JPS59190666A - Revolution indicator utilizing super-conductive quantum interferometer - Google Patents

Revolution indicator utilizing super-conductive quantum interferometer

Info

Publication number
JPS59190666A
JPS59190666A JP6487483A JP6487483A JPS59190666A JP S59190666 A JPS59190666 A JP S59190666A JP 6487483 A JP6487483 A JP 6487483A JP 6487483 A JP6487483 A JP 6487483A JP S59190666 A JPS59190666 A JP S59190666A
Authority
JP
Japan
Prior art keywords
copper ring
magnetic field
rotation number
high speed
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6487483A
Other languages
Japanese (ja)
Inventor
Mutsuji Kamimura
上村 六二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6487483A priority Critical patent/JPS59190666A/en
Publication of JPS59190666A publication Critical patent/JPS59190666A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/46Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring amplitude of generated current or voltage

Abstract

PURPOSE:To make it possible to measure a rotation number with high accuracy, by measuring a magnetic field generated by the high speed rotation of a copper ring by a super-conductive quantum interferometer. CONSTITUTION:When a copper ring 1 is rotated at a high speed as shown by the arrow 2, the conductive electron in the copper ring 1 obtains an angular motion amount to generate a rotary current 4 and a magnetic field 3 is generated with the generation of the rotary current 4. When the copper ring 1 rotated at a high speed is arranged between two parallel Josephson joints of a super- conductive quantum interferometer, the copper ring performs the same function as a small solenoid. Therefore, the magnitude of the magnetic field 3 generated by the copper ring 1 can be measured by reading the value of a Josephson current B and, by converting said magnitude of the magnetic field 3 to the rotation number of the copper ring 1, the rotation number of the copper ring 1, the rotation number of the copper ring 1 can be determined. Because thus Josephson current is sharply changed by the slight change of the rotation number, the rotation number can be measured with high accuracy.

Description

【発明の詳細な説明】 この発明は、超伝導量子干渉計(、S、Q U I D
 )を回転計として使うことを目的としている。
[Detailed Description of the Invention] This invention relates to a superconducting quantum interferometer (S, Q U I D
) is intended to be used as a tachometer.

この発明を図面にもとづいて説明すれば次の通りである
This invention will be explained as follows based on the drawings.

まず第1図に示すごとく、回転中の銅リング1は磁場3
を発生する。この磁場3の大きさは、銅リング1の回転
数に比例する(第4図)。従って、磁場3を測定すれば
、銅リング1の回転数が決定で゛きる。
First, as shown in Figure 1, the rotating copper ring 1 is exposed to a magnetic field 3.
occurs. The magnitude of this magnetic field 3 is proportional to the number of rotations of the copper ring 1 (FIG. 4). Therefore, by measuring the magnetic field 3, the number of rotations of the copper ring 1 can be determined.

高速回転2している銅リング1がなぜ磁場3を発生する
かというと次の通りである。
The reason why the copper ring 1 rotating at high speed 2 generates a magnetic field 3 is as follows.

銅リング1の高速回転2により銅リング内部の伝導電子
(自由電子)は角運動量を得る。角運動n1を得ると、
当然回転電流4が発生ずる。また、回転電流4の発生に
ともない磁場3が発生する。
Due to the high speed rotation 2 of the copper ring 1, conduction electrons (free electrons) inside the copper ring gain angular momentum. Obtaining the angular motion n1,
Naturally, a rotating current 4 is generated. Further, as the rotating current 4 is generated, a magnetic field 3 is generated.

銅リング1の回転を止めると、回転電流4は消失するか
ら磁場3も消失する。
When the rotation of the copper ring 1 is stopped, the rotating current 4 disappears, and therefore the magnetic field 3 also disappears.

この磁場3の大きさを、第2図に示すような超伝導量子
干渉計(SQUID)を使って測定する。
The magnitude of this magnetic field 3 is measured using a superconducting quantum interferometer (SQUID) as shown in FIG.

第2図を説明すると、平行な2個のジョセフソン接合の
間に紙面と垂直に設置された高速回転2している銅リン
グ1は、小さなソレノイドと同じ役目をする。従って、
銅リング1の回転数とジョセフソン電流Bの間には第3
図に示すような周期性がある。
Referring to FIG. 2, a rapidly rotating copper ring 1 placed perpendicular to the plane of the paper between two parallel Josephson junctions serves the same purpose as a small solenoid. Therefore,
There is a third difference between the rotation speed of the copper ring 1 and the Josephson current B.
There is periodicity as shown in the figure.

第3図を説明すると次の通りである。The explanation of FIG. 3 is as follows.

縦軸Bはジョセフソン電流である。横軸Cは回転してい
る銅リング1によって生じる磁場3の大きさが目盛っで
ある。また横軸dは回転数で、これは横軸Cの磁場3の
大きさを、第4図のグラフより、銅リンク1の回転数に
換算する。第3図のジョセフソン電流Bの値を読むこと
によって、銅リング1の回転数が決定できる。従ってこ
れを回転計として使うのである。
The vertical axis B is the Josephson current. The horizontal axis C is scaled with the magnitude of the magnetic field 3 generated by the rotating copper ring 1. Further, the horizontal axis d is the rotation speed, and the magnitude of the magnetic field 3 on the horizontal axis C is converted into the rotation speed of the copper link 1 from the graph of FIG. By reading the value of the Josephson current B in FIG. 3, the number of rotations of the copper ring 1 can be determined. Therefore, it is used as a tachometer.

発明の効果は、わずかな回転数の変化で、ジョセフソン
電流は鋭く変化するから、精度の高い回転計として有効
である。
The effect of the invention is that the Josephson current changes sharply with a slight change in the rotational speed, so it is effective as a highly accurate tachometer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高速回転している銅リングには、回転電流と
それにともなう磁場が発生するということを示している
。 第2図は、小さなソレノイドの代りに、高速回転゛して
いる銅リングが、平行な2個のジョセフソン接合の間に
紙面と垂直に設置されている超伝導量子干渉計(SQU
ID)の図である。 第3図は、縦軸Bがジョセフソン電流、横軸Cは磁場(
A点のOmGを基準として、右に+100mG左へ−1
00m Gごとに11盛っである。)、横軸dは回転数
である。また、A点は回転数が0すなわち磁場も0の位
置である。 第4図は、銅リンクの回転数と磁場3(すなわち回転電
流4)の間には比例の関係があることを示すグラフであ
る。 ■  銅リンク、2 2の向きに銅リングを高速回転さ
せる、3  磁場、4  回転電流、5  超伝導体、
6− 不導体、7  磁場3の大きさ、または回転電流
4の大きさ、8 ・銅リングの1秒当りの回転数、9 
 比例のグラフ、A  回転数がOすなイっち磁場も0
の位置、B  ジョセフソン電流、C磁場3の大きさ、
d  銅リングの1秒当りの回転数、特許出願人 上利
六二 第1図 す 第2図 第3図 第4図
FIG. 1 shows that a rotating current and accompanying magnetic field are generated in a copper ring rotating at high speed. Figure 2 shows a superconducting quantum interferometer (SQU) in which, instead of a small solenoid, a rapidly rotating copper ring is placed perpendicular to the page between two parallel Josephson junctions.
ID). In Figure 3, the vertical axis B is the Josephson current, and the horizontal axis C is the magnetic field (
Based on OmG at point A, +100mG to the right and -1 to the left
There are 11 for every 00m G. ), and the horizontal axis d is the rotation speed. Further, point A is a position where the number of rotations is 0, that is, the magnetic field is also 0. FIG. 4 is a graph showing that there is a proportional relationship between the number of rotations of the copper link and the magnetic field 3 (ie, rotational current 4). ■ Copper link, 2 Rotating the copper ring at high speed in the direction of 2, 3 Magnetic field, 4 Rotating current, 5 Superconductor,
6- Nonconductor, 7 Magnitude of magnetic field 3 or magnitude of rotating current 4, 8 - Number of revolutions per second of copper ring, 9
Proportional graph, A: When the rotation speed is 0, the magnetic field is also 0.
position, B Josephson current, C magnitude of magnetic field 3,
d Number of revolutions per second of copper ring, Patent applicant: Rokuji Kamiri, Figure 1, Figure 2, Figure 3, Figure 4.

Claims (1)

【特許請求の範囲】 超伝導量子干渉計(SQUID)において、平行な2個
のジョセフソン接合の間に紙面と垂直に、小さなソレノ
イドの代りに、高速回転(2) している銅リング(1
)を設置する。高速回転(2)シている銅リング(1)
は磁場(3)を生じる。従って小さなソレノイドと同じ
役目をする。 この銅リング(1)の高速回転(2)により発生する磁
場(3)の大きさは、銅リング(1)の回転数に比例す
る(第4図)。従って、銅リンク(1)の回転数と、ジ
ョセフソン電流の間には、第3図に示すような周期性が
ある。この周期性を利用して銅リング(1)の回転数を
決定できる。これを回転計として使う。
[Claims] In a superconducting quantum interferometer (SQUID), a copper ring (1) rotating at high speed (2) instead of a small solenoid is placed perpendicular to the paper between two parallel Josephson junctions.
). High speed rotation (2) Shining copper ring (1)
produces a magnetic field (3). Therefore, it performs the same role as a small solenoid. The magnitude of the magnetic field (3) generated by the high speed rotation (2) of this copper ring (1) is proportional to the number of rotations of the copper ring (1) (FIG. 4). Therefore, there is a periodicity between the rotation speed of the copper link (1) and the Josephson current as shown in FIG. Using this periodicity, the number of rotations of the copper ring (1) can be determined. Use this as a tachometer.
JP6487483A 1983-04-12 1983-04-12 Revolution indicator utilizing super-conductive quantum interferometer Pending JPS59190666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6487483A JPS59190666A (en) 1983-04-12 1983-04-12 Revolution indicator utilizing super-conductive quantum interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6487483A JPS59190666A (en) 1983-04-12 1983-04-12 Revolution indicator utilizing super-conductive quantum interferometer

Publications (1)

Publication Number Publication Date
JPS59190666A true JPS59190666A (en) 1984-10-29

Family

ID=13270708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6487483A Pending JPS59190666A (en) 1983-04-12 1983-04-12 Revolution indicator utilizing super-conductive quantum interferometer

Country Status (1)

Country Link
JP (1) JPS59190666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143914A (en) * 2009-12-14 2011-07-28 Civil Anzen Kizai Kk Hand-push two wheeler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143914A (en) * 2009-12-14 2011-07-28 Civil Anzen Kizai Kk Hand-push two wheeler

Similar Documents

Publication Publication Date Title
Shockley Cyclotron resonances, magnetoresistance, and Brillouin zones in semiconductors
Mehregany et al. Measurement of wear in polysilicon micromotors
US2947168A (en) Power indicator
JPH0518750A (en) Total-range inclined direction measuring device
JPS59190666A (en) Revolution indicator utilizing super-conductive quantum interferometer
JPS59166869A (en) Number of revolution storage element utilizing superconductive ring
Popovič Integrated hall magnetic angle sensors
Felch et al. Precise determination of h/m e using a rotating, superconducting ring
JPS52141276A (en) Magnetic measurement device by shaft shaped magnetometer
JPH09504363A (en) Superconducting double junction gyroscope device
JPS6044606B2 (en) direction display device
Ma et al. A new method for study the mixed state of high-Tc superconductors by using the relaxation of resistivity
Widom et al. General relativistic gravitational field effects on superfluid phase interference devices
JPS551548A (en) Measuring instrument
JPS5540933A (en) Azimuth detector for magnet compass
JP2000356531A (en) Device and measuring motion state of rolling element for rolling bearing
JPS6139592A (en) Magnetic encoder
JPH0431533B2 (en)
JPH03191821A (en) Magnetic encoder
Sonnabend Inertial corrections by dynamic estimation
JPS63135803A (en) Magnetic sensor
SU853548A1 (en) Remote tachometer meter
SU801021A1 (en) Shaft angular position-to-code conversion method
Arnold et al. Erratum: Photoemission from single electrodynamically levitated microparticles[Rev. Sci. Instrum. 56, 2066(1985)]
JPS62174612A (en) Superconducting gyroscope