JPS59190295A - Method for growing zns single crystal film - Google Patents

Method for growing zns single crystal film

Info

Publication number
JPS59190295A
JPS59190295A JP58061114A JP6111483A JPS59190295A JP S59190295 A JPS59190295 A JP S59190295A JP 58061114 A JP58061114 A JP 58061114A JP 6111483 A JP6111483 A JP 6111483A JP S59190295 A JPS59190295 A JP S59190295A
Authority
JP
Japan
Prior art keywords
single crystal
zns
substrate
source
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58061114A
Other languages
Japanese (ja)
Inventor
Tadao Toda
忠夫 戸田
Kiyoshi Yoneda
清 米田
Tatsuhiko Niina
新名 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58061114A priority Critical patent/JPS59190295A/en
Publication of JPS59190295A publication Critical patent/JPS59190295A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Abstract

PURPOSE:To obtain a high-quality ZnS single crystal, by carrying out the molecular beam epitaxial growth on the (100) plane of the single crystal substrate at specific substrate temperature and rate of crystal growth using ZnS as the source. CONSTITUTION:Molecular beam epitaxial growth of ZnS on the (100) plane of a single crystal substrate made of GaP, GaAs or a material having nearly the same lattice constant, is carried out by using ZnS single crystal or polycrystal as the source, at a substrate temperature of 230-280 deg.C and a growth rate of 0.4-1mum/hr. A high-quality ZnS single crystal film can be obtained by this process, and a blue light-emitting element can be manufactured from the product. Since the technique to manufacture red and green light-emitting elements of GaP has already been estabilished, a monolithic device emitting three primary colors can be obtained by the use of GaP substrate. The use of the (100) plane of the substrate gives the cleavage angle of 90 deg., and facilitates the processing of chips.

Description

【発明の詳細な説明】 (イ)  IL業上の利用分野 本発明はZnS帳結晶膜成長力法に関づる。[Detailed description of the invention] (b) Utilization fields in the IL industry The present invention relates to a ZnS crystalline film growth method.

(Ij)従来技術 ■−■化合物の一つであるZn5(硫化亜鉛ンは、上イ
・ルキーハントキへ・ノブか広いため、青色発光素子を
得るための一−−一つの素材として廟望視されCいる。
(Ij) Prior art Zn5 (zinc sulfide), which is one of the compounds, is regarded as one of the materials for obtaining blue light-emitting devices because of its large size. There is C.

しかし、ZnSでは、II−VI化合物の特徴として高
融点でJ)ること、及び組成ノし素の蒸気比か高いこと
のために、高純度の単結晶か得にくい。
However, it is difficult to obtain a high purity single crystal of ZnS because of the high melting point as a characteristic of the II-VI compound and the high vapor ratio of nitrogen in the composition.

真空蒸着法やスパッタ法は、ZnS単結晶を得るための
方法として知られているが、上記理由により結晶性暫−
1純度の点でいJ:た満足を与える手法ではない。又、
近年出現した分子線エピタキシへ・ル成長法(以下MB
E法と称す)でら、それを用いた良質なZ rI S 
小結晶膜形成の報告はこJtまでにない。
Vacuum evaporation method and sputtering method are known as methods for obtaining ZnS single crystals, but due to the above reasons, crystalline temporary
1.It is not a method that gives satisfaction in terms of purity. or,
Molecular beam epitaxy growth method (hereinafter MB
(referred to as the E method), and high-quality Z rI S using it.
Until now, there has been no report on the formation of small crystal films.

くハ)発明の目的 一イに発明は、良質なZnS単結晶膜色形成寸゛ること
におる。
(c) Aim of the invention A first object of the invention is to provide a high-quality ZnS single crystal film with color forming dimensions.

(ニ)発明の構成 本発明は、MBE法を用いている。(d) Structure of the invention The present invention uses the MBE method.

M B E法による従来のZ n S m、結晶膜成長
法は、通’A’=’ (7) M B E法に従ッて、
Zn(亜鉛)のソースと、S(硫黄)のソースとを用い
、各ソースよ’:1ZnSdi成原子を飛ばずものであ
ったか、特にSは吸湿性かあるためソース自身、H2O
や02を含んでおり、又蒸気比か高いためにその制御か
難しい。
The conventional Z n S m crystal film growth method using the MBE method is generally 'A'=' (7) According to the MBE method,
A source of Zn (zinc) and a source of S (sulfur) were used, and each source did not dissipate 1 ZnSdi atom. In particular, since S is hygroscopic, the source itself was exposed to H2O.
and 02, and the steam ratio is high, making it difficult to control.

本発明者は、M B E法におけるソースの選択に留意
し、かつ基板結晶、基板温度及び結晶成長速度を特定す
ることにより良質なZnS単結晶成長に成功した。即ち
、本発明方法の特徴は、単結晶又は多結晶のZnSをソ
ースに用い、基板温度230〜280°C1成長速度0
.4− IL m/ hrを条件として、Gap(カリ
ウム燐)やGaAs(カリウム砒累)又はこれと同程度
の格子定数を持つW結晶基板の(ioo>而−1−に分
子線エビタキンヤル成長を行なうことにある。
The present inventor succeeded in growing a high-quality ZnS single crystal by paying attention to the selection of the source in the MBE method and specifying the substrate crystal, substrate temperature, and crystal growth rate. That is, the characteristics of the method of the present invention are that single crystal or polycrystalline ZnS is used as a source, the substrate temperature is 230 to 280°C, the growth rate is 0.
.. 4- Under the condition of IL m/hr, molecular beam Evita kinial growth is performed on (ioo > There is a particular thing.

(ポ)実施例 好jニジい一実施形態は、6N以上の高純度の単結晶又
は多結晶ZnSをソースに用い、<100)GaP基板
の温度を260°C1成長速度を06μm/hrとする
MBE法である。尚その他の点は通常のMBE法と変り
ない。
(P) A preferred embodiment uses a single crystal or polycrystalline ZnS with a high purity of 6N or higher as a source, and sets the temperature of the <100) GaP substrate to 260°C and the growth rate to 06 μm/hr. This is the MBE method. In other respects, this method is the same as the normal MBE method.

第1図にソースZnSの成長室内での蒸気汁、と成長速
度との関係を、又第2図に基板温度と成長速度との関係
を夫々示す。第1図にて基板温Ifは260℃、第2図
にてソース蒸気圧は約4X 1O−7Torrである。
FIG. 1 shows the relationship between the source ZnS vapor in the growth chamber and the growth rate, and FIG. 2 shows the relationship between the substrate temperature and the growth rate. In FIG. 1, the substrate temperature If is 260° C., and in FIG. 2, the source vapor pressure is approximately 4×1O−7 Torr.

更に、第3図に、成長した立方晶ZnS膜の(400)
を主たる方位として現われるX線回折スペクトルより求
めた格子定数と基板温度との関係を示し、第4図にイの
ときのスペクトルの極大(iffiて゛の半価幅と基板
温度との関係を、5−4゜第3図、第4図にてソー−J
 75.気ΣFは約4X 1O−7Torr、第4図中
、点Aは成長速度2.5 、Ll m/ hr、ソース
蒸気比的1×10  丁(] r rである。更に上記
実施例により得られた結晶膜につきオーンエ電子分光分
析を行なうとZnとSとの比ははyloでおった。
Furthermore, Fig. 3 shows the (400) of the grown cubic ZnS film.
The relationship between the lattice constant determined from the X-ray diffraction spectrum that appears as the main direction and the substrate temperature is shown in Figure 4. -4゜In Figures 3 and 4, saw-J
75. The air ΣF is approximately 4×10−7 Torr, and point A in FIG. 4 has a growth rate of 2.5, Ll m/hr, and a source vapor ratio of 1×10 Torr. When Ohne electron spectroscopy was performed on the crystal film, the ratio of Zn to S was found to be ylo.

本発明において、基板としでζ」、GaPの他、GaA
sでもよく、あるいは、これらと同程度の格(・定数を
もつものて゛あれはよい。ス、本発明(こより得らFi
、ろ!1を結晶膜は高抵抗であるが、適当なドーピング
により低抵抗膜を得ることができる。
In the present invention, in addition to GaP, GaA
s, or one with a case (・constant) of the same degree as these is fine.
,reactor! Although the crystal film No. 1 has a high resistance, a low resistance film can be obtained by appropriate doping.

くべ)発明の効果 、(・発明によれは、良質のZ n S屯結晶膜か得ら
rL、従って良好な青色発光素子の形成が可能となり、
メGaP基板を用いると、既に、GaPの赤及び緑の発
光素子技術が完成しているのて、これと組合ワずことに
より七ノリシ・/りの三原色発光装置が得られる。又、
基板のり100)而か用lv)られるので、へき開方向
が90°の角度となり、チップ加工が容易である。
Effects of the invention: (According to the invention, a high-quality ZnS crystal film can be obtained, and therefore a good blue light-emitting device can be formed.
By using a GaP substrate, GaP red and green light emitting device technology has already been completed, and by combining this, a seven-color three-color light emitting device can be obtained. or,
Since the substrate is glued 100) and used lv), the cleavage direction is at an angle of 90°, making chip processing easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4区は本発明を説明するための測定曲線図
である。 基脆う芭厄 (°C) ネオ反〕五&(°乙)
1 to 4 are measurement curve diagrams for explaining the present invention. The Basic Fragility of Basara (°C) Neo Anti〕5 & (°Otsu)

Claims (1)

【特許請求の範囲】[Claims] (1)jij、結晶又は多結晶のZnSをソースに用い
、基jij 1M度230−280’C1成長速Jn 
0.4−1 p m/ h+を条(/Iとし、て、 G
 a PやGaAs又(Jこれと同程度の格r定数を1
,1つ屯結晶基板の(100)!M1.1−に分子線エ
ビクキ〉λル成長を行なっことを′Pf徴と−d′るZ
n5−jlj結晶膜J&長ノJ法。
(1) Using jij, crystalline or polycrystalline ZnS as a source, the base jij 1M degree 230-280'C1 growth rate Jn
0.4-1 p m/h+ as /I, G
a P or GaAs (J with a rated r constant of the same order as 1)
, (100) of one ton crystal substrate! Z
n5-jlj crystal film J & Nagano J method.
JP58061114A 1983-04-06 1983-04-06 Method for growing zns single crystal film Pending JPS59190295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58061114A JPS59190295A (en) 1983-04-06 1983-04-06 Method for growing zns single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58061114A JPS59190295A (en) 1983-04-06 1983-04-06 Method for growing zns single crystal film

Publications (1)

Publication Number Publication Date
JPS59190295A true JPS59190295A (en) 1984-10-29

Family

ID=13161721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58061114A Pending JPS59190295A (en) 1983-04-06 1983-04-06 Method for growing zns single crystal film

Country Status (1)

Country Link
JP (1) JPS59190295A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154511A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Crystal growth method
US5492080A (en) * 1993-12-27 1996-02-20 Matsushita Electric Industrial Co., Ltd. Crystal-growth method and semiconductor device production method using the crystal-growth method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154511A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Crystal growth method
JP2828979B2 (en) * 1987-12-11 1998-11-25 株式会社日立製作所 Crystal growth method
US5492080A (en) * 1993-12-27 1996-02-20 Matsushita Electric Industrial Co., Ltd. Crystal-growth method and semiconductor device production method using the crystal-growth method

Similar Documents

Publication Publication Date Title
JP2593960B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JP3115814B2 (en) Device having III-V group nitride semiconductor material on substrate
JP2564024B2 (en) Compound semiconductor light emitting device
JPS59228776A (en) Semiconductor hetero-junction element
JPS59190295A (en) Method for growing zns single crystal film
JP3146874B2 (en) Light emitting diode
Hartmann Vapour phase epitaxy of II–VI compounds: A review
JPH05190900A (en) Manufacture of semiconductor light-emitting device
KR20040061703A (en) Method for fabricating single crystal GaN substrate using GaN nanorods
JP2579336B2 (en) Method for manufacturing blue light emitting diode
KR100525723B1 (en) Method for forming GaN nanorods by hydride vapor phase epitaxial growth method
JPH0912396A (en) Gallium phosphide crystal substrate
JPS6351552B2 (en)
JPS60204698A (en) Method of growth of semiconductor crystal
JPH07249831A (en) Method for growing crystal
JPS62119940A (en) Semiconductor substrate
JP3479542B2 (en) Method for manufacturing II-VI compound semiconductor
JPH02266516A (en) Manufacture of gaalas epitaxial wafer
JPS62101089A (en) Blue color light emitting device
JPS6185822A (en) Liquid epitaxial growth process of sic single crystal
JP3156514B2 (en) Manufacturing method of semiconductor epitaxial wafer
JP4052458B2 (en) ZnO semiconductor manufacturing method
JPS6291490A (en) Liquid-phase epitaxial growth method for thin semiconductor film
JPH0573332B2 (en)
JPS63271982A (en) Light emitting element and manufacture thereof