JPS59190345A - Aluminum or aluminum alloy ingot having deformed cross-section for working - Google Patents

Aluminum or aluminum alloy ingot having deformed cross-section for working

Info

Publication number
JPS59190345A
JPS59190345A JP6234283A JP6234283A JPS59190345A JP S59190345 A JPS59190345 A JP S59190345A JP 6234283 A JP6234283 A JP 6234283A JP 6234283 A JP6234283 A JP 6234283A JP S59190345 A JPS59190345 A JP S59190345A
Authority
JP
Japan
Prior art keywords
ingot
aluminum
alloy
section
acute angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6234283A
Other languages
Japanese (ja)
Inventor
Shigeru Yanagimoto
茂 柳本
Ryota Mitamura
三田村 良太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Industries KK
Showa Keikinzoku KK
Original Assignee
Showa Aluminum Industries KK
Showa Keikinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Industries KK, Showa Keikinzoku KK filed Critical Showa Aluminum Industries KK
Priority to JP6234283A priority Critical patent/JPS59190345A/en
Publication of JPS59190345A publication Critical patent/JPS59190345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain the titled ingot enabling the stable manufacture of a forged article having an acute angle by continuously casting Al or an Al alloy so as to provide a shape having an acute angle in its cross-section while specifying the grain size of the structure and the space between secondary dendrite arms. CONSTITUTION:Al or an Al alloy is continuously cast by a hot top continuous casting method using a gas pressure impressing system or other method so as to provide a deformed cross-section having at least one acute angle as shown by the figures, and the cooling rate is properly selected as to form a structure in which >=85% of the grains have <=180mum grain size and >=90% of the spaces each between secondary dendrite arms are <=25mum. The resulting Al or Al alloy ingot can be used as cast to manufacture stably an Al or Al alloy article having an acute angle by plastic working, cold forging or other forming.

Description

【発明の詳細な説明】 本発明は、塑性加工性とくに鍛造加工性に優れたアルミ
ニウムまたはアルミニウム合金鋳塊に係9、より詳しく
は微細組織からなシ、かつその横断面が少くとも一つの
鋭角部を有する形状の加工用アルミニウムまたはアルミ
ニウム合金の連続鋳造鋳塊である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum or aluminum alloy ingot that has excellent plastic workability, particularly forging workability9, more specifically, an ingot that has no microstructure and whose cross section has at least one acute angle. This is a continuous casting ingot of aluminum or aluminum alloy for machining in a shape having a section.

周知のごとく、アルミニウムまたはアルミニウム合金の
鍛造製品は単位重量当りの強度すなわち比強度が高く、
かつ優れた耐衝撃特性、疲労強度耐腐食性等を有し、信
頼性の高い材料として航空機をはじめ自動車、船舶、そ
の他各種機械装置の構成部材として広く使用されるよう
になっている。
As is well known, forged products made of aluminum or aluminum alloy have high strength per unit weight, that is, specific strength.
It also has excellent impact resistance, fatigue strength, corrosion resistance, etc., and as a highly reliable material, it is widely used as a component of aircraft, automobiles, ships, and various other mechanical devices.

この種の鍛造用素材には、従来多くは大径ビレットから
の押出丸棒が用いられ、一部シートインゴットからの圧
延板を打抜いて使用されてきた。
For this type of forging material, extruded round bars from large-diameter billets have conventionally been used in most cases, and some have been used by punching rolled plates from sheet ingots.

しかしながらビレット、シートインゴット等の連続鋳造
鋳塊を押出し加工、圧延加工すれば、それらの加工自体
に相当の加工費を要することは言う1でもないが、鍛造
用素材として甚だ好ましくない組織となるのは免れ難い
。すなわち連続鋳造鋳塊にこのような塑性加工を施せば
 (1)鋳塊中の結晶粒や第二相粒子(初晶および金属
間化合物の晶出物や析出物)が塑性加工方向に伸ばされ
て、方向性をもった繊維組織が形成される。(2)押出
し加工ではダイスとの摩擦発熱により押出し材の表層は
再結晶を起して結晶粒が粗大となり、また押出し長手方
向断面では加工発熱のため後方の方が粗大結晶粒となシ
やすい。鍛造加工に際して、上記(]、)の繊維組織の
方向は甚だ重要で、この方向に逆って鍛造すれば割れが
発生したり、部分的に機械的強度、疲労強度が低下する
等の強い制約を受け、また製品の形状によってはこのよ
うな素材は使用が困難となる。そこで複雑形状の鍛造製
品の場合、鋳塊を一度なだらかな断面形状に葉形鍛造し
、次いで仕上鍛造を行う等の方法が採られているが二段
階鍛造でコストが嵩むうえ、全体として限界加工率を超
える鍛造加工を加えることができない。これを改善する
ため中間焼鈍等の手段もあるが、加工率を大巾に向−上
することは困難である。
However, if continuous casting ingots such as billets and sheet ingots are extruded and rolled, it goes without saying that the processing itself requires considerable processing costs, but it also results in a structure that is extremely undesirable as a material for forging. It's hard to avoid. In other words, if such plastic working is applied to a continuously cast ingot, (1) the crystal grains and second phase particles (crystals and precipitates of primary crystals and intermetallic compounds) in the ingot will be elongated in the plastic working direction; As a result, a directional fiber structure is formed. (2) During extrusion, the surface layer of the extruded material recrystallizes due to frictional heat generated by the die and the crystal grains become coarse, and in the longitudinal cross-section of the extrusion, coarse grains tend to form at the rear due to the heat generated during the process. . During forging processing, the direction of the fiber structure shown in (],) above is extremely important, and if forging is performed in the opposite direction, cracks may occur, and mechanical strength and fatigue strength may partially decrease. Such materials may be difficult to use depending on the shape of the product. Therefore, in the case of forged products with complex shapes, methods such as first forging the ingot into a gentle cross-sectional shape and then finishing forging are adopted, but the two-step forging increases the cost, and the overall process is limited. It is not possible to add forging processing that exceeds the rate. Although there are methods such as intermediate annealing to improve this problem, it is difficult to significantly improve the processing rate.

本発明者等は、上記の問題点を解消すべく種々研究の結
果、押出し加工、圧延加工等を予め施すことなく、従っ
て方向性に制約のない優れた鍛造用アルミニウム合金鋳
塊およびその製造法を開発し、さきに特許出願中(特開
昭56−69344 、特開昭56−69346、特開
昭56−69348 )である。上記の鍛造用アルミニ
ウム合金鋳塊は、現在広範囲の各種鍛造製品の商業生産
に採用せられ所期の効果を挙げ得ているが、成る種の複
雑形状の鍛造製品にはなお改良を要する点が見出された
。すなわち鋭角部を有する鍛造製品の場合、通例の円形
、または正方珍、長方形の横断面を有する連続鋳造塊を
素材とすれば尖端部に割れや、巻込み、欠肉等の欠陥が
発生し易いことである。これは鋭角尖端部においては、
他の部分に比し著しく加工率が高まるためと考えられる
が、このような難点を解決するため冷間鍛造を熱間、温
間鍛造に切り換えたり、素材の葉形鍛造を強化すること
が行われているが、コストアンプとなるため、このよう
な予備加工なく冷間鍛造し得る素材が求められている。
As a result of various studies to solve the above-mentioned problems, the present inventors have discovered an excellent aluminum alloy ingot for forging that does not require prior extrusion processing, rolling processing, etc., and therefore has no restrictions on directionality, and a method for producing the same. , and patent applications are pending (Japanese Patent Laid-Open No. 56-69344, Japanese Patent Laid-open No. 56-69346, and Japanese Patent Laid-open No. 56-69348). The above-mentioned aluminum alloy ingots for forging are currently being used in the commercial production of a wide variety of forged products, and are achieving the desired results. However, there are still points that need improvement for forged products with complex shapes. discovered. In other words, in the case of forged products with sharp edges, if the raw material is a continuous cast ingot with a customary circular, square, or rectangular cross section, defects such as cracking, entrainment, and lack of thickness will easily occur at the pointed end. That's true. This means that at the sharp point,
This is thought to be because the processing rate is significantly higher than in other parts, but in order to solve these difficulties, it is possible to switch from cold forging to hot or warm forging, or to strengthen the leaf-shaped forging of the material. However, since this increases costs, there is a need for materials that can be cold forged without such preliminary processing.

本発明の目的は上述の従来技術の欠点をなくし、鋭角部
を有する鍛造製品を安定して製造し得る加工用アルミニ
ウムまたはアルミニウム合金鋳塊を提供するにある。
An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to provide an aluminum or aluminum alloy ingot for processing that allows stable production of forged products having acute corners.

本発明による加工用アルミニウムまたはアルミニウム合
金鋳塊は、連続鋳造鋳塊であって、結晶粒の85%以上
が粒径1180μm以下、二次デンドライトアーム間隔
の90%以上が25μm以下の組織からなり、鋳塊の横
断面が少くとも一つの実質的鋭角部を有する形状である
ことを特徴とするものである。
The aluminum or aluminum alloy ingot for processing according to the present invention is a continuously cast ingot, and consists of a structure in which 85% or more of the crystal grains have a grain size of 1180 μm or less, and 90% or more of the secondary dendrite arm interval has a grain size of 25 μm or less, The ingot is characterized in that its cross section has at least one substantially acute angle.

本発明において、ゝ加工“とけ必ずしも鍛造加工に限ら
ず、スェージ加工、ロール成形、転造、引抜き、押出し
加工等、塑性加工全般を包含する。
In the present invention, "processing" is not necessarily limited to forging processing, but includes general plastic processing such as swage processing, roll forming, rolling, drawing, and extrusion processing.

また゛ゝ連続鋳造”とはいわゆる完全連続鋳造のみでな
く、むしろ、非鉄金属において一般に行われる垂直半連
続鋳造による柱状鋳塊の製造を指すが、連続板体鋳造は
本発明の目的から対象外である。
Furthermore, "continuous casting" refers not only to so-called completely continuous casting, but rather to the production of columnar ingots by vertical semi-continuous casting, which is commonly performed in non-ferrous metals, but continuous plate casting is not covered by the purpose of the present invention. be.

また鋳塊の9横断面“とは上記柱状鋳塊の軸心をほぼ直
角に截る方向の断面をいう。そしてか\る断面が第1図
(al〜(g)に例示するごとく少くとも一つの鋭角部
を有する柱状鋳塊が本発明の対象である。
In addition, the term "9 cross section" of the ingot refers to a cross section cut in a direction substantially perpendicular to the axis of the columnar ingot. A columnar ingot with one acute corner is the object of the present invention.

たゾし本発明において鋭角部は第1図に示すような鋭利
な尖端の形状のものに限定されず、その尖端が直線また
は第2図のごとく曲線によって小さく裁断された形状で
おっても全体として実質的な鋭角部を形成されているも
のを包含する。
However, in the present invention, the acute angle part is not limited to the shape of a sharp tip as shown in FIG. This includes those in which a substantial acute angle is formed.

本発明は鋳塊の任意方向断面における組織として結晶粒
の85%以上が粒径180μm以下であり、かつ二次デ
ンドライトアーム間隔の90%以上が5μm以下である
ことを要件とする。か\る微細な鋳造組織であることに
よって、押出し、圧延等の予備塑性加工を施すことなく
、鋳塊をそのま5塑性加工用素材とすることができ、優
れた塑性加工性を有すると共に鍛造等塑性加工成形後の
切削等機械加工性も良好である。鋳塊の組織要件として
は上記のほかに、更に好ましくは初晶およびAll −
Ou 。
The present invention requires that 85% or more of crystal grains have a grain size of 180 μm or less and that 90% or more of secondary dendrite arm intervals have a grain size of 5 μm or less as a structure in a cross section of an ingot in any direction. Due to such a fine casting structure, the ingot can be used as a material for plastic processing without undergoing preliminary plastic processing such as extrusion or rolling, and has excellent plastic workability and is suitable for forging. Machinability such as cutting after isoplastic processing is also good. In addition to the above-mentioned structural requirements for the ingot, more preferably primary crystals and All-
Ou.

M−8i1Mg−8i1M−Mn −Fe、 Al1−
Fe−8i、 M −にケイ素の過共晶領域に及ぶアル
ミニウム合金においては、初晶ケイ素の粒子径は少くと
もその70襲以上が50μnL以下であることが望まし
い。
M-8i1Mg-8i1M-Mn-Fe, Al1-
In an aluminum alloy in which Fe-8i, M- and silicon have a hypereutectic region, it is desirable that the particle size of primary silicon is at least 50 μnL or less for at least 70 cycles.

上記のような組織要件を具備した鋳塊は合金組成にもよ
るが、主として鋳塊製造時の冷却速度(連続鋳造時にお
ける固液界面の冷却速度で実質的に合金の凝固速度に相
当する。)に支配され、合金別に上記組織要件を満足す
る上記冷却速度の低限界を予め実験によって確かめてお
くことができる。本発明者等の実験によれば冷却速度の
低限界は種々なるアルミニウムまたはアルミニウム合金
について15’−30°O/ sec程度であり、この
ような高速冷却の合金塊の鋳造は直冷垂直半連続鋳造法
が最も適しているが、冷却媒体は工業的には常温の水で
あるから、鋳塊を細径にして冷却速度を・高めるのが最
も経済的である。高ケイ素合金の場合、溶湯にP等の改
質剤を添加して初晶ケイ素の微細化を併行することも望
ましい。
An ingot with the above-mentioned structural requirements depends on the alloy composition, but mainly depends on the cooling rate during ingot production (the cooling rate of the solid-liquid interface during continuous casting, which substantially corresponds to the solidification rate of the alloy. ), and the lower limit of the cooling rate that satisfies the above-mentioned microstructural requirements for each alloy can be confirmed in advance through experiments. According to the experiments conducted by the present inventors, the lower limit of the cooling rate is about 15'-30°O/sec for various aluminum or aluminum alloys, and casting of alloy ingots with such rapid cooling is performed by direct cooling vertical semi-continuous. The casting method is most suitable, but since the cooling medium is industrially room-temperature water, it is most economical to reduce the diameter of the ingot to increase the cooling rate. In the case of high-silicon alloys, it is also desirable to add a modifier such as P to the molten metal to simultaneously refine the primary silicon.

直冷垂直半連続鋳造法としては従来一般に行われている
フロート式連続鋳造法を採用してもよいが、本発明者等
がさきに開発した気体圧印加方式のホットトップ連続鋳
造法(特公昭54−42847、特許第1007387
号)によれば、得られる鋳塊は表層への合金元素の逆偏
析が甚だ少く、かつ鋳肌が平滑であるためピーリングな
しに塑性加工し得る。
As the direct-cooled vertical semi-continuous casting method, the commonly used float continuous casting method may be used, but the hot top continuous casting method using gas pressure application, which was previously developed by the present inventors, 54-42847, Patent No. 1007387
According to No. 1), the obtained ingot has very little reverse segregation of alloying elements to the surface layer and has a smooth casting surface, so it can be plastically worked without peeling.

鋳塊のピーリングが甚だ困難な本発明のごとき異形断面
の柱状鋳塊にあっては鋳肌のま\鍛造加工し得ることは
工業的にきわめて有利でちる。
For columnar ingots with irregular cross-sections such as those of the present invention, which are extremely difficult to peel, it is industrially very advantageous to be able to forge them while leaving the cast surface intact.

実施例 1)使用合金:■JIS6061、■JIS20172
)鋳塊の横断面形状ニー辺が55mmの正三角形、頂点
は半径6關の円弧(モールド寸法)3)連続鋳造法:気
体圧印加方式ホットトツフ′連続鋳造法(特公昭54−
42847 )4)冷却速度:27°O/ sec 上記条件によって鋳造した柱状鋳塊の表面肌は全周囲に
わたって均質平滑な外観を呈した。鋳塊のマクロ組織は
第2図(JIS−6061)合金)に示すごとく微細均
質でちる。鋳塊のミクロ組織を表皮部と中心部について
観測した結果第1表のごとくT、l、ソノ+itl織写
Xlj:$3図(JIS−6061)  (a)表皮s
、(b)中心部、第4図(J l5−2017) (a
)表皮部、表層; DAS:二次デンドライトアーム間
隔表層部:逆偏析層の下層部 上記のアルミニウム合金鋳塊はピーリング処理すること
なく鋳肌のま\鋭角部を有するアルミニウムまたはアル
ミニウム合金製品の塑性加工成形、特に冷間鍛造成形に
使用し、過度の塑性加工による割れ等を発生することな
く成形しうる点で1、甚だ有利である。
Example 1) Alloy used: ■JIS6061, ■JIS20172
) The cross-sectional shape of the ingot is an equilateral triangle with a knee side of 55 mm, and the apex is an arc with a radius of 6 degrees (mold dimensions) 3) Continuous casting method: Gas pressure application hot tofu' continuous casting method (Special Publication 1977-
42847) 4) Cooling rate: 27°O/sec The surface skin of the columnar ingot cast under the above conditions exhibited a homogeneous and smooth appearance over the entire circumference. The macrostructure of the ingot is fine and homogeneous as shown in Figure 2 (JIS-6061 alloy). As shown in Table 1, the microstructure of the ingot was observed for the skin and center.
, (b) Center part, Fig. 4 (J l5-2017) (a
) Skin part, surface layer; DAS: Secondary dendrite arm spacing Surface part: Lower layer of reverse segregation layer The above aluminum alloy ingot remains cast without peeling.\Plasticity of aluminum or aluminum alloy products having sharp corners It is extremely advantageous in that it can be used for processing and forming, especially cold forging, and can be formed without causing cracks or the like due to excessive plastic working.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の対象となる柱状鋳塊の横断面形状の例
示。第2図は横断面が正三角形の本発明による柱状鋳塊
のマクロ組織写真、第3図は本発明によるJIS−60
61合金のミクロ組織写真で(a)は表皮部、(b)は
中心部、第4図は本発明によるJIS−2017合金の
ミクロ組織写真で(a)は表皮部、(blは中心部を示
す。 特許出願人  昭和軽金属株式会社 代理人 菊地精− (α’)     (b)       (C)第1図 第2図 第3図 第4図
FIG. 1 is an illustration of the cross-sectional shape of a columnar ingot, which is the object of the present invention. Figure 2 is a macrostructure photograph of a columnar ingot according to the present invention whose cross section is an equilateral triangle, and Figure 3 is a photograph of the JIS-60 according to the present invention.
Figure 4 is a microstructure photograph of the JIS-2017 alloy according to the present invention, where (a) is the skin part and (b) is the center part. Patent applicant Showa Light Metal Co., Ltd. Agent Sei Kikuchi (α') (b) (C) Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム捷たはアルミニウム合金の連続鋳造鋳
塊であって、結晶粒の85%以上が粒径180μ蜂下、
二次テンドライトアーム間隔の90%以上が25μm以
下の組織からなり、鋳塊の横断面が少くとも一つの実質
的鋭角部を有する形状であることを特徴とする異形断面
の加工用アルミニウムまたはアルミニウム合金鋳塊。
1 Continuous casting ingot of aluminum or aluminum alloy, in which 85% or more of the crystal grains have a grain size of 180 μm,
Aluminum or aluminum for machining irregular cross-sections, characterized in that 90% or more of the secondary tendrite arm spacing is composed of a structure of 25 μm or less, and the cross section of the ingot has at least one substantially acute angle. Alloy ingot.
JP6234283A 1983-04-11 1983-04-11 Aluminum or aluminum alloy ingot having deformed cross-section for working Pending JPS59190345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234283A JPS59190345A (en) 1983-04-11 1983-04-11 Aluminum or aluminum alloy ingot having deformed cross-section for working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234283A JPS59190345A (en) 1983-04-11 1983-04-11 Aluminum or aluminum alloy ingot having deformed cross-section for working

Publications (1)

Publication Number Publication Date
JPS59190345A true JPS59190345A (en) 1984-10-29

Family

ID=13197348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234283A Pending JPS59190345A (en) 1983-04-11 1983-04-11 Aluminum or aluminum alloy ingot having deformed cross-section for working

Country Status (1)

Country Link
JP (1) JPS59190345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051348A (en) * 1991-06-25 1993-01-08 Sumitomo Light Metal Ind Ltd Cast aluminum alloy rod for vtr cylinder excellent in cutting machinability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426230A (en) * 1977-08-01 1979-02-27 Nippon Steel Corp Cast strip free of ear cracking
JPS5669346A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for working and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426230A (en) * 1977-08-01 1979-02-27 Nippon Steel Corp Cast strip free of ear cracking
JPS5669346A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for working and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051348A (en) * 1991-06-25 1993-01-08 Sumitomo Light Metal Ind Ltd Cast aluminum alloy rod for vtr cylinder excellent in cutting machinability

Similar Documents

Publication Publication Date Title
CA2458270C (en) Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
RU2463371C2 (en) Magnesium-containing high-silica aluminium alloys used as structural materials and method of their manufacturing
KR102224687B1 (en) Rolling and preparation method of magnesium alloy sheet
KR910009976B1 (en) Method for manufacturing tubes
US4126486A (en) Producing improved metal alloy products
EP2329899B1 (en) Method for producing light alloy vehicle wheel
AU2002313964A1 (en) Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
JP2005500165A5 (en)
JPS608300B2 (en) Manufacturing method of metal products
US3802931A (en) Low-earing can stock
JPS5994555A (en) Cast ingot of aluminum or aluminum alloy to be worked to irregular section
JPS59190345A (en) Aluminum or aluminum alloy ingot having deformed cross-section for working
Zhao et al. A novel forming process of Mg/Al composite square tube based on numerical simulations and experiments
JPS6233009B2 (en)
US2260914A (en) Producing copper-base-alloy rod or the like
JP4959108B2 (en) Method for processing metal slabs or billets, and products made using the method
JP2915596B2 (en) Production method of extra fine wire
JPH08225906A (en) Titanium aluminum alloy thin plate and its production
CN115323296B (en) Processing method of wide magnesium alloy plate
CN118006953A (en) Preparation method of deformation heat-resistant aluminum alloy plate strip with service interval of 300-450 ℃ based on thin strip casting and rolling technology
AU2002313966A1 (en) Method for processing a metal slab or billet, and product produced using said method
Finn et al. Systems And Methods For Ingot Head Shaping
SU776678A1 (en) Method of producing workpiece from ferrum-nickel-cobalt based alloy
Dovzhenko et al. Based on the finite element analysis for the combined rolling-extrusion process, the stress-strain state, force on the tool, and the moments on the rolls are calculated as a function of the tool temperature and the rotational speed of the rolls. The calculations are performed for an Al–Ti–B system alloy containing 5% titanium and 1% boron, widely used in the industry for melt modification when casting ingots of aluminum alloys. The authors
PORTNOY et al. Study of superplastic alloys based on Al-Zn-Ca[Abstract Only]