JPS59193595A - Formation of magnetic bubble transfer line - Google Patents

Formation of magnetic bubble transfer line

Info

Publication number
JPS59193595A
JPS59193595A JP58068232A JP6823283A JPS59193595A JP S59193595 A JPS59193595 A JP S59193595A JP 58068232 A JP58068232 A JP 58068232A JP 6823283 A JP6823283 A JP 6823283A JP S59193595 A JPS59193595 A JP S59193595A
Authority
JP
Japan
Prior art keywords
pattern
area
magnetic
ion
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58068232A
Other languages
Japanese (ja)
Inventor
Hisao Matsudera
後閑博史
Hiroshi Gokan
松寺久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Computer Basic Technology Research Association Corp
Original Assignee
Computer Basic Technology Research Association Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computer Basic Technology Research Association Corp filed Critical Computer Basic Technology Research Association Corp
Priority to JP58068232A priority Critical patent/JPS59193595A/en
Publication of JPS59193595A publication Critical patent/JPS59193595A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain a bubble transfer line for a magnetic bubble element which has a large area for a bubble drive enable magnetic field by forming a metallic pattern with a inclined side face and implanting an ion to a thin film with the pattern to be used as a mask. CONSTITUTION:An ion is implanted to a magnetic garnet single crystal thin film 2 using the mask pattern 1 having the inclined side face. As a result, the ion implanted area also includes the area near the outer circumference of the area masked by the mask pattern. Thus it is possible to obtain a bead-shaped transfer line having the effective construction width of about 0.8mum. The ion irradiated to the sloping part of the pattern 1 pierces partially through the pattern 1 and is implanted mainly to the area near the surface of the area of a garnet layer 2 which is masked with the mask pattern. The boundary line 3 of an ion implanted area 4 in the film thickness direction is approximate to a straight line vertical to the surface of the film 2. Under such conditions, the stability can be improved for a magnetized wall which is generated at the area near the boundary of the ion implanted area.

Description

【発明の詳細な説明】 本発明は磁性ガーネット単結晶薄膜にイオン注入するこ
とにより磁気バブルドメイン(以下ではパズルと称す)
の転送路を形成せしめた構造を持つ磁気バブル素子に関
する。
[Detailed Description of the Invention] The present invention creates magnetic bubble domains (hereinafter referred to as puzzles) by implanting ions into a magnetic garnet single crystal thin film.
The present invention relates to a magnetic bubble element having a structure in which a transfer path is formed.

対象とする磁気バブル素子は、負の磁歪定数を持ち膜面
に垂直な一軸磁気異方性を有する磁性ガーネット単結晶
薄膜表面上に金あるいは、モリブデン等の金属あるいは
レジスト材料でマスクパターンを形成したあと、イオン
注入することにより、パターンマスクにより遮蔽された
非注入領域の外縁部に生じる帯磁磁壁により、バブルを
駆動するものである。
The target magnetic bubble element has a mask pattern formed using a metal such as gold or molybdenum or a resist material on the surface of a magnetic garnet single crystal thin film that has a negative magnetostriction constant and uniaxial magnetic anisotropy perpendicular to the film surface. Furthermore, by implanting ions, a bubble is driven by a magnetized domain wall generated at the outer edge of a non-implanted region shielded by a pattern mask.

従来、金等で形成されるマスクパターンの形状は、その
側面が磁性ガーネット膜表面に対して傾斜しない形状を
有するように形成されている。
Conventionally, the shape of a mask pattern formed of gold or the like has been formed so that its side surfaces are not inclined with respect to the surface of the magnetic garnet film.

しかしながら、このようなマスクパターンの形成後、イ
オン注入して形成したバブル転送路においては、バブル
転送可能バイアス磁界領域の下限が、隣接バブル転送路
への飛び移りによる誤動作のために上昇するという欠点
を有している。
However, in a bubble transfer path formed by ion implantation after forming such a mask pattern, the lower limit of the bias magnetic field region that allows bubble transfer increases due to malfunction due to jump to an adjacent bubble transfer path. have.

この隣接バブル転送路への飛び移り誤動作は、例えば、
株数玉状転送路のくびれ部の幅を細くすることによシ改
善されることが知られている(第6図日本応用磁気学会
学術講演概要集(1982年11月)第78頁、15 
P D −1、K、Mizun。
This malfunction of jumping to the adjacent bubble transfer path is caused by, for example,
It is known that this can be improved by narrowing the width of the constriction of the beaded transfer path (see Figure 6, Japanese Society of Applied Magnetics, Abstracts of Academic Lectures (November 1982), p. 78, 15).
P D -1, K, Mizun.

and H,Urai参照)。該概俊集には、直径1μ
m(ミクロン)のバブルにおける株数玉状転送路のくび
れの幅を0.8μmにした場合に最も良好な転送可能バ
イアス磁界領域を持つことが記載されている。直径1μ
mのバブルを用いた4 M bit/chip(メガビ
ット/チップ)の磁気バブル素子では、チップサイズは
1crrL×1crn程度となり、このように大きな領
域内の全てのバブル転送路のくひれ幅を形成するだめの
イオン注入用マスクパターンを再現性よく製造するため
の限界は、通常の光学露光方式では〜1μm1μm程り
、0.8μmのくびれ幅をもつ転送路を形成することは
相当に困難であるという欠点がある。
and H, Urai). In the summary, the diameter is 1μ.
It is described that the best transferable bias magnetic field region is obtained when the constriction width of the bead-shaped transfer path in a micron (m) bubble is set to 0.8 μm. Diameter 1μ
In a 4 Mbit/chip (megabit/chip) magnetic bubble element using m bubbles, the chip size is approximately 1 crrL x 1 crn, and the narrow width of all bubble transfer paths in such a large area is formed. The limit for producing a mask pattern for ion implantation with good reproducibility is approximately 1 μm using normal optical exposure methods, and it is said that it is extremely difficult to form a transfer path with a constriction width of 0.8 μm. There are drawbacks.

本発明の目的は上述の欠点を除去した磁気バブル転送路
形成法を提供することにある。
An object of the present invention is to provide a method for forming magnetic bubble transfer paths that eliminates the above-mentioned drawbacks.

本発明の形成法は、非磁性ガーネット単結晶基板上に磁
性ガーネット単結晶薄膜をエピタキシャル成長させたあ
と該薄膜上に金属バター/を形成し該パターンをマスク
として前記薄膜にイオン注入して得られる非イオン注入
領域の外周辺を磁気バブルが転送される磁気バブル素子
の磁気バブル転送路形成法において、前記金属パターン
の側面を傾斜させて形成し該パターンをマスクとして前
記薄膜にイオン注入する。
The formation method of the present invention involves epitaxially growing a magnetic garnet single crystal thin film on a non-magnetic garnet single crystal substrate, forming a metal butter on the thin film, and implanting ions into the thin film using the pattern as a mask. In a method for forming a magnetic bubble transfer path for a magnetic bubble element in which magnetic bubbles are transferred around the outer periphery of an ion-implanted region, the side surfaces of the metal pattern are formed at an angle, and ions are implanted into the thin film using the pattern as a mask.

次に本発明について図面を参照して詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

本発明においては、磁性ガーネット単結晶薄膜へのイオ
ン注入に、側面が傾斜したマスクパターンを使用する。
In the present invention, a mask pattern with inclined sides is used for ion implantation into a magnetic garnet single crystal thin film.

すなわち、マスクパターンの最小幅は1μm程度である
が、該パターンの側面が傾斜を持つようにすることによ
り、イオン注入領域はマスクパターンに遮蔽された領域
の外周近くの領域をも含むようになり、実効的に、0.
8μm程度のくびれ幅を有する株数玉状転送路を形成す
ることができる。
That is, although the minimum width of the mask pattern is about 1 μm, by making the side surfaces of the pattern slope, the ion implantation region includes the region near the outer periphery of the region shielded by the mask pattern. , effectively, 0.
A bead-shaped transfer path having a constriction width of about 8 μm can be formed.

しかも、第1図に示すような従来の側面が傾斜していな
いマスクパターン1の場合、磁性ガーネット2の表面付
近ではイオン注入領域4の境界3がマスクパターンの境
界と一致しているのに対し。
Moreover, in the case of the conventional mask pattern 1 whose side surfaces are not inclined as shown in FIG. .

磁性ガーネットのイオン注入層の深奥部での境界はマス
クパターンに遮蔽された領域まで進出し、膜厚方向の注
入狽域の境界線は曲線状となる。
The deep boundary of the magnetic garnet ion-implanted layer extends to the region shielded by the mask pattern, and the boundary line of the implanted region in the film thickness direction becomes curved.

一方、本発明の場合には、第2図に示すように、マスク
パターン1の傾斜部に照射されたイオンは一部マスクパ
ターンを貫通しガーネット層2のマスクパターンに遮蔽
された領域の主に表面近くに注入され、膜厚方向の注入
領域4の境界線3は磁性ガーネット膜面に対し垂直な直
称に近くなることが、注入イオンの散乱過程の解析より
示される。
On the other hand, in the case of the present invention, as shown in FIG. Analysis of the scattering process of the implanted ions shows that the implanted ions are implanted near the surface, and the boundary line 3 of the implanted region 4 in the film thickness direction is close to a direct line perpendicular to the surface of the magnetic garnet film.

イオン注入領域4の境界が、磁性ガーネット膜面に対し
垂直な直線に近いと、イオン注入領域の境界付近に生じ
る帯磁磁壁の安定性を良くすることができる。
When the boundary of the ion implantation region 4 is close to a straight line perpendicular to the surface of the magnetic garnet film, the stability of the magnetized domain wall generated near the boundary of the ion implantation region can be improved.

次に本発明の実施例について史に詳細に説明する。Next, embodiments of the present invention will be described in detail.

ガドリニウム・ガリウム・ガーネット上に膜厚1.28
μm、飽和磁束密度667ガウス、%性長10.119
μmの(Y8mLnBiCa )3 (1”eGe )
Bonの磁性ガーネット膜を液相エピタキシャル成長さ
せ、この膜上に厚さ100A15000Aのクロム/全
二層膜を蒸着し、その上に、厚さ5500大のAZ13
50J(商標;米国シブレー社)レジストパターンを形
成する。次に全面に、加速エネルギー500 eVのア
ルゴンイオンを照射することにより、クロム/全二層膜
をイオンミリングする。レジストパターンを剥離して、
側面の傾斜角度が60°であるマスクパターンを形成し
たのち、ヘリウムイオンを100kV、4.25X10
”個/ adおよび40kV、2.OXl、0  個/
 crAの条件注入してバブル転送路を形成する。第3
図の黒丸印はこのようにして形成したバブル転送路のバ
ブル駆動可能磁界領域を示す。
Film thickness 1.28 on gadolinium gallium garnet
μm, saturation magnetic flux density 667 Gauss, % magnetic length 10.119
μm(Y8mLnBiCa)3(1”eGe)
A magnetic garnet film of Bon is grown by liquid phase epitaxial growth, and a chromium/full double layer film with a thickness of 100A and 15000A is deposited on this film, and an AZ13 film with a thickness of 5500A is deposited on top of this film.
50J (trademark; Sibley, USA) resist pattern is formed. Next, the chromium/full bilayer film is ion-milled by irradiating the entire surface with argon ions with an acceleration energy of 500 eV. Peel off the resist pattern,
After forming a mask pattern with a side surface inclination angle of 60°, helium ions were applied at 100 kV, 4.25×10
” pcs/ad and 40kV, 2.OXl, 0 pcs/
A bubble transfer path is formed by conditionally injecting crA. Third
The black circles in the figure indicate the magnetic field region in which bubbles can be driven in the bubble transfer path formed in this manner.

磁性ガーネット膜上に膜厚1.23μm、飽和磁束密度
674ガウス、特性長10.119μmの(Yf9mL
uBica)3(FeGe)6012の磁性ガーネット
膜を形成し、この膜上に厚さ100OOAのレジストパ
ターンを用いて厚さ5000Aのクロム/金パターンを
イオンミリングして側面が傾斜していないマスクパター
ンを形成したあと、ヘリウムイオンを実施例と同一注入
条件で注入する。このようにして形成したバブル転送路
のバブル駆動可能磁界領域を第3図の白丸印で示す。
On the magnetic garnet film, a film (Yf9mL
A magnetic garnet film of uBica) 3 (FeGe) 6012 is formed, and a chromium/gold pattern with a thickness of 5000A is ion-milled using a resist pattern with a thickness of 100OOA on this film to create a mask pattern with no sloped sides. After the formation, helium ions are implanted under the same implantation conditions as in the example. The bubble driveable magnetic field region of the bubble transfer path formed in this manner is indicated by a white circle in FIG.

第3図から明らかなように、本発明には、従来よりバブ
ル駆動可能磁界領域の大きなバブル転送路を得ることが
できるという効果がある。
As is clear from FIG. 3, the present invention has the advantage that it is possible to obtain a bubble transfer path with a larger bubble driveable magnetic field area than the conventional one.

また、マスクパターン側面の傾剥の角度は本実施例の6
0°に限定される訳ではなく、傾斜部へ照射されたイオ
ンの一部がマスクパターンを貫通し、マスクパターンに
よって遮蔽された磁性ガーネットの表面近くに注入され
、マスクパターンのない領域に注入されたイオンが散乱
により、マスクパターンに遮蔽された領域に注入される
効果と合わせて、イオン注入領域がイオン注入層の表面
から深奥部まで全体に、マスクパターンに遮蔽された領
域の外周部の一部まで拡がるような角度で十分である。
In addition, the angle of inclination of the side surface of the mask pattern is 6 in this example.
It is not limited to 0°, and some of the ions irradiated to the inclined part penetrate the mask pattern, are implanted near the surface of the magnetic garnet that is shielded by the mask pattern, and are implanted into areas where there is no mask pattern. In addition to the effect that ions are implanted into the region shielded by the mask pattern due to scattering, the ion implantation region covers the entire ion implantation layer from the surface to the deep part, and a part of the outer periphery of the region shielded by the mask pattern. An angle that extends to the middle is sufficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のマスクパターンを示す断面図、第2図は
本発明に使用するマスクパターンを示す断面図および第
3図は本発明によるバブル転送路のバブル駆動可能磁界
領域と従来の形成法によるバブル転送路のバブル駆動可
能磁界領域との比較を示す図である。 図において、1・・・・・・マスクパター7.2・・・
・・・磁性ガーネット膜、3・・・・・・イオン注入領
域境界線、4・・・・・・イオン注入領域、5・・・・
・・非イオン注入領域。 ! 第 / 図 、ゴ 府 ? 図
FIG. 1 is a sectional view showing a conventional mask pattern, FIG. 2 is a sectional view showing a mask pattern used in the present invention, and FIG. 3 is a bubble driveable magnetic field region of a bubble transfer path according to the present invention and a conventional forming method. FIG. 4 is a diagram illustrating a comparison between the bubble transfer path and the bubble driveable magnetic field region according to the present invention. In the figure, 1...Mask pattern 7.2...
... Magnetic garnet film, 3 ... Ion implantation region boundary line, 4 ... Ion implantation region, 5 ...
...Non-ion implanted region. ! Figure / Gofu? figure

Claims (1)

【特許請求の範囲】[Claims] 非磁性ガーネット単結晶基板上に磁性ガーネット単結晶
薄膜をエピタキシャル成長させたあと該薄膜上に金属パ
ターンを形成し、該パターンを7スフとして前記薄膜に
イオン注入して得lれる非イオン注入領域の外周辺を磁
気バブルが転送される磁気バブル素子の磁気バブル転送
路形成法において、前記金属パターンの側面を傾斜させ
て形成し該パターンをマスクとして前記薄膜にイオン注
入することを特徴とする磁気バブル転送路形成法。
After epitaxially growing a magnetic garnet single-crystal thin film on a non-magnetic garnet single-crystal substrate, a metal pattern is formed on the thin film, and the pattern is used as a 7-layer film to implant ions into the thin film. A method for forming a magnetic bubble transfer path for a magnetic bubble element in which magnetic bubbles are transferred around the periphery of the magnetic bubble transfer, characterized in that the side surfaces of the metal pattern are formed at an angle, and ions are implanted into the thin film using the pattern as a mask. Tract formation method.
JP58068232A 1983-04-18 1983-04-18 Formation of magnetic bubble transfer line Pending JPS59193595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068232A JPS59193595A (en) 1983-04-18 1983-04-18 Formation of magnetic bubble transfer line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068232A JPS59193595A (en) 1983-04-18 1983-04-18 Formation of magnetic bubble transfer line

Publications (1)

Publication Number Publication Date
JPS59193595A true JPS59193595A (en) 1984-11-02

Family

ID=13367834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068232A Pending JPS59193595A (en) 1983-04-18 1983-04-18 Formation of magnetic bubble transfer line

Country Status (1)

Country Link
JP (1) JPS59193595A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996594A (en) * 1982-11-25 1984-06-04 Nippon Telegr & Teleph Corp <Ntt> Manufacture of ion implantation type magnetic bubble device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996594A (en) * 1982-11-25 1984-06-04 Nippon Telegr & Teleph Corp <Ntt> Manufacture of ion implantation type magnetic bubble device

Similar Documents

Publication Publication Date Title
US4404233A (en) Ion implanting method
CA1141464A (en) Megneto optic memory layer
EP0584768A1 (en) Method for making soft magnetic film
Wolfe et al. Planar domains in ion‐implanted magnetic bubble garnets revealed by Ferrofluid
US4070658A (en) Ion implanted bubble propagation structure
JPS59193595A (en) Formation of magnetic bubble transfer line
US3932688A (en) Composite magnetic film
US4525808A (en) Hybrid magnetic bubble memory device
JPS58125289A (en) Magnetic bubble element
NL7907217A (en) MAGNETIC BELL DOMAIN STRUCTURE.
JPH0355910B2 (en)
Jo et al. Nearly isotropic propagation of 0.5 micrometer bubbles in contiguous disk devices
JPS6260756B2 (en)
JPS58208987A (en) Magnetic bubble element
de Waard et al. Mossbauer effect study of surface magnetization processes in iron
JPS6087497A (en) Magnetic bubble transfer forming method
JPS59221887A (en) Magnetic bubble memory device
EP0139021B1 (en) Thermomagnetic optical recording method
JPS61115292A (en) Magnetic bubble transfer route
Dudley et al. Synchrotron topographic studies of the effects of elastic stress on magnetic domain configurations in Fe 3.5 wt.% Si single crystals
JPS5819789A (en) Bubble magnetic domain element
JPS59217286A (en) Ion implantation magnetic bubble device
JPS636950B2 (en)
JPS6079590A (en) Magnetic bubble memory element
Bekebrede et al. SmTmGa‐and YSmTmGa‐garnets for small− bubble applications