JPS59191849A - Method of controlling refrigeration cycle - Google Patents

Method of controlling refrigeration cycle

Info

Publication number
JPS59191849A
JPS59191849A JP5942084A JP5942084A JPS59191849A JP S59191849 A JPS59191849 A JP S59191849A JP 5942084 A JP5942084 A JP 5942084A JP 5942084 A JP5942084 A JP 5942084A JP S59191849 A JPS59191849 A JP S59191849A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
refrigeration cycle
gas
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5942084A
Other languages
Japanese (ja)
Other versions
JPS6250734B2 (en
Inventor
健児 梅津
豊 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5942084A priority Critical patent/JPS59191849A/en
Publication of JPS59191849A publication Critical patent/JPS59191849A/en
Publication of JPS6250734B2 publication Critical patent/JPS6250734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は冷凍サイクルの制御方法に係り、特に冷凍サ
イクルの減圧途中で生じる気液混合冷媒のうちガス冷媒
を圧縮機に注入するガスインジェクション方式冷凍サイ
クルの制御方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for controlling a refrigeration cycle, and in particular to a gas injection type refrigeration system in which gas refrigerant is injected into a compressor among the gas-liquid mixed refrigerant generated during depressurization of the refrigeration cycle. Concerning a cycle control method.

〔発明の技術的背景および問題点〕[Technical background and problems of the invention]

近時、スイッチを切換えるのみで冷房運転と暖房運転と
が行えるヒートポンプ式の空気調和装置が多用される傾
向にある。日本の一般゛的な気候(例えば冬O℃夏30
℃)では、冷暖能力比は、冷房能力を1とすれば1埃房
能力は1.5程度必要とされる。ところが能力を可変し
ない圧縮機を使用した場合には、一般に上記した冷暖能
力比は、冷凍サイクル設計上冷房能力1に対して暖房能
力は1.2程度しかとれず圧縮機の能力を冷房能力に合
わせると暖房能力が不足する。逆に圧QIt機の能力を
骸房能力に合わせると今度は冷房作用時に圧縮機の能力
が上り過ぎ、いわゆる冷え過ぎとなりかえって身体に悪
影響を与えるばかりでなく、0N−OFF作用にともな
う電力のロス、急撃な0N−OFF作用にともなう起動
時の?JjljAにより圧縮機の耐久性が低下するなど
の不都合がある。
BACKGROUND ART In recent years, heat pump type air conditioners, which can perform cooling operation and heating operation simply by switching a switch, have been increasingly used. Japan's general climate (for example, 0°C in winter, 30°C in summer)
℃), the cooling/heating capacity ratio is about 1.5 if the cooling capacity is 1. However, when a compressor whose capacity is not variable is used, the above-mentioned cooling/heating capacity ratio is generally only about 1.2 for the cooling capacity due to the refrigeration cycle design, which means that the compressor capacity is not equal to the cooling capacity. If combined, the heating capacity will be insufficient. On the other hand, if the capacity of the pressure QIt machine is adjusted to the capacity of the room, the capacity of the compressor will increase too much during the cooling operation, resulting in over-cooling, which not only has a negative effect on the body, but also causes power loss due to the 0N-OFF operation. , at startup due to sudden 0N-OFF action? JjljA has disadvantages such as reduced durability of the compressor.

また、暖房能力の不足を補うために従来補助電熱装置を
使用した装置が多い。この場合は比較的小能力の圧縮機
でよいので冷房時の効率は問題ないが、暖房時補助電熱
装置により入力、電流が増加し、電源容量を大きくする
必焚かあり、安全装置その仕付ずいする部品か多く、装
置の大形化も避けられない。さらに熱効率的にみれ(j
1補助電熱装置のそれを1とすると、冷凍サイクルのも
のでは2〜2.5もあり暖房時の補助電熱装置の使用は
冷凍サイクルのものに比較して熱効率的にも悪い。そこ
で暖房能力が増大するよう暖房時気液分離器で分離され
たガス冷媒を圧縮機の圧縮行程中シリンダ内に導くガス
インジェクション方式を採用することが考えられる。し
かしながら上記カスインジェクション方式によれば外気
温が高い暖房過負荷時転時あるいは冷房運転時冷凍卵力
を増大して暖房あるいは冷房する必要がないにもかかわ
らず気液分離器で分離した冷媒カスを圧縮機に注入し、
て冷凍能力全増大する運転となるため、室内の温度が早
く所定の基肥に達し圧縮機の0N−OFF回数が増加し
、起動時の騒音増加、起動時の電力ロス、圧縮機の耐久
性低下等の間逅が生じた。
In addition, many devices conventionally use auxiliary electric heating devices to compensate for the lack of heating capacity. In this case, a relatively small-capacity compressor is sufficient, so there is no problem with efficiency during cooling, but when heating, the input and current increase due to the auxiliary electric heating device, making it necessary to increase the power supply capacity, and safety devices are not included. There are many parts that need to be connected, and it is inevitable that the equipment will become larger. It looks even more thermally efficient (j
If the value of 1 auxiliary electric heating device is 1, then that of the refrigeration cycle is 2 to 2.5, and the use of the auxiliary electric heating device during heating is also poorer in terms of thermal efficiency than that of the refrigeration cycle. Therefore, in order to increase the heating capacity, it may be possible to adopt a gas injection method in which the gas refrigerant separated by the gas-liquid separator during heating is introduced into the cylinder during the compression stroke of the compressor. However, according to the above-mentioned waste injection method, the refrigerant waste separated by the gas-liquid separator is used even though there is no need to increase the frozen egg power for heating or cooling during heating overload or cooling operation when the outside temperature is high. inject into the compressor,
As a result, the room temperature quickly reaches the specified base temperature and the number of times the compressor turns on and off increases, resulting in increased noise during startup, power loss during startup, and reduced compressor durability. A close encounter occurred.

特にカスインジェクション方式の冷凍サイクルにおいて
は圧縮機の仕小量が犬であるところから暖房過負荷時に
、圧縮機の吐出温度が上昇し圧縮機のモータ勿過熱しモ
ータコイルの焼損ケきたすという欠点もあった。
In particular, in the waste injection type refrigeration cycle, since the compressor has a small capacity, there is a drawback that when heating is overloaded, the discharge temperature of the compressor rises, causing the compressor motor to overheat and burn out the motor coil. there were.

即ち従来のガスインジェクション方式の冷凍サイクルに
おいては、負荷の如何にかかわらず冷凍サイクルの減圧
途中で生じる更液混合冷媒の5もガス冷媒を圧縮機に注
入するのみで上述した欠点を有していた。
In other words, in the conventional gas injection type refrigeration cycle, the liquid mixed refrigerant generated during the depressurization of the refrigeration cycle is simply injected into the compressor, regardless of the load, and has the above-mentioned drawbacks. .

〔発明の目的〕[Purpose of the invention]

この発明は、冷凍サイクルの減圧途中で生じる気液混合
冷媒のうちカス冷媒を圧縮機に注入するカスインジェク
ション方式冷神サイクルのカスインジェクション全作用
又は不作用させる制御方法を提供すること全目的とする
The entire purpose of the present invention is to provide a control method for completely activating or inactivating the dregs injection of a dregs injection type Reishin cycle in which dregs refrigerant of the gas-liquid mixed refrigerant generated during depressurization of the refrigeration cycle is injected into the compressor. .

〔発明の概要〕[Summary of the invention]

この発明は、冷凍サイクルの減圧途中で生じる気液混合
冷媒の6ちガス冷媒を圧縮機に注入あるいは注入しない
制御方法によりガスインジェクション全作用又は不作用
して冷凍能力全大小させ冷凍サイクルの能力全可変制御
したものである。
This invention utilizes a control method in which gas-liquid mixed refrigerant generated during depressurization of the refrigeration cycle is injected or not injected into the compressor, so that the gas injection is fully activated or deactivated to increase or decrease the refrigerating capacity. It is variably controlled.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例全図面にもとづいて説明する。第
1図は冷凍サイクルの構成全示すものであり、図中1は
圧縮機、2は四方弁、3は室外側熱交換器、4は逆止弁
、5は気液分離器、6は減圧装置であるところのキャピ
ラリーチューブ、7は室内側熱交換器であり、こゎらは
上記番号順に冷媒管を介し、て連通さね、ヒートポンプ
式の冷凍サイクルを構成している。また逆止弁4と気液
分離5との間には分岐具8が設けられていて、この第1
の分岐口83には室外側熱交換器3と逆止弁4との間か
ら分岐され、かつ中途部に補助膨張弁9を有する導通管
10が設けられている。さらに分岐具8の第2の分岐口
8bには後述するガスインジェクション回路11が設け
られている。ナな」っち、このカスインジェクション回
路】1は、一端部は分岐口8bK接続し中途部f暖房運
転時圧縮機]の吐出側温度を感知する感熱部12a勿備
え、かつこれか所定温度以上を感知した場合閉成し、常
時は開放する開閉弁12全設げ、他端部を圧縮機10図
示しかいシリンダに連通するカスインジェクション管1
3からなる。
An embodiment of the present invention will be described below with reference to all the drawings. Figure 1 shows the entire configuration of the refrigeration cycle, where 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a check valve, 5 is a gas-liquid separator, and 6 is a pressure reducer. Capillary tubes 7, which are devices, are indoor heat exchangers, and these are connected via refrigerant pipes in the above-mentioned numerical order to constitute a heat pump type refrigeration cycle. Further, a branching device 8 is provided between the check valve 4 and the gas-liquid separator 5, and this first
The branch port 83 is provided with a conduit pipe 10 that is branched from between the outdoor heat exchanger 3 and the check valve 4 and has an auxiliary expansion valve 9 in the middle. Furthermore, the second branch port 8b of the branching tool 8 is provided with a gas injection circuit 11, which will be described later. No, this waste injection circuit] 1 is connected to the branch port 8bK at one end, and is equipped with a heat sensing part 12a that senses the temperature on the discharge side of the compressor during heating operation in the middle part, and when the temperature exceeds a predetermined temperature. A waste injection pipe 1 is provided with an on-off valve 12 that closes when the sensor senses the engine and opens normally, and the other end communicates with the compressor 10 and the cylinder shown in the figure.
Consists of 3.

つぎIF上記実施例の作用について説明する。はじめに
冷房運転について説明すると、冷房時は暖房時に比較し
てそねほど能力葡必要としないから、開閉弁12を閉成
してガスインジェクション番不作用とする。即ち圧縮機
1から吐出される冷媒は図中破線矢印に示すように四方
弁2全介して室外側熱交換器3に導かれ凝縮液化する。
Next, the operation of the IF in the above embodiment will be explained. First, to explain the cooling operation, since cooling does not require as much capacity as heating, the on-off valve 12 is closed and the gas injection valve is inactive. That is, the refrigerant discharged from the compressor 1 is guided to the outdoor heat exchanger 3 through the four-way valve 2, as shown by the broken line arrow in the figure, and is condensed and liquefied.

さらに逆止弁4、気液分離器5、キャピラリチューブ6
を介して室内側熱交換器7に導かれ、被空調室内から蒸
発潜熱?奪って冷房作用を行うことができる。′つぎに
暖房運転について説明する。外気温が低い暖房低負荷時
は冷凍能力全増大して暖房する必要があり、開閉弁12
を開としてカスインジェクション全作用させる。即ち暖
房過負荷時圧縮機1から吐出される冷媒は図中実線矢印
で示すように四方弁2全介して室内側熱交換器7に導か
れ凝縮熱を被空調室に放出して暖房作用ケ行なうことが
テキル。凝縮液化した冷媒はキャピラリチューブ6、補
助膨張弁9で減圧さね1、減圧途中で生じる気液混合冷
媒は気液分離器5でカス冷媒と液冷媒に分離される。分
離後液冷媒は分岐具8から導通管10に導かれ補助膨張
弁9でさらに膨張し、室外側熱交換器3で蒸発して圧縮
機1に吸込まれる。
Furthermore, a check valve 4, a gas-liquid separator 5, a capillary tube 6
The latent heat of evaporation from the air-conditioned room is guided to the indoor heat exchanger 7 via the It can be taken away to perform a cooling effect. 'Next, heating operation will be explained. When the outside temperature is low and the heating load is low, it is necessary to fully increase the refrigeration capacity for heating, and the on-off valve 12
Open it and let the cass injection work fully. That is, during heating overload, the refrigerant discharged from the compressor 1 is guided to the indoor heat exchanger 7 through the four-way valve 2, as shown by the solid line arrow in the figure, and the condensed heat is released into the air-conditioned room to be used for heating. What you do is what you do. The condensed and liquefied refrigerant is depressurized by a capillary tube 6 and an auxiliary expansion valve 9 at a pressure reduction ring 1, and the gas-liquid mixed refrigerant generated during depressurization is separated into a waste refrigerant and a liquid refrigerant by a gas-liquid separator 5. After separation, the liquid refrigerant is guided from the branching device 8 to the conduit pipe 10, further expanded by the auxiliary expansion valve 9, evaporated by the outdoor heat exchanger 3, and sucked into the compressor 1.

一方、気液分離器5で分離されるガス冷媒はカスインジ
ェクション回路1】に導かれ、開閉弁12を介して圧縮
工程中の圧縮機1のシリンダに吸込まねカスインジェク
ション作用がなされる。
On the other hand, the gas refrigerant separated by the gas-liquid separator 5 is led to the waste injection circuit 1, and is sucked into the cylinder of the compressor 1 during the compression process via the on-off valve 12, thereby performing a waste injection action.

この状態の冷凍サイクル全第2図に示すモリエル線図か
ら説明すると、冷媒はE点で液とカスとに分離され(F
点は液、H点はガス冷媒を示す)、液冷#:はさらに膨
張し1、かつ蒸発して圧縮機1に′られたことになり、
結局C点まで過冷却したことと同じ条件となる。さらに
圧縮機】が吸込完了して圧縮行程に入った時点でE点で
分離したカス冷媒をシリンダ内に導き、B点まで圧縮す
る。その結果圧縮機1の吐出冷媒量は、A点で吸込んだ
冷媒量と圧縮行程中に吸込んだ冷媒量との和になる。
The entire refrigeration cycle in this state.To explain from the Mollier diagram shown in Figure 2, the refrigerant is separated into liquid and waste at point E (F
The point indicates the liquid and the point H indicates the gas refrigerant), and the liquid refrigerant #: further expands and evaporates into the compressor 1.
In the end, the conditions are the same as supercooling to point C. Furthermore, when the compressor completes suction and enters the compression stroke, the waste refrigerant separated at point E is introduced into the cylinder and compressed to point B. As a result, the amount of refrigerant discharged from the compressor 1 is the sum of the amount of refrigerant sucked in at point A and the amount of refrigerant sucked in during the compression stroke.

したがって図中り点−G点間のエンタルピ分だけ(換言
すれば吐出冷媒量が増えた分だけ)カスインジェクショ
ン回路11を備えていない冷凍サイクルより冷凍能力が
向上し、暖房効率が良い。
Therefore, the refrigerating capacity is improved by the amount of enthalpy between the point in the figure and the point G (in other words, by the amount by which the amount of discharged refrigerant is increased) compared to a refrigeration cycle not equipped with the cass injection circuit 11, and the heating efficiency is improved.

換器3に入る冷媒のエンタルピを低下させかつ圧縮機1
に冷媒を注入して吐出冷媒流量を増して冷凍能力を増加
させるが圧縮機1に注入される冷媒ガスの吸入圧力が高
いため圧縮仕事量の増加が少なく入力はそれほど増加し
、ないから効率が良いのである。
The enthalpy of the refrigerant entering the converter 3 is reduced and the compressor 1
Refrigerant is injected into the compressor 1 to increase the discharge refrigerant flow rate to increase the refrigerating capacity, but since the suction pressure of the refrigerant gas injected into the compressor 1 is high, the increase in compression work is small and the input does not increase much, so the efficiency is low. It's good.

また暖房運転時、外気温が高く過負荷運転状態である場
合冷凍能力全増大して暖房する必要がない、そのため開
閉弁12を閉成し、気液分離器5で分離されるガス分の
圧縮機1導通を阻止する。
Also, during heating operation, if the outside temperature is high and the operation is overloaded, there is no need to fully increase the refrigerating capacity to perform heating, so the on-off valve 12 is closed and the gas separated by the gas-liquid separator 5 is compressed. Prevent machine 1 conduction.

したがって第2図に示す6点から等エンタルピ変化して
D点になり、一部カス冷媒を含んだまま蒸発する。すな
わちガスインジェクションサイクルとならず、圧縮機1
人力が減少して最適状態の暖房を行うこと示できる。
Therefore, from the 6 points shown in FIG. 2, the refrigerant changes isenthalpically and reaches point D, where it evaporates while still containing part of the waste refrigerant. In other words, it is not a gas injection cycle, and the compressor 1
It can be shown that the human power is reduced and heating can be performed in the optimum condition.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明においては、冷凍サイク
ルの減圧途中で生じる気液混合冷媒のうちガス冷媒全圧
縮機に注入あるいは注入しない制御方法により、カスイ
ンジェクションを作用又不作用して冷凍能力全大小させ
負荷に応じた冷凍サイクルの制御を行なうことができる
効果を有する。
As explained above, in this invention, by controlling the gas-liquid mixed refrigerant generated during the depressurization of the refrigeration cycle to be injected or not injected into the gas refrigerant total compressor, dregs injection is activated or deactivated to achieve the full refrigeration capacity. This has the effect that the refrigeration cycle can be controlled according to the load by increasing or decreasing the load.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すものであり、第1図は、
冷凍サイクルの構成図、第2図はモリエル線図である。 】・・・圧縮機、 3・・・室外側熱交換器、5・・・
気液分離器、 6・・・減圧装置、11・Φ・カスイン
ジェクション回路 代理人弁理士 則近憲佑(ほか]名) 第1図 第2図
The drawings show one embodiment of the present invention, and FIG.
The configuration diagram of the refrigeration cycle, FIG. 2, is a Mollier diagram. ]...Compressor, 3...Outdoor heat exchanger, 5...
Gas-liquid separator, 6...pressure reducing device, 11.Φ.Cass injection circuit Patent attorney Kensuke Norichika (and others) Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 冷凍サイクルの減圧途中で生じる気液混合冷媒のうちガ
ス冷媒を圧縮機に注入あるいは注入しないことにより冷
凍サイクルの能力を可変させたことを特徴とする冷凍サ
イクルの制御方法。
A method for controlling a refrigeration cycle, characterized in that the capacity of the refrigeration cycle is varied by injecting or not injecting gas refrigerant among the gas-liquid mixed refrigerant generated during depressurization of the refrigeration cycle into a compressor.
JP5942084A 1984-03-29 1984-03-29 Method of controlling refrigeration cycle Granted JPS59191849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5942084A JPS59191849A (en) 1984-03-29 1984-03-29 Method of controlling refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5942084A JPS59191849A (en) 1984-03-29 1984-03-29 Method of controlling refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS59191849A true JPS59191849A (en) 1984-10-31
JPS6250734B2 JPS6250734B2 (en) 1987-10-27

Family

ID=13112748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5942084A Granted JPS59191849A (en) 1984-03-29 1984-03-29 Method of controlling refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS59191849A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721976U (en) * 1971-03-16 1972-11-11
JPS49111252U (en) * 1973-01-22 1974-09-24
JPS505962U (en) * 1973-05-12 1975-01-22

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721976U (en) * 1971-03-16 1972-11-11
JPS49111252U (en) * 1973-01-22 1974-09-24
JPS505962U (en) * 1973-05-12 1975-01-22

Also Published As

Publication number Publication date
JPS6250734B2 (en) 1987-10-27

Similar Documents

Publication Publication Date Title
US20040107709A1 (en) Method for operating compressors of air conditioner
JPH0534582B2 (en)
JP2000046423A (en) Natural circulation cooling apparatus
JP2001296068A (en) Regenerative refrigerating device
JP4380834B2 (en) Gas heat pump air conditioner
JPS59191849A (en) Method of controlling refrigeration cycle
JPH07190534A (en) Heat storage type air conditioning equipment
JP3781880B2 (en) Refrigeration apparatus with injection function
JPS5833500Y2 (en) air conditioner
JPH07305915A (en) Air conditioner
JPH04263742A (en) Refrigerator
JPH04320763A (en) Freezer
JPH0960991A (en) Air-conditioner and operation method thereof
JPS6243247Y2 (en)
JPH03158656A (en) Controlling method for capacity of two-cylinder compressor
JP2755620B2 (en) Heat pump type air conditioner
JPH0633910B2 (en) Heat pump refrigeration system
JPS5912259A (en) Controller for capacity of air conditioner
JPS6269069A (en) Heat pump type air conditioner
JPH0245796B2 (en)
JPS62175556A (en) Refrigeration cycle
JPS62112961A (en) Heat pump type air conditioner
JPS58120061A (en) Heat pump type refrigerator
JPS5956051A (en) Cooling device
JPH0656274B2 (en) Refrigeration cycle equipment