JPS59193406A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPS59193406A
JPS59193406A JP6864183A JP6864183A JPS59193406A JP S59193406 A JPS59193406 A JP S59193406A JP 6864183 A JP6864183 A JP 6864183A JP 6864183 A JP6864183 A JP 6864183A JP S59193406 A JPS59193406 A JP S59193406A
Authority
JP
Japan
Prior art keywords
light
distance
distance measuring
projecting
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6864183A
Other languages
Japanese (ja)
Inventor
Susumu Matsumura
進 松村
Yuichi Sato
雄一 佐藤
Takashi Kawabata
隆 川端
Tokuichi Tsunekawa
恒川 十九一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6864183A priority Critical patent/JPS59193406A/en
Priority to US06/601,054 priority patent/US4575211A/en
Publication of JPS59193406A publication Critical patent/JPS59193406A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Abstract

PURPOSE:To measure exactly a distance by providing a diffraction structure body in an optical system for projecting luminous flux for measuring distance, projecting plural diffracted lights generated by the structure body toward an object to be photographed, and photodetecting its reflected diffracted light by a photoelectric converter. CONSTITUTION:A light emitting source 3 rotates within some angle against a projecting lens 4, and a projecting luminous flux spot is scanned to a long distance side from a short distance side on the surface (ob) of an object to be photographed. The projecting luminous flux is diffracted by a diffraction grating 5, and a zero-order diffracted light 8 and + or - primary diffracted lights 10, 9 are generated. By changing an uneven quantity of the diffraction grating, it is also possible to make the intensity of three spots nearly equal, and when only the center part is mainly measured as to its distance, it is also possible to constitute so that there is a peak in the center spot, by weakening the + or - primary diffracted lights. The distance measuring range is expanded by a portion expanded horizontally of a distance measuring luminous flux 14, and the distance measuring luminous flux 14 can scan enough on the object to be photographed. In this way, a distance to the object to be photographed can be derived exactly.

Description

【発明の詳細な説明】 本発明は、カメラ等の光学機器に用いられる測距装置で
あって、特に装置側から物体に向けて測距用の光を投射
し、物体よシ反射されてくる光を光電的に検知する事に
よシ、物体までの距離を求め、結像光学系の物体に対す
る焦点調整状態を正し一合焦状態にセットするいわゆる
能動型の測距装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a distance measuring device used in optical equipment such as cameras, and in particular, a distance measuring light is projected from the device side toward an object, and is reflected by the object. This relates to a so-called active distance measuring device that determines the distance to an object by photoelectrically detecting light and sets the focusing state of the imaging optical system on the object to the correct and in-focus state. .

第1図は従来の能動型測距装置であシ、特開昭54−1
13356において開示されている技術である。同図に
おいて、ED、は投光用発光素子、FD、は受光用光電
変換素子、LS、、LS2はファインダー光学系用レン
ズ、MRlはハーフミラ−1MR,は全反射ミラー、F
Mはファインダー視野及び測距部表示用フレーム、EY
は撮影者の眼を示す。
Figure 1 shows a conventional active distance measuring device, JP-A-54-1.
This is a technique disclosed in No. 13356. In the figure, ED is a light emitting element for projecting light, FD is a photoelectric conversion element for receiving light, LS, LS2 is a lens for the finder optical system, MRl is a half mirror, MR is a total reflection mirror, F
M is the frame for displaying the viewfinder field and distance measuring section, EY
indicates the photographer's eyes.

LS3は発光素子の前に配置された投光用レンズで、発
光豪子FiD1からの光はレンズLS3を通った後回動
ミラーMR,によって反射し被写体を投光走査し、被写
体からの反射光はレンズLS、で集光されミラーMR3
の表面で反射した後受光素子FD、に入射するようにな
っている。
LS3 is a light projecting lens placed in front of the light emitting element, and the light from the light emitting device FiD1 passes through the lens LS3 and is reflected by the rotating mirror MR to project and scan the subject, and the reflected light from the subject is reflected by the rotating mirror MR. is focused by lens LS and mirror MR3
After being reflected on the surface of the light receiving element FD, the light is incident on the light receiving element FD.

LS5は撮影レンズ系で周知の様にレンズ鎮筒内に保持
され、光軸に沿って鏡筒と共に前後に摺動し得る様に支
承される。ADは絞シ、SRはシャッター、P Lはフ
ィルム、splはレンズ鏡筒を繰込方向に附勢するスプ
リング、LGはレンズ鏡筒に設けたラック、G、は該ラ
ックLGに噛合するビニオン、G2はビニオンa、と一
体に回動するラチェット中でちる。Mg、は後述の回路
によって制御されるマグネットで、AMはマグネットM
g1によって吸引されるアマチア−レバーで回動可能に
枢支され、一端には前記ラチェツト車G2の歯に係合す
べきストップ爪AM、を形成されている。sp、はスト
ップ爪をラチェツト車G2と係合する方向に附勢するス
プリングである。OB、は近距離にある場合の被写体、
OB2は遠距離にある場合の被写体である。
LS5 is held in a lens barrel, as is well known in photographic lens systems, and is supported so as to be able to slide back and forth along the optical axis together with the lens barrel. AD is the aperture, SR is the shutter, PL is the film, spl is the spring that urges the lens barrel in the retracting direction, LG is the rack provided on the lens barrel, G is the binion that meshes with the rack LG, G2 is rotated in a ratchet that rotates together with the pinion a. Mg is a magnet controlled by a circuit described later, AM is a magnet M
It is rotatably supported by an armature lever that is attracted by g1, and a stop pawl AM is formed at one end to engage with the teeth of the ratchet wheel G2. sp is a spring that biases the stop pawl in the direction of engagement with the ratchet wheel G2. OB is an object at a close distance,
OB2 is an object to be photographed at a long distance.

第2図は光電変換素子FD、よシの出力信号図で横軸が
時間(t)、縦軸が出力電圧(V)である。Q、は近距
離物体OB、からの反射光による出力、Q、2は遠距離
物体OB、からの反射光による出力である。
FIG. 2 is a diagram of the output signal of the photoelectric conversion element FD, in which the horizontal axis is time (t) and the vertical axis is the output voltage (V). Q, is the output due to the reflected light from the short distance object OB, and Q,2 is the output due to the reflected light from the long distance object OB.

ミラーMR,はレンズ鏡筒と連動して回動し、発光素子
ED、からの光は被写体を至近距離から無限遠方向に走
査する。光電変換素子PD、は被写体からの反射光を受
光し、その出力信号のピーク値が検出されるとマグネッ
トhog、がオフし、アマチア−レバーのストップ爪A
M、がスプリングSP、に引かれてラチェツト車G2に
係合し、ビニオンG1.ラックLGを介して鏡筒の移動
を停止させ撮影レンズLS、の位置が決定される。
The mirror MR rotates in conjunction with the lens barrel, and the light from the light emitting element ED scans the subject from close range to infinity. The photoelectric conversion element PD receives reflected light from the subject, and when the peak value of its output signal is detected, the magnet hog is turned off, and the stop claw A of the Amachia lever is turned off.
M is pulled by spring SP and engaged with ratchet wheel G2, and binion G1. The movement of the lens barrel is stopped via the rack LG, and the position of the photographing lens LS is determined.

このように、はぼ円形の光束断面形状を有する測距用光
束を被写体に向け、測距する場合、以下の様な問題点が
あった。
As described above, when a distance measuring light beam having a circular cross-sectional shape is directed toward a subject to measure a distance, there are the following problems.

すなわち、第3図に示すように、2人の人物し 3a、2bが少j離れて位置しているような状態におい
ては、1bから1aまで走査された測距用光束が2人の
人物の間をぬけてしまい、正L<2人の人物までの距離
が測定できな−という問題である。このためカメラの撮
影者が一度どちらかの人物が画面中心にくるようにカメ
ラをセットして、測距を行ない、この状態での測距情報
をカメラに保持させて、再びカメラの構図を真に撮影し
たい状態にセットし、撮影するという一連の撮影動作が
必要であった。
In other words, as shown in Fig. 3, in a situation where two people 3a and 2b are located a little distance apart, the distance measuring light beam scanned from 1b to 1a will be The problem is that the distance to the two people cannot be measured because the distance between the two people is smaller than the correct L. For this reason, the photographer of the camera should set the camera so that one of the people is in the center of the screen, measure the distance, have the camera retain the distance measurement information in this state, and then correct the composition of the camera again. A series of photographic operations was required, including setting the camera to the desired state and taking the photograph.

本発明は、前述したような問題点を解決したよシ使いや
すい自動焦点カメラを実現するための測距装置を提案す
るものである。
The present invention proposes a distance measuring device for realizing an easy-to-use autofocus camera that solves the above-mentioned problems.

さらに詳しくは本発明は投光光束断面形状が円形ではな
く、矩形形状にして、測距範囲を広げた測距装置を実現
するものである。
More specifically, the present invention realizes a distance measuring device in which the cross-sectional shape of the projected light beam is not circular but rectangular, thereby expanding the distance measuring range.

第4図は本発明の第1の実施例である。同図において、
3はID 、半導体レーザなどの発光源、4は投光用レ
ンズ、5は投光レンズ直後に設けられた位相型回折格子
、6は受光用レンズ、7は光電変換素子である。発光源
3は、投光用レンズに対しである角度内で回転させられ
、これによって被写体面Ob上で投光光束スポットが近
距離側から遠距離側へ走査される。本発明においては、
投光用レンズ直後に回折格子5が設けられているため、
投光用光束はこの回折格子5により回折され、0次回折
光8、±1次回折光1O29が発生する。
FIG. 4 shows a first embodiment of the present invention. In the same figure,
3 is an ID, a light emitting source such as a semiconductor laser, 4 is a light projecting lens, 5 is a phase type diffraction grating provided immediately after the light projecting lens, 6 is a light receiving lens, and 7 is a photoelectric conversion element. The light emitting source 3 is rotated within a certain angle with respect to the projection lens, thereby scanning the projected light flux spot from the near side to the far side on the object plane Ob. In the present invention,
Since the diffraction grating 5 is provided immediately after the projection lens,
The light beam for projection is diffracted by this diffraction grating 5, and 0th-order diffracted light 8 and ±1st-order diffracted light 1O29 are generated.

第5図にこの回折格子を被写体側から見た拡大図を示す
FIG. 5 shows an enlarged view of this diffraction grating viewed from the subject side.

したがって、被写体Ob上で、この3つの回折光による
測距スポットが生じ、これが発光源の回転に伴ない、被
写体面上をスキャンする。
Therefore, a distance measurement spot is generated on the subject Ob by these three diffracted lights, and this spot scans the subject surface as the light source rotates.

第6図は発光源の回転をある角度で固定した時の被写体
平面上での投光スポットの形状を示す。
FIG. 6 shows the shape of the projected light spot on the object plane when the rotation of the light source is fixed at a certain angle.

0次回折光によるスボッillの両隣シに+1次回折光
によるスポット12、−1次回折光によるスポット13
がつくられ、投光スポット形状が、3倍横に広がったも
のとなる。この投光スポット間隔は、投光用レンズ直後
に設けた回折格子の周期Pによって決まシ、1次回折角
をψとすると、Ps ihψ=λ(λは投射光の中心波
長)の関係がち多者々のスポット光の強度は回折格子の
凹凸量によりて決まる。
Spot 12 by +1st-order diffracted light, spot 13 by -1st-order diffracted light on both sides of Subill by 0th-order diffracted light
is created, and the shape of the projected light spot becomes three times wider. This projection spot interval is determined by the period P of the diffraction grating provided immediately after the projection lens, and if the first-order diffraction angle is ψ, then the relationship Ps ihψ = λ (λ is the center wavelength of the projection light) tends to occur. The intensity of each spot light is determined by the amount of unevenness of the diffraction grating.

第7図は、この凹凸量と0次、±1次回折光の回折効率
との(回折光強度/入射光強度)関係を示したものであ
る。したがって、回折格子の凹凸量を変える事によシこ
の3つのスポットをほぼ等強度にする事もできる。又、
スポット中心部のみを主として測距しようとする時は±
1次回折光を少し弱くして、中央スポットにピークがあ
シ、左右に弱いスポットがあるようにも構成できる。
FIG. 7 shows the relationship (diffracted light intensity/incident light intensity) between the amount of unevenness and the diffraction efficiency of 0th-order and ±1st-order diffracted light. Therefore, by changing the amount of unevenness of the diffraction grating, these three spots can be made to have approximately the same intensity. or,
When trying to measure only the center of the spot, ±
It is also possible to make the first-order diffracted light a little weaker so that there is a peak at the center spot and weaker spots on the left and right sides.

逆に中央が弱く左右スポットが強いようにもでき、この
場合受光信号処理において、ピークが検出しやすくなる
Conversely, it is also possible to make the center weak and the left and right spots strong, in which case it becomes easier to detect the peak in the received light signal processing.

このように、本発明による測距装置においては、横長の
断面形状をもつ光束が被写体上に投光され、発光源の回
転に伴なって、この光束が被写体上をスキャンする。し
たがって、第8図に示すように、従来測距できなかった
ような被写体に対しても、本発明においては測距用光束
が横に広がった分だけ、測距範囲が広がった事になシ、
測距用光束14が十分被写体上をスキャンできる。
As described above, in the distance measuring device according to the present invention, a light beam having a horizontally long cross-sectional shape is projected onto the subject, and as the light source rotates, this light flux scans the subject. Therefore, as shown in Fig. 8, even for objects that cannot be conventionally measured, the distance measuring range is expanded by the horizontal spread of the distance measuring light beam in the present invention. ,
The distance measuring light beam 14 can sufficiently scan the subject.

本実施例においては、投光用光束が横長になっガ たのに対応して、受光センターの受光面形状も横長が望
ましい。この大きさは、第9図に示すようにセンサーを
受光レンズを介して被写体面に逆投影した像15が、は
ぼ投射光束と同じ形状になるぐらいが良く、この時受光
信号が強いピークを有L1距離決定の電気的信号処理が
容易になる。
In this embodiment, the shape of the light receiving surface of the light receiving center is also preferably horizontally elongated, corresponding to the fact that the light beam for projection is elongated laterally. This size should be such that the image 15, which is back-projected from the sensor onto the object plane through the light-receiving lens, has the same shape as the projected light flux, as shown in Figure 9, and at this time the light-receiving signal has a strong peak. Electrical signal processing for determining the presence L1 distance becomes easier.

第10図は、本発明の第2の実施例を示す。先の第1の
実施例と異なる点は、受光レンズ直前にも回折格子17
が設けられている点である。本実施例においては、先の
第1の実施例と異なシ、小さな受光面サイズの受光用光
電変換器16を用いて、実効的に大きな横長の受光領域
を有する光電変換器と同じ機能を果たさせている。
FIG. 10 shows a second embodiment of the invention. The difference from the first embodiment is that a diffraction grating 17 is also provided in front of the light receiving lens.
The point is that this is provided. In this embodiment, unlike the first embodiment, a photoelectric converter 16 for light reception with a small light-receiving surface size is used to effectively achieve the same function as a photoelectric converter with a large horizontally elongated light-receiving area. I'm making you do it.

同図において、被写体上に投光される3つのスポットの
各々の反射光は回折格子17によシ、再び回折され、そ
の一部が光電変換器16に入射する。たとえば、第11
図(&)に示すように投光光線8による5potの被写
体からの反射光18は、回折格子17によシ回折される
が、0次回折光19が小さな受光領域16に入射する。
In the figure, the reflected light from each of the three spots projected onto the subject is diffracted again by the diffraction grating 17, and a portion of it is incident on the photoelectric converter 16. For example, the 11th
As shown in the figure (&), the reflected light 18 from the 5-pot object by the projecting light beam 8 is diffracted by the diffraction grating 17, but the 0th order diffracted light 19 enters the small light receiving area 16.

又、第11図(b)に示すように、投光光線lOによる
スポットの被写体からの反射光22は、回折格子17に
ょシ回折され、−1次回折光24が受光領域16に入射
する。
Further, as shown in FIG. 11(b), the reflected light 22 from the subject at the spot caused by the projection light beam IO is diffracted by the diffraction grating 17, and -1st order diffracted light 24 enters the light receiving area 16.

同様に、不図示ではあるが投光光m9によるスポットの
被写体からの反射光は、回折格子17によシ回折され、
その内+1次回折光が受光領域に入射する。
Similarly, although not shown, the light reflected from the subject at the spot by the projecting light m9 is diffracted by the diffraction grating 17,
Among them, the +1st order diffracted light enters the light receiving area.

したがって、本実施例においては、先の第1実施例と異
なシ、小さな受光領域の光電変換器を用いているにもか
かわらず、回折格子17の作用により実効的に大きな受
光領域の光電変換器と同じ機能を果たしている。
Therefore, in this embodiment, unlike the first embodiment, although a photoelectric converter with a small light receiving area is used, due to the action of the diffraction grating 17, the photoelectric converter with an effectively large light receiving area is used. fulfills the same function.

第12図に示すように、この回折格子17は、光′WL
i換器16を受光レンズ、回折格子を通し″′C被写体
上に逆投影した時に、投光用の3つの光束26.27.
28と、回折された光電変換器の像29.30.31と
がほぼ互いに重なシおうような、格子定数(周期)が望
ましい。
As shown in FIG. 12, this diffraction grating 17
When the i converter 16 is back-projected onto the ``''C object through the light receiving lens and the diffraction grating, three light beams 26, 27.
It is desirable that the lattice constant (period) be such that the diffracted photoelectric converter images 29, 28, and 31 substantially overlap each other.

以上、主として光学系を中心に本発明を述べたが、電気
信号処理系については、先の特開昭54−113356
に開示されている技術がそのまま利用できる。本発明は
、簡単な構成にょシ、従来の測距装置の問題点を解決し
た高性能な測距装置を実現するものである。
The present invention has been described above mainly with regard to the optical system, but regarding the electrical signal processing system, the invention has been described in Japanese Patent Application Laid-Open No. 54-113356.
The technology disclosed in can be used as is. The present invention realizes a high-performance distance measuring device that has a simple configuration and solves the problems of conventional distance measuring devices.

又、本発明に有効な回折格子構造は第5図に示された構
造に限定されるものではなく、例えば、第13図に示す
ような格子断面形状を有する回折構造、その他正弦状凹
凸構定を有する回折格子などが利用できる。
Furthermore, the diffraction grating structure that is effective in the present invention is not limited to the structure shown in FIG. 5, but includes, for example, a diffraction structure having a grating cross-sectional shape as shown in FIG. 13, and other sinusoidal uneven structures. Diffraction gratings etc. having .

又、回折格子を設ける場所もレンズ近傍である必要はな
く投光光学系、受光光学系内に適ぎ設ければ良い。
Further, the location where the diffraction grating is provided does not have to be near the lens, but may be provided within the light projecting optical system and the light receiving optical system as appropriate.

さらに、本実施例では、○次、±1次回折光を主として
発生させる回折格子を利用したが、よシ多くの回折光を
利用しても良い。
Further, in this embodiment, a diffraction grating that mainly generates ○th order and ±1st order diffracted light is used, but more diffracted lights may be used.

ざらに、本発明は第4図、10図の実施例に限られるも
のではなく、従来の能動型測距装置が、投光光束の断面
形状がほぼ円形であったために生じた問題点を回折格子
からの回折光を利用して横長、又は縦長の断面形状を有
する投光光束にする事によシ解決しているものであシ、
他の能動型測距装置に対しても有効である。
In general, the present invention is not limited to the embodiments shown in FIGS. 4 and 10, and the present invention is not limited to the embodiments shown in FIGS. 4 and 10. This problem is solved by using the diffracted light from the grating to create a beam of light with a horizontally or vertically long cross-section.
It is also effective for other active distance measuring devices.

さらに、本発明は投光スポットを測距基線長方向に広げ
るものに限定式れるものではなく、例えば第4図におけ
る回折格子を900面内回転させ測距基線長と直交する
方向に投光スポットを広げる事も可能である。この場合
、受光光電素子も90゜面内回転させ、投光スポット形
状と受光面領域とがバランスがとれるようにしておく必
要がある。
Furthermore, the present invention is not limited to spreading the light projection spot in the direction of the distance measurement base line length; for example, by rotating the diffraction grating in FIG. It is also possible to expand. In this case, the light-receiving photoelectric element must also be rotated within the plane by 90 degrees so that the shape of the light emitting spot and the light-receiving surface area are balanced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は従来例の説明図、 第11.12図は第2実施例の説明図、第13図は他の
形態の回折格子断面図、3−−−一測距用光束発光源、
5・l ’L−−回折格子、4・6−−−−測距光束用
レンズ、7・16−−−−・−光電変換器。 出願人 キャノン株式会社
Fig. 1.2 is an explanatory diagram of the conventional example, Fig. 11.12 is an explanatory diagram of the second embodiment, Fig. 13 is a cross-sectional diagram of a diffraction grating of another form, 3--One luminous flux light emitting source for distance measurement. ,
5.l'L--diffraction grating, 4.6--lens for ranging light beam, 7.16--photoelectric converter. Applicant Canon Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)物体に向けて測距用光束を投射し前記物体からの
反射光を光電変換器に受光し、前記光電変換器の出力信
号に基づいて撮影レンズを合焦位置に移動制御する測距
装置において、測距用光束投射光学系内に回折構造体を
設け、前記回折構造体によって発生した複数の回折光を
被写体に向けて投射し1被写体にて反射した前記複数の
回折光を前記光電変換器にて受光する様に構成したこと
を特徴とする測距装置。
(1) Distance measurement in which a light beam for distance measurement is projected toward an object, the reflected light from the object is received by a photoelectric converter, and the photographing lens is controlled to move to the in-focus position based on the output signal of the photoelectric converter. In the apparatus, a diffraction structure is provided in a light flux projection optical system for distance measurement, a plurality of diffracted lights generated by the diffraction structure are projected toward a subject, and the plurality of diffracted lights reflected by one subject are transmitted to the photoelectron. A distance measuring device characterized in that it is configured to receive light with a converter.
(2)物体に向けて測距用光束を投射し前記物体からの
反射光を光電変換器に受光L1前記光電変換器の出力信
号に基づψて撮影レンズを合焦位置に移動制御する測距
装置において、前記物体によって反射された測距用光束
を前記光電変換器に入射する測距用光束入射光学系内に
回折構造体を設け、前記回折構造体によ多発生した複数
の回折光を前記光電変換器に受光する様に構成したこと
を特徴とする測距装置。
(2) A distance measuring light beam is projected toward an object, and the reflected light from the object is received by a photoelectric converter. In the distance measuring device, a diffraction structure is provided in a distance measurement light beam input optical system that makes the distance measurement light beam reflected by the object enter the photoelectric converter, and a plurality of diffracted lights generated by the diffraction structure is A distance measuring device characterized in that the distance measuring device is configured such that the photoelectric converter receives the light.
JP6864183A 1983-04-18 1983-04-18 Distance measuring device Pending JPS59193406A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6864183A JPS59193406A (en) 1983-04-18 1983-04-18 Distance measuring device
US06/601,054 US4575211A (en) 1983-04-18 1984-04-16 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6864183A JPS59193406A (en) 1983-04-18 1983-04-18 Distance measuring device

Publications (1)

Publication Number Publication Date
JPS59193406A true JPS59193406A (en) 1984-11-02

Family

ID=13379550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6864183A Pending JPS59193406A (en) 1983-04-18 1983-04-18 Distance measuring device

Country Status (1)

Country Link
JP (1) JPS59193406A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270709A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Reflection type photoelectric switch
JPS63309810A (en) * 1987-06-11 1988-12-16 Asahi Optical Co Ltd Range finder
US5137350A (en) * 1989-04-14 1992-08-11 Asahi Kogaku Kogyo Kabushiki Kaisha Distance measuring device
US5274429A (en) * 1989-04-14 1993-12-28 Asahi Kogaku Kogyo Kabushiki Kaisha Distance measuring device
JP2011203156A (en) * 2010-03-26 2011-10-13 Dainippon Screen Mfg Co Ltd Distance measuring device
WO2012120729A1 (en) * 2011-03-10 2012-09-13 三洋電機株式会社 Information acquiring apparatus, and object detecting apparatus having information acquiring apparatus mounted therein

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270709A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Reflection type photoelectric switch
JPS63309810A (en) * 1987-06-11 1988-12-16 Asahi Optical Co Ltd Range finder
US5137350A (en) * 1989-04-14 1992-08-11 Asahi Kogaku Kogyo Kabushiki Kaisha Distance measuring device
US5274429A (en) * 1989-04-14 1993-12-28 Asahi Kogaku Kogyo Kabushiki Kaisha Distance measuring device
JP2011203156A (en) * 2010-03-26 2011-10-13 Dainippon Screen Mfg Co Ltd Distance measuring device
WO2012120729A1 (en) * 2011-03-10 2012-09-13 三洋電機株式会社 Information acquiring apparatus, and object detecting apparatus having information acquiring apparatus mounted therein

Similar Documents

Publication Publication Date Title
US8634015B2 (en) Image capturing apparatus and method and program for controlling same
JP5020651B2 (en) Imaging apparatus and imaging system
JP2772028B2 (en) Multi-point ranging autofocus camera
CN103167236A (en) Image capturing apparatus and focus detection method
JP3080968B2 (en) Photometric device
JPH0470615A (en) Focus detecting device
JPS59193406A (en) Distance measuring device
US6774945B1 (en) Focusing apparatus for image recording system
JPS59193407A (en) Distance measuring device
JP4950634B2 (en) Imaging apparatus and imaging system
JP3586365B2 (en) Photometric device
JPS59193408A (en) Distance measuring device
JPS6255769B2 (en)
JPH03167534A (en) Image pickup device
JP2920665B2 (en) Display device in camera viewfinder
JP3437242B2 (en) Camera ranging device
JP2731159B2 (en) Camera multipoint ranging device
JP3063240B2 (en) Converter device and camera system using the same
JPS63139310A (en) Pattern projecting device for detecting focus
JPH0637399Y2 (en) Lens shutter type zoom lens camera photometric device
JPH0287131A (en) Self-timer display device for camera
JPH03233329A (en) Photometric device
JPH0627920B2 (en) Imaging device
JPH06313839A (en) Multipoint ranging camera
JPH04345120A (en) Inverting mirror