23をリセットする。この時間T1は
通常の伝送信号のプリアンプル時間以下に選ばれている
。この時間内に特定の同期ノくターンが識別器4の出力
J(第4図の例では1とOの交番パターンを示している
)に得られないと同期パターン検出回路26から出力K
(第4図K)が出て、1/2分周回路23の出力を反転
することによシ同期引込みをイ1う。時点t3にOを検
出して同期状態になる。
On the other hand, the output (1) of the 1/2 frequency divider circuit 23 (FIG. 4 1) has the same frequency as the information transmission lock (fO), and the same pattern detection circuit 26, clock output terminal 27 and discriminator 4
Output to. The discriminator 4 discriminates the output of the AC amplifier 3' by the clock of the 1/2 frequency divider circuit 23, and the
The identification output J of the N RZ code shown in is the received signal output terminal 5.
and the synchronization pattern detection circuit 26. The synchronization pattern detection circuit 26 detects a carrier for a certain period of time (time T1 when the output H of the monostable multivibrator 25 is at a high level).
), performs synchronization detection operation. At the rising edge of the tb clock query, the identification output J is sampled and the 1/2 frequency divider circuit 23 is reset until 0 is sampled. This time T1 is selected to be less than or equal to the preamble time of the normal transmission signal. If a specific synchronization turn is not obtained at the output J of the discriminator 4 (the example in FIG. 4 shows an alternating pattern of 1 and O) within this time, the synchronization pattern detection circuit 26 outputs K.
(K in FIG. 4) is output, and by inverting the output of the 1/2 frequency divider circuit 23, the synchronization pull-in is performed. O is detected at time t3 and a synchronized state is achieved.

この同期引込み後のアイ:/々ターン(72MHzの低
域p波器を通した例)は第6図に示すように前半が3値
で後半が2値のウインクパターンとなり、後半で識別す
ると2値識別となシ識別劣化を少なくすることができ、
かつ識別器4は簡単な2値識別回路でよいことになる。
After this synchronized pull-in, the eye: / / turn (example passed through a 72 MHz low-frequency p-wave generator) has a wink pattern in which the first half is 3 values and the second half is binary, and when identified in the second half, it becomes a 2-value wink pattern. Deterioration in value identification and identification can be reduced,
In addition, the discriminator 4 can be a simple binary discriminator circuit.

く第2実施例〉 第7図は第3図に示した実施例において交流増幅器3”
以後を変更して光バースト信号受信装置に光バースト信
号衝突検出機能を付加した実施例であり、第3図と対応
する部分には同一符号を付けである。また第7図中の各
部の動作波形例を第8図に示し、第4図と対応する部分
には同一符号を付けである。
Second Embodiment> FIG. 7 shows the AC amplifier 3'' in the embodiment shown in FIG.
This is an embodiment in which an optical burst signal collision detection function is added to the optical burst signal receiving apparatus by changing the following, and parts corresponding to those in FIG. 3 are given the same reference numerals. Further, FIG. 8 shows an example of the operation waveforms of each part in FIG. 7, and parts corresponding to those in FIG. 4 are given the same reference numerals.

第3図中の交流増幅器31より出力が得られるまでは同
じ動作をするだめそれまでについて(d、省略する。光
バースト信号が2ケ所から時間的に少しずれて光バース
ト信号受信装置20に致着した場合(光信号衝突)の交
流増幅器3′の出力をそれぞれ第8図D1及びD2とす
ると、第7図中の入力端子30の入力はD1+D2とな
る。この入力信号は識別器4とタイミング抽出回路22
に入力される。
The operation is the same until an output is obtained from the AC amplifier 31 in FIG. If the outputs of the AC amplifier 3' are D1 and D2 in FIG. 8, respectively, when the signal arrives (optical signal collision), the input to the input terminal 30 in FIG. Extraction circuit 22
is input.

タイミング抽出回路22は前述と同様にして情報伝送り
ロックの2倍の周波数(2fo)を有する信号Fを出力
する。この信号FはOR回路36を通じ7分周回路23
へ供給されて周波数fOの情報伝送りロック■となる。
The timing extraction circuit 22 outputs a signal F having twice the frequency (2fo) of the information transmission lock in the same manner as described above. This signal F is passed through the OR circuit 36 to the divide-by-7 circuit 23.
It becomes an information transmission lock (■) at the frequency fO.

信号Fで入力信号D1+D2を識別器4で識別し、その
識別出力りをシフトレジスタ31に入力する。シフトレ
ジスタ31は2fO周期で識別した信号りを信号Fで抗
込み3符号分記憶する。シフトレジスタ31の最初の段
の出力ば1/2分周回路23の出力情報伝送りロツクエ
とAND回路33でANDをと、9R’Z符号として再
生データJが受信信号出力端子5に出力される。
The input signal D1+D2 is discriminated by the discriminator 4 using the signal F, and the discrimination output is inputted to the shift register 31. The shift register 31 stores three codes of signals identified at 2fO cycles as a signal F. When the output of the first stage of the shift register 31 is ANDed with the output information transmission lock query of the 1/2 frequency divider circuit 23 and the AND circuit 33, reproduced data J is output as a 9R'Z code to the received signal output terminal 5. .

この3段のシフトレジスタ31の各段に得られる3つの
識別符号の組合せは第5図中の識別出力の欄に示すもの
となる。識別器4のしきい値レベルが第6図に示すよう
にOに対し+△もしくは−△にずれている2種類につい
て第5図に示している。
The combinations of three identification codes obtained at each stage of the three-stage shift register 31 are shown in the identification output column in FIG. FIG. 5 shows two types in which the threshold level of the discriminator 4 deviates from O by +Δ or -Δ as shown in FIG.

第5図に遷移則違反の欄に、対応する識別出力符号に対
する遷移則違反を示す。即ち例えば正しい識別符号”0
10”がuooo”となるような符号の移シ変りはなく
、この3ビツト中の第2ビツト目がOとなるパターンは
あシ得ないものである。同様に第5図中の3ビツトの識
別出力中の第2ビツト目の符号が変化したものはすべて
遷移則に違反したものである。この遷移則違反を用いて
情報伝送りロック(fo)の同期誤シや受は信号衝突検
出ができる。
In FIG. 5, the transition rule violation column shows transition rule violations for the corresponding identification output code. That is, for example, the correct identification code "0"
There is no sign change such that 10'' becomes uooo'', and a pattern in which the second bit of these three bits becomes O is inevitable. Similarly, any change in the sign of the second bit in the 3-bit identification output shown in FIG. 5 violates the transition rule. Using this transition rule violation, signal collision can be detected in case of synchronization error or reception of the information transmission lock (FO).

第7図及び第8図の例は識別出力Lは識別器4のしきい
値が一△の場合を示し、遷移則違反検出回路32はシフ
トレジスタ31がらの3ビツト入力が6000″、”0
01″、′1oo″u111″の谷場合を検出して出力
するように論理回路で構成される。第8図の時点t4に
遷移則違反検出回路32の3ビツトの入カパタiンLが
“111 ”となシ、第5図の遷移則違反のパターンと
一致することにより、遷移則違反検出回路32は出力を
出し、その出力とfoの情報伝送りロック■とANDが
AND回路34でとられて衝突(遷移則違反)検出用カ
苅11子37に出力Mを出す。
The examples in FIGS. 7 and 8 show a case where the discrimination output L is the threshold value of the discriminator 4, and the transition rule violation detection circuit 32 detects that the 3-bit input from the shift register 31 is 6000", "0".
01", '1oo"u111", and outputs it. At time t4 in FIG. 8, the 3-bit input pattern iL of the transition rule violation detection circuit 32 becomes " 111, the transition rule violation detection circuit 32 outputs an output by matching the transition rule violation pattern shown in FIG. An output M is output to the controller 11 for detecting a collision (transition rule violation).

一方、キャリア検出回路24と単安定マルチバイブレー
タ25の動作は第3図の説明と同様に、キャリア検出か
ら一定時間、同期引込み動作を行うゲート情号Hを発生
する。この信号Hと衝突(遷移則違反)検出出力Mとを
AND回路35に入力し、その出力はOR回路36を通
して1/2分周回路23に入力され、2fOのクロック
パルスFが1個減少されて同期引込みが行なわれる。す
なわち、2個のパルスの間に1個のパルスを挿入して幅
の長い1個のパルスに変換することで1パルス減じる。
On the other hand, the carrier detection circuit 24 and monostable multivibrator 25 operate in the same manner as explained in FIG. 3, and generate gate information H for performing a synchronous pull-in operation for a certain period of time after carrier detection. This signal H and the collision (transition rule violation) detection output M are input to the AND circuit 35, and the output thereof is input to the 1/2 frequency divider circuit 23 through the OR circuit 36, and the 2fO clock pulse F is decreased by one. A synchronous pull-in is performed. That is, one pulse is subtracted by inserting one pulse between two pulses and converting them into one pulse with a longer width.

まだ第8図中の例えば時点t5t6t7・・・のように
同期引込み後にも遷移則違反が生じて出力Mが現われる
場合は、光入力信号が2以上あるために生じているとし
て良いのでこの出力Mは衝突検出信号として使用できる
。この場合にも第3図の説明で示したように受信信号出
力Jには誤りが生じにくい。更に第5図、第6図に示し
たように遷移則違反はウインクパターンの前半(3値ア
イパターン)で発生しやすい。よってしきい値△を小さ
くすることで干渉波(係号衝突)妨害を受けやすくでき
、レベルの小さい干渉波(衝突)検出が可能となる。′
:1:た、受信信号はウインクパターンの後半(2値ア
イパターン)で行うので干渉波の影響を受けにくい。し
きい値へか小さいのでウインクパターレの前半と後半に
用いる馬別柑、4は共用できる。
If a violation of the transition rule occurs even after synchronization pull-in, as at time t5t6t7... in FIG. can be used as a collision detection signal. In this case as well, as shown in the explanation of FIG. 3, errors are unlikely to occur in the received signal output J. Furthermore, as shown in FIGS. 5 and 6, violations of the transition rule tend to occur in the first half of the wink pattern (ternary eye pattern). Therefore, by reducing the threshold value Δ, it becomes easier to receive interference waves (coding collisions), and it becomes possible to detect interference waves (collisions) with a small level. ′
:1: Since the received signal is generated in the latter half of the wink pattern (binary eye pattern), it is less susceptible to interference waves. Since the threshold value is small, Umabetsukan, 4, used in the first half and second half of Wink Patare can be used in common.

く効 果〉 以上説明したようにこの発明によればバースト受信装置
に交流増幅器が使用できること、更にバースト信号に対
する過渡応答時間が短いこと、低いレベルの1M号衝突
検出ができること、受信信号の識別劣化が少いこと、遷
移則Jfj;反より情報伝送りロック誤同期信号が得ら
れることなどの利点がある。更にこの発明の装置は従来
の回路(で付加するものも少なくて良い。このような特
徴があることより高速パケット伝送の受信装置や、C8
MA/CD方式の受信装置にも適用できる。光バースト
信号受信器について示し)ζが、同軸ケーブルやペア線
を用いた伝送路用のバースト信号受信器にも適用できる
ことは明らかである。しかし特に光の強度変調による伝
送においては伝送路での電気信号の]、 Od B損失
は光パワで20dBの損失となるため、レベル差の大き
い光バースト間の衝突が生じ易いから、この発明は特に
光ノ3−ストの衝突検出に適する。
Effects> As explained above, according to the present invention, an AC amplifier can be used in the burst receiving device, the transient response time to the burst signal is short, low level 1M collision detection is possible, and identification deterioration of the received signal is prevented. There are advantages such as the fact that the transition law Jfj is small, and the information transmission lock erroneous synchronization signal can be obtained from the transition law Jfj; Furthermore, the device of the present invention requires fewer additional circuits than conventional circuits.These features make it suitable for high-speed packet transmission receiving devices, C8
It can also be applied to an MA/CD type receiving device. It is clear that ζ shown for an optical burst signal receiver can also be applied to a burst signal receiver for a transmission line using a coaxial cable or a pair of wires. However, especially in transmission using optical intensity modulation, the OdB loss of electrical signals on the transmission line is a loss of 20 dB in optical power, so collisions between optical bursts with large level differences are likely to occur. It is particularly suitable for detecting collisions of optical nostrils.

信頼性の高い衝突検出を行う方法として、伝送情報パタ
ーンとして0,1を用いる。この時しきい個人カバター
ン゛は第5図より不定、−〇+となり、この場合の零は
+、−が打消し合って苓となる(伝送情報パターン1,
0に相当する)場合と異なり、受信信号が無い場合に相
当する。よってこの受信信号が無い場合を含む遷移則違
反から衝突を検出する場合は、パーシャルレスポンス変
換の不完全性やキャンセルにより零レベルとなった信号
の雑音による影響を受けないので、この零の時に他のバ
ーストの小さいレベルのものが入力されてもとの衝突を
検出でき、高信頼な情報が得られる。
As a method for highly reliable collision detection, 0, 1 is used as the transmission information pattern. At this time, the threshold individual cover turn becomes indeterminate and −〇+ from FIG.
This corresponds to the case where there is no received signal, which corresponds to the case where there is no received signal. Therefore, when detecting a collision based on a violation of the transition law, including when there is no received signal, it is not affected by the noise of the signal that has become zero level due to incompleteness of partial response conversion or cancellation, so when the received signal is zero, other When a small level burst is input, the original collision can be detected and highly reliable information can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光バースト受信装置を示すブロック図、
第2図は第1図に示した光バースト受信装置の各部の波
形図、第3図はこの発明の実施例を示すブロック図、第
4図は第3図の各部の波形例を示す図、第5図はこの発
明に用いた符号変換の各種組合せを示す図、第6図は識
別器入力のアイパターン(ウインクパターン)を示す図
、第7図1″(この発明の他実施例を示すブロック図、
築8図は第7図の各部の波形例を示す図で−ある。 1:受信光、2:光電気変換回路、3:増幅回路、4:
識別器、5:受信信号出力端子、10:光バースト受信
器、11:送信データ入力端子、12:クロック入力端
子、13:送信可入力端子、14:マンチェスタ符号変
換回路、15:電気・光変換回路、20:光バースト信
号受信器、21:パーシャルレスポンス変換回路、22
:タイミング抽出回路、23 : 1/2分周回路、2
4:キャリア検出回路、25:単安定マルチバイブレー
タ、26二同期パターン検出回路、27:クロック出力
端子、3o:入力端子、31:3段シフトレジスタ、3
2:遷移則違反検出回路、37:衝突(遷移則違反)検
出出力端子。。 特許出、顆入  日本亀イ瓢電話公社 代 理  人   草  野    卓30
FIG. 1 is a block diagram showing a conventional optical burst receiver,
2 is a waveform diagram of each part of the optical burst receiver shown in FIG. 1, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG. 4 is a diagram showing an example of waveforms of each part of FIG. 3. FIG. 5 is a diagram showing various combinations of code conversion used in this invention, FIG. 6 is a diagram showing an eye pattern (wink pattern) of input to a discriminator, and FIG. Block Diagram,
Figure 8 is a diagram showing an example of waveforms at each part of Figure 7. 1: Received light, 2: Photoelectric conversion circuit, 3: Amplification circuit, 4:
Discriminator, 5: Received signal output terminal, 10: Optical burst receiver, 11: Transmission data input terminal, 12: Clock input terminal, 13: Transmission enable input terminal, 14: Manchester code conversion circuit, 15: Electrical/optical conversion Circuit, 20: Optical burst signal receiver, 21: Partial response conversion circuit, 22
: Timing extraction circuit, 23 : 1/2 frequency divider circuit, 2
4: carrier detection circuit, 25: monostable multivibrator, 26 two-synchronization pattern detection circuit, 27: clock output terminal, 3o: input terminal, 31: three-stage shift register, 3
2: Transition law violation detection circuit, 37: Collision (transition rule violation) detection output terminal. . Patent issued and approved by Takashi Kusano, representative of Nippon Kamei Hyōden Telephone Corporation, 30

Claims (1)

【特許請求の範囲】[Claims] (1)  マンチェスタ符号変換後に強度変調を受けだ
バースト信号の受信装置において、受信信号をパーシャ
ルレスポンス変換により交流に変換するパーシャルレス
ポンス変換回路と、そのパーシャルレスポンス変換回路
の変換出力が供給され、これを2符号に変換されたマン
チェスタ符号に対応する後半の符号時刻に信号識別する
2値識別器とを備えたことを特徴とするバースト信号受
信装置、2゜(2)  マンチェスタ符号変換後に強度
変調を受けたバース)・信号の受信装置において、受信
信号をパーシャルレスポンス変換により交流に変換する
パーシャルレスポンス変換回路ト、そのパーシャルレス
ポンス変換回路の変換出力が供給され、これを2符号に
変換されたマンチェスタ符号に対応する各符号時刻ごと
に、零よりわずかずれた識別レベルで信号識別する2値
識別器と、その識別した符号列の遷移則違“反を受信バ
ースト係号異常出力とする遷移則違反検出回路とを具備
することを特徴とす力先バースト信号受信装置。
(1) In a receiving device for a burst signal that has undergone intensity modulation after Manchester code conversion, a partial response conversion circuit that converts the received signal into alternating current by partial response conversion, and the conversion output of the partial response conversion circuit are supplied. A burst signal receiving device, characterized in that it is equipped with a binary discriminator that identifies a signal at a later code time corresponding to a Manchester code converted into a Manchester code, In the signal receiving device, a partial response conversion circuit converts the received signal into alternating current by partial response conversion, the conversion output of the partial response conversion circuit is supplied, and this is converted into Manchester code converted into 2 codes. A binary discriminator that identifies signals at a discrimination level slightly different from zero for each corresponding code time, and a transition rule violation detection circuit that outputs a transition rule violation of the identified code string as a received burst code abnormal output. What is claimed is: 1. A power tip burst signal receiving device comprising:
JP6803583A 1983-04-18 1983-04-18 Burst signal receiver Granted JPS59193656A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6803583A JPS59193656A (en) 1983-04-18 1983-04-18 Burst signal receiver
US06/597,867 US4562582A (en) 1983-04-18 1984-04-09 Burst signal receiving apparatus
CA000451667A CA1209211A (en) 1983-04-18 1984-04-10 Burst signal receiving apparatus
GB08409887A GB2139051B (en) 1983-04-18 1984-04-17 Burst signal receiving apparatus
DE19843414768 DE3414768A1 (en) 1983-04-18 1984-04-18 BURST SIGNAL RECEIVER
FR8406122A FR2544570B1 (en) 1983-04-18 1984-04-18 BURST SIGNAL RECEIVING APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6803583A JPS59193656A (en) 1983-04-18 1983-04-18 Burst signal receiver

Publications (2)

Publication Number Publication Date
JPS59193656A true JPS59193656A (en) 1984-11-02
JPH0376622B2 JPH0376622B2 (en) 1991-12-06

Family

ID=13362135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6803583A Granted JPS59193656A (en) 1983-04-18 1983-04-18 Burst signal receiver

Country Status (1)

Country Link
JP (1) JPS59193656A (en)

Also Published As

Publication number Publication date
JPH0376622B2 (en) 1991-12-06

Similar Documents

Publication Publication Date Title
US4562582A (en) Burst signal receiving apparatus
US4249266A (en) Fiber optics communication system
US5706118A (en) Optical transmission method and optical transmission apparatus
JP3569022B2 (en) Automatic identification threshold control device
EP0111968B1 (en) Transmission system for the transmission of binary data symbols
JPS59193656A (en) Burst signal receiver
US5490175A (en) Method and apparatus for detecting binary encoded data
JPH0431215B2 (en)
US6271698B1 (en) Method and apparatus for correcting imperfectly equalized bipolar signals
JPS6324580B2 (en)
JP2562093B2 (en) Ternary signal transmission method using optical transmission pulse
JPS62107544A (en) Optical communication system
JPH11331096A (en) Optical signal receiver and optical signal receiving method
JPS59107673A (en) Pulse transmission system
JP2000013451A (en) Reception equipment for optical data
JP2733320B2 (en) Burst transmission method
JP2570150B2 (en) Optical receiving method, optical receiving circuit, and optical repeater
JPH08191269A (en) Optical communication system
JPS5829028B2 (en) Optical signal transmission method
JPS63175556A (en) Optical reception circuit
JPS6362429A (en) Transmitter-receiver
KR200269379Y1 (en) A detection device of trouble signal from optical signal receive system
JPS6310626B2 (en)
JPH02288444A (en) Optical submarine repeater
JPS6180933A (en) Demodulating circuit