JPS59189936A - Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester - Google Patents

Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester

Info

Publication number
JPS59189936A
JPS59189936A JP58063006A JP6300683A JPS59189936A JP S59189936 A JPS59189936 A JP S59189936A JP 58063006 A JP58063006 A JP 58063006A JP 6300683 A JP6300683 A JP 6300683A JP S59189936 A JPS59189936 A JP S59189936A
Authority
JP
Japan
Prior art keywords
catalyst
copper
silica gel
chromium
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58063006A
Other languages
Japanese (ja)
Other versions
JPS6260938B2 (en
Inventor
Haruhiko Miyazaki
宮崎 晴彦
Koichi Hirai
浩一 平井
Taizo Uda
泰三 宇田
Yasuo Nakamura
靖夫 中村
Seizo Ikezawa
池沢 晴三
Takanori Tsuchie
土江 隆則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP58063006A priority Critical patent/JPS59189936A/en
Publication of JPS59189936A publication Critical patent/JPS59189936A/en
Publication of JPS6260938B2 publication Critical patent/JPS6260938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prepare the titled catalyst having excellent degree of conversion and selectivity, by mixing a silica gel having a specific particle size in an aqueous solution containing a copper/amine complex while applying reducing treatment to the obtained copper-containing silica gel. CONSTITUTION:A fine particulate silica gel having an average particle size of 200mum or less is mixed in an aqueous solution containing an amine complex of copper and the obtained copper-containing silica gel is subjected to reducing treatment to prepare the titled catalyst. This catalyst can efficiently prepare glycol from corresponding lower hydroxyarboxylic ester in excellent degree of conversion and selectivity in an industrially available manner as compared with a known catalyst such as a chromium-contaiing catalyst and can overcome pollution trouble accompanied by the use of the chromium-containing catalyst. In this catalyst, the content of copper supported by the silica gel can be adjusted by selecting the amounts of the copper/amine complex and the silica gel and the ratio of silica gel and copper may be about 1:(0.001-2.0) on a wt. basis.

Description

【発明の詳細な説明】 本発明は、低級ヒドロキシカルボン酸エステルの水素添
加用触媒の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a catalyst for the hydrogenation of lower hydroxycarboxylic acid esters.

従来、ヒドロキシカルボン酸エステルを気相にて水素添
加し、対応するグリコールを製造する方法は知られてお
り、その水素添加用触媒についても種々提案がなされて
いる。
Conventionally, a method for producing a corresponding glycol by hydrogenating a hydroxycarboxylic acid ester in the gas phase has been known, and various proposals have been made regarding catalysts for the hydrogenation.

例えばイギリス特許第575380号明細書には、水素
添加用触媒として銅−クロム系触媒や。
For example, British Patent No. 575380 describes a copper-chromium catalyst as a hydrogenation catalyst.

酸化銅と二酸化ケイ素を溶融して得られる銅−シリカ触
媒、などの使用が提案されている。
It has been proposed to use a copper-silica catalyst obtained by melting copper oxide and silicon dioxide.

アメリカ特許第209315 ’9号明細書には。In the specification of US Patent No. 209315'9.

クロム、モリブデンあるいはタングステンなどのact
ivating 5ubstance −、(酸素酸塩
)を含む銅触媒の使用につき提案されている。
act such as chromium, molybdenum or tungsten
It has been proposed to use a copper catalyst containing ivating 5 ubstance -, (oxyalt acid salt).

また、アメリカ特許第2094611号明細書には、や
はり銅−クロム系触媒の使用につき開示がなされている
Further, US Pat. No. 2,094,611 also discloses the use of a copper-chromium catalyst.

しかしながらこれら公知の水素添加用触媒を用いる方法
では、主として高級ヒドロキシカルボン酸エステルの水
素添加反応が対象とされていたり。
However, in the methods using these known hydrogenation catalysts, the hydrogenation reaction of higher hydroxycarboxylic acid esters is mainly targeted.

水素添加反応を例えば10気圧以上の高圧下で実施する
必要があったり、触媒系が複雑であったり。
For example, the hydrogenation reaction may need to be carried out under high pressure of 10 atmospheres or more, or the catalyst system may be complex.

さらには目的物の収率および選択率が必ずしも満足でき
る程度に高いものでない、などいずれかの欠点を有して
いる。
Furthermore, they have some drawbacks, such as the yield and selectivity of the target product not necessarily being sufficiently high.

また、公知のヒドロキシルカルボン酸エステルの水素添
加用触媒は、銅−クロム系触媒が主流である。しかしと
のようなりロム含有触媒の使用には、実用上の観点から
トラブルがある。すなわちクロム含有触ハ(の使用後の
廃触媒から、クロムを効率良く回収して、該1B触媒中
にクロムを残存させないように回収処理することは、高
価でかつ煩嶋イ1な操作を行えば不可能ではないにして
も、極めて困難であって、工業的実施に不向きである。
Furthermore, the mainstream of known catalysts for hydrogenation of hydroxyl carboxylic acid esters is copper-chromium catalysts. However, the use of such ROM-containing catalysts poses problems from a practical point of view. In other words, to efficiently recover chromium from the used chromium-containing catalyst and to recover it so that no chromium remains in the 1B catalyst requires expensive and complicated operations. Although it is not impossible, it is extremely difficult and unsuitable for industrial implementation.

寸だクロムは、たとえ微量であっても人体に強い毒性を
示すために、クロム残存廃触媒の一般環境への廃棄に2
.環境衛生上1重大な公害発生の可能性を有するため1
回避すべきである。かくて、銅−クロム系水素添加触媒
は、廃触媒の処理の困難さという、大きな欠点を有して
いる。
Chromium is highly toxic to the human body even in minute amounts, so 2.
.. In terms of environmental health, 1 because there is a possibility of serious pollution occurring.
Should be avoided. Thus, copper-chromium hydrogenation catalysts have a major drawback: the difficulty of disposing of the spent catalyst.

また、一般的水素添加用触媒として、銅−クロム系以外
にも1種々の金属あるいは金属化合物が使用可能である
ことが知らilている。そのような金属あるいは金属化
合物の例としては、ラネーニッケル、ニッケル、コバル
ト、 +同、 鉄、 白金、 ハラジウムの如き金属や
、これら金属の酸化物、硫化物などを例示することがで
きる。
It is also known that various metals or metal compounds other than copper-chromium can be used as general hydrogenation catalysts. Examples of such metals or metal compounds include metals such as Raney nickel, nickel, cobalt, iron, platinum, haladium, and oxides and sulfides of these metals.

しかしながら、このような一般的公知の金属あるいは金
属化合物のすべてが、どのような水素添加反応について
も、共通して同様に有用であるとは限らない。すなわち
9個々の水素添加反応についての反応様式9反応条件な
どに応じて、目的とする特定の水素添加反応に適合した
触媒を選択しない限り、目的とする特定の水素添加反応
を効率良く行い得ないことは良く知られている。さらに
However, not all such generally known metals or metal compounds are equally useful in any hydrogenation reaction. In other words, unless a catalyst suitable for the specific hydrogenation reaction is selected according to the reaction conditions, etc., the specific hydrogenation reaction cannot be carried out efficiently. This is well known. moreover.

そのような適合した触媒を選択するだめの確立された指
針が存在しないことも良く知られている。
It is also well known that there are no established guidelines for selecting such suitable catalysts.

本発明者らは、前述の従来公知の触媒より優れた触媒効
果を示し、かつクロムを含有しないところの、低級ヒド
ロキンカルボン酸エステルの水素添加用触媒を開発する
ことを目的とし、研究を行ってきた。
The present inventors conducted research with the aim of developing a catalyst for the hydrogenation of lower hydroquine carboxylic acid esters that exhibits a superior catalytic effect than the conventionally known catalysts mentioned above and does not contain chromium. It's here.

その結果、銅のアンミン錯体を含む水溶液に。The result is an aqueous solution containing copper ammine complexes.

特定の粒子径を有するシリカゲルを混合し1.得られる
銅含有シリカゲルを還元処理すれば、その目的に合致し
た低級ヒドロキンカルボン酸エステルの水素添加用触媒
を製造できることを見い出し。
Mixing silica gel with a specific particle size 1. We discovered that by subjecting the resulting copper-containing silica gel to a reduction treatment, it is possible to produce a catalyst for the hydrogenation of lower hydroquine carboxylic acid esters that meets the purpose.

本発明を完成するに到った。The present invention has now been completed.

すなわち本発明は、銅のアンミン錯体を含む水溶液に、
平均粒子径が200μ以下の微粒子シリカゲルを混合し
、得られる銅含有シリカゲルを還元処理することによる
。低級ヒドロキシカルボン酸エステルの水素添加用触媒
の製法を提供するものである。
That is, the present invention provides an aqueous solution containing a copper ammine complex,
This is done by mixing particulate silica gel with an average particle size of 200 μm or less and subjecting the resulting copper-containing silica gel to a reduction treatment. A method for producing a catalyst for hydrogenation of lower hydroxycarboxylic acid esters is provided.

本発明の製法によって得られる触媒は、クロム含有触媒
など公知の触媒よりも、一層優れた転化率および選択率
をもって、低級ヒドロキシカルボン酸エステルから対応
するグリコールを、効率的かつ工業的有利に製造するこ
とができ、しかもクロム含有触媒の使用に伴う上記公害
のトラブルを克服できる触媒である。
The catalyst obtained by the production method of the present invention has a better conversion rate and selectivity than known catalysts such as chromium-containing catalysts, and can efficiently and industrially advantageously produce the corresponding glycol from lower hydroxycarboxylic acid ester. It is a catalyst that can overcome the above-mentioned pollution troubles associated with the use of chromium-containing catalysts.

本発明において用いられる銅のアンミン錯体を含む水溶
液は、それ自体公知の方法により製造することができる
。例えば、銅イオンを含有する水溶液にアンモニアを加
えて、該水溶液をアルカリ性にすることにより製造する
ことができる。また。
The aqueous solution containing the copper ammine complex used in the present invention can be produced by a method known per se. For example, it can be produced by adding ammonia to an aqueous solution containing copper ions to make the aqueous solution alkaline. Also.

例えば+ (I!:アンモニア水に銅片を加え、この系
に空気を通じることによっても、製造することができる
For example, + (I!) can also be produced by adding copper pieces to aqueous ammonia and passing air through the system.

上記銅イオンを含有する水溶液は、水溶性銅化合物(銅
塩を包含する)を水に溶解することによって得ることが
できる。このような銅化合物の例としては1例えば、硝
酸銅、硫酸銅、シーウ酸銅。
The above-mentioned aqueous solution containing copper ions can be obtained by dissolving a water-soluble copper compound (including copper salt) in water. Examples of such copper compounds include, for example, copper nitrate, copper sulfate, and copper shialate.

塩化銅、炭酸銅、酢酸銅などを挙げることができる。最
も好ましい銅の化合物は、硝酸第2銅である。
Examples include copper chloride, copper carbonate, and copper acetate. The most preferred copper compound is cupric nitrate.

賛だ本発明における触媒の製法に用いられるシリカゲル
は、平均粒子径が200μ以下の微粒子であることが必
要である。平均粒子径が200μより大きいシリカゲル
を用いた場合には、銅のシリカゲルへの和持計が少なく
なり、得られる触媒の活性が著しく低い。またシリカゲ
ルの平均粒子径の下限値は、特別制限を設ける必要がな
いが。
Advantageously, the silica gel used in the catalyst production method of the present invention needs to be fine particles with an average particle size of 200 μm or less. When silica gel having an average particle diameter of more than 200 μm is used, the amount of copper retained in the silica gel decreases, resulting in a significantly low activity of the resulting catalyst. Further, there is no need to set a special limit on the lower limit of the average particle diameter of silica gel.

約1mμ程度までが良い。その平均粒子径のさらに好ま
しい平均粒子径は、約5mμ〜約150 /lである。
It is good to have a thickness of up to about 1 mμ. A more preferable average particle size is about 5 mμ to about 150 μm/l.

とれら微粒子シリカゲルは、いかなる方法で調製された
ものでも有用である。その調製法としては、ハロゲン化
ケイ素や有機ケイ素化合物の分解、ケイ砂とコークスを
アークにより加熱還元して気化させプを後酸化する方法
、などの乾式法。
Particulate silica gel prepared by any method is useful. Its preparation methods include dry methods such as decomposition of silicon halides and organosilicon compounds, heating reduction of silica sand and coke using an arc, vaporization, and post-oxidation of the silica.

あるいはケイ酸すトリウムを酸で分解する湿式法。Or a wet method that decomposes sthorium silicate with acid.

などを例示することかできる。I can give an example.

以下1本発明における触媒の製法の一実施態様を詳述す
る。
An embodiment of the method for producing a catalyst according to the present invention will be described in detail below.

捷ず上記例示のごとき水浴性銅化合物1例えば硝酸第2
銅を水に溶解させ、形成さノ1だ科11イオン含有水溶
液に濃アンモニア水を、系のpHが約]0以十1例えば
約1〜約12程度となる捷で加える。かくて、深青色の
水溶液か形成される。この深青色の水d液に、平均粒子
径が200 /h以下の微粒子あるいは超微粒子シリカ
ゲルを加え、 ff71士して両者を充分に混合、接触
させる。混合は、大気圧下もしくは加圧下に、室温でも
加温条件下でも行うことができ1例えば、室温〜約]−
50℃。
Water-bathable copper compounds such as those exemplified above 1. For example, nitric acid 2.
Copper is dissolved in water, and concentrated aqueous ammonia is added to the aqueous solution containing the 11 ions of Formation Group 1 in such a manner that the pH of the system becomes about 0 to 11, for example about 1 to about 12. Thus, a deep blue aqueous solution is formed. Fine particles or ultrafine silica gel having an average particle diameter of 200 m2/h or less are added to this deep blue aqueous solution, and the two are sufficiently mixed and brought into contact with each other. Mixing can be carried out under atmospheric or elevated pressure, at room temperature or under heated conditions, e.g.
50℃.

好捷しく(ハ約40〜約100℃の如き温度を例示する
ことができる。かくて、シリカゲル上に多回のイオンが
担持された銅含有シリカゲルが形成される。このfli
l含有シリカゲルの形成された系を1例えば蒸発乾固処
理して得られた固体残渣を、充分に水洗し、乾燥して1
次いで還元処理することによって7本発明の触媒を得る
ことができる。上記蒸発乾固に代えて、濃縮処理を採用
できる。例えば、はぼ半量移変の液を蒸発させ、この濃
縮系から例えばj1過により固体残渣を採取し、上記と
同様に処理して1本発明の触媒を得ることもできる。
A temperature of about 40° C. to about 100° C. can be exemplified. Thus, a copper-containing silica gel in which multiple ions are supported on the silica gel is formed.
For example, a solid residue obtained by evaporating and drying a system containing silica gel containing 1 is thoroughly washed with water and dried to obtain 1.
Then, the catalyst of the present invention can be obtained by reduction treatment. Concentration treatment can be used instead of the above-mentioned evaporation to dryness. For example, it is also possible to evaporate the liquid at about half the volume, collect the solid residue from this concentrated system by, for example, filtration, and process it in the same manner as above to obtain the catalyst of the present invention.

上記蒸発乾固処理や濃縮処理は、大気圧条件下でも減圧
条件下でも行うことができる。まだこれらの処′理ば、
室温でも加熱条件下でも行うことができるが、約り0℃
〜約90℃の如き加熱条件の採用が好ましい。
The above-mentioned evaporation to dryness treatment and concentration treatment can be performed under atmospheric pressure conditions or under reduced pressure conditions. If these processes are still not completed,
It can be carried out at room temperature or under heated conditions, but at temperatures below 0°C.
It is preferable to employ heating conditions such as ˜90° C.

例えば上述のようにして得ることのできる銅含有シリカ
ゲルの還元処理は、それ自体公知の方法に従って、該銅
含有シリカゲルを水素の存在下。
For example, the copper-containing silica gel that can be obtained as described above may be reduced in the presence of hydrogen according to a method known per se.

加熱処理することにより9行うことができる。例えば、
水素・気流中、約150〜約500℃程度。
9 can be carried out by heat treatment. for example,
Approximately 150 to 500°C in hydrogen/air flow.

好捷しくけ約り00℃〜約400℃伺近の温度条件下に
、約1〜約15時間の還元処理条件を例示することがで
きる。このような還元処理に先立って、予備加熱処理を
採用することができる。例えば+ 十MF農11i1含
有シリカゲルを、空気中、約り00℃〜約800℃程度
、好ましくは約り00℃〜約700℃付近の調度におい
く、約1〜・約10時間程度條成処理する予備加熱処理
条件を例示することができる。本発明で製造される触媒
において。
For convenience, reduction treatment conditions can be exemplified under temperature conditions of approximately 00° C. to approximately 400° C. for approximately 1 to approximately 15 hours. Prior to such a reduction treatment, a preliminary heating treatment can be employed. For example, silica gel containing 10 MF No. 11i1 is placed in air at a temperature of about 00°C to about 800°C, preferably about 00°C to about 700°C, for about 1 to about 10 hours. The preheating treatment conditions for the treatment can be exemplified. In the catalyst produced by the present invention.

シリカゲルに和持さiする銅の含隼は、該触媒の調製に
使用する銅アンミン錯体とシリカゲルの量を適宜に選択
することにより、調製することができる。その]−は、
好寸しくは、シリカゲル(二酸化ケイ素)の重量:銅の
重量=]:約0.001へ・工:約2.0程度、より好
オしくは1:約0.01〜]:約]1.0程度である。
The copper content that is supported in the silica gel can be prepared by appropriately selecting the amounts of the copper ammine complex and silica gel used for preparing the catalyst. That]- is
Preferably, the weight of silica gel (silicon dioxide): the weight of copper = ]: about 0.001, and more preferably about 2.0, more preferably 1: about 0.01 to]: about 1 It is about .0.

本発明において製造される触媒は、低級ヒドロキシカル
ボン酸エステルを気相にて水素添加し。
The catalyst produced in the present invention is produced by hydrogenating a lower hydroxycarboxylic acid ester in the gas phase.

対応するグリコールを製造するための触媒として極めて
優れた作用を示す。
It exhibits an extremely excellent effect as a catalyst for producing the corresponding glycol.

本発明で得ら11る触媒を用いる場合、上記の反応原料
である低級ヒドロキシカルボン酸エステルは、適宜に選
択することができる。その具体例としては7例えば、グ
リコール酸メチル、グリコール酸エチル、クリコール酸
フロヒル、クリコール酸ブチル、乳酸メチル、乳酸エチ
ル、乳酸プロピル、WLJeフチル、メチル−α−ヒド
ロキシフ゛チレート、エチル−α−ヒドロキンブチレー
ト、プロピル−α−ヒドロキンブチレートの如き低級ヒ
ドロキンカルボン酸エステルを例示することができる。
When using the catalyst No. 11 obtained in the present invention, the lower hydroxycarboxylic acid ester that is the above-mentioned reaction raw material can be appropriately selected. Specific examples include methyl glycolate, ethyl glycolate, flohil glycolate, butyl glycolate, methyl lactate, ethyl lactate, propyl lactate, WLJe phthyl, methyl-α-hydroxyphylate, ethyl-α-hydroquine. Examples include lower hydroquine carboxylic acid esters such as butyrate and propyl-α-hydroquine butyrate.

本発明により得られる触媒を用いる場合、低級ヒドロキ
シカルボン酸エステルの好ましい水素添加反応条件は1
次の通りである。
When using the catalyst obtained according to the present invention, the preferable hydrogenation reaction conditions for lower hydroxycarboxylic acid ester are 1
It is as follows.

反応温度“140〜300℃、好ましくは1.70〜2
60℃、さらに好ましくは180 〜230 ℃ 接触時間: 0.01〜・20秒、好ましくは011〜
3秒 反応圧カニ0.]〜200気圧、好ましくはコール40
気圧 水素/ヒドロキシカルボン酸エステルのモル比: 2以
上、好マしくは10〜500 該水素添加反応は1本発明で得ら11る触媒と。
Reaction temperature "140~300℃, preferably 1.70~2
60°C, more preferably 180 to 230°C Contact time: 0.01 to 20 seconds, preferably 0.11 to 20 seconds
3 seconds reaction pressure crab 0. ]~200 atm, preferably coal 40
Molar ratio of atmospheric hydrogen/hydroxycarboxylic acid ester: 2 or more, preferably 10 to 500 The hydrogenation reaction is carried out using the catalyst obtained according to the present invention.

水素ガスおよび低級ヒドロキシカルボン酸エステルとを
気相で接触させる任意の態様で行うことができ、固定触
媒床方式、流動触亦床方式のいづれを採用することもで
きる。さらに反応は、バッチ方式、連続方式のいづれで
も行うことができる。
The reaction can be carried out in any manner in which hydrogen gas and lower hydroxycarboxylic acid ester are brought into contact with each other in the gas phase, and either a fixed catalyst bed method or a fluidized catalyst bed method can be adopted. Furthermore, the reaction can be carried out either batchwise or continuously.

本発明により得られる触媒を用いて、このようK 低)
&ヒドロキシカルボン酸エステルの水素添加反応を行う
ことにより9例えばグリコール酸エステルからはエチレ
ングリコールを、乳酸エステルからはプロピレングリコ
ールを、またα−ヒトロギシブチレー1・からはブタン
ジオ−ルを得ることができる。
Using the catalyst obtained according to the present invention, such K (low)
& Hydrogenation reaction of hydroxycarboxylic acid esters9 For example, it is possible to obtain ethylene glycol from glycolic acid ester, propylene glycol from lactic acid ester, and butanediol from α-hydroxybutylene 1. can.

本梵明で得られる触媒は、その製法からも明らかなよう
にクロムを含有するものではない。そしてクロムを含有
しないにもかかわらず1本発明により得られる触媒は、
低級ヒドロキシカルボン酸エステルを水素添加して上記
の如き対応するグリコールに変換する反応を効率よく達
成することができ、高い空時収計(S T’ y )で
目的生成物が得られる。また従来公知の多くの触媒では
、10気圧以上の高圧において水素添加反応を実施しな
ければ、目的物を効率よく製造できなかったの°に対し
1本発明において得られる触媒を使用した場合。
The catalyst obtained by this method does not contain chromium, as is clear from its production method. Although it does not contain chromium, the catalyst obtained by the present invention is
The reaction of hydrogenating a lower hydroxycarboxylic acid ester to convert it into the corresponding glycol as described above can be efficiently achieved, and the desired product can be obtained with a high space-time yield (S T' y ). In addition, with many conventionally known catalysts, the target product could not be efficiently produced unless the hydrogenation reaction was carried out at a high pressure of 10 atmospheres or more, whereas when the catalyst obtained in the present invention was used.

10気圧より低い圧力下で水素添加反応を実施しても、
効率よく目的物を得ることができるという利点もある。
Even if the hydrogenation reaction is carried out at a pressure lower than 10 atm,
Another advantage is that the desired object can be obtained efficiently.

次に本発明の実施例、比較例および参考例を挙げる。Next, Examples, Comparative Examples, and Reference Examples of the present invention will be given.

実施例1 硝酸第2@・3水和物(cu(no3)2−3 +t2
o ) ]−01,2Iを300 tnl、の水に溶解
し、これに濃アンモニア水300 ml、を加えてp)
(を約11−12とし、銅アンミン錯体を含む深青色の
溶液を得た。この深青色溶液に、平均粒子径2.5μの
微粒子シリカゲル(富士デヴインン社製、5YLOID
150)40Iを水450 meに懸濁させた懸濁液を
加えた後。
Example 1 Nitric acid di@.trihydrate (cu(no3)2-3 +t2
o)]-01,2I in 300 tnl of water, add 300 ml of concentrated ammonia water, and p)
(approximately 11-12) to obtain a deep blue solution containing a copper ammine complex. To this deep blue solution, fine particle silica gel (manufactured by Fuji Devine Co., Ltd., 5YLOID) with an average particle size of 2.5μ was added.
150) After adding a suspension of 40I in 450 me of water.

室温で数時間攪拌した。Stirred at room temperature for several hours.

次いで、混合液の温度を約85℃ないし約100℃に上
げて大部分の水を蒸発させ、さらに、 120℃で12
時間乾燥した。乾燥物を充分に水洗し。
The temperature of the mixture was then raised to about 85°C to about 100°C to evaporate most of the water, and then heated to 120°C for 12 hours.
Dry for an hour. Wash dry items thoroughly with water.

再度空気中140℃で14時間乾燥した。該乾燥物を水
素気流中350℃で2〜3時間還元処理し。
It was dried again in air at 140° C. for 14 hours. The dried product was reduced at 350° C. for 2 to 3 hours in a hydrogen stream.

\ 触媒をR周製した。l1llI!媒の銅の含有率は、約
40wt%であり、二酸化ケイ素に対する銅の重量比は
約0.67であった。
\ The catalyst was manufactured in R-circumference. l1llI! The copper content of the medium was about 40 wt%, and the weight ratio of copper to silicon dioxide was about 0.67.

参考例1〜・3 実施例1により調製した触媒5 mlを内径1 ’Or
nmφ、長さ130 mn+のステンレス製反応管に充
填し。
Reference Examples 1 to 3 5 ml of the catalyst prepared according to Example 1 was
Fill a stainless steel reaction tube with nmφ and length of 130 m+.

グリコール酸エチルの接触水素添加反応を、  5V2
0000Jar−1,反応圧力6に9/cnX−o、水
素/グリコール酸エチル(モル比)100の条件下、所
定温度で実施した。その結果を、第1表に示す。
Catalytic hydrogenation reaction of ethyl glycolate, 5V2
The reaction was carried out at a predetermined temperature under the following conditions: 0000 Jar-1, reaction pressure 6 to 9/cnX-o, hydrogen/ethyl glycolate (molar ratio) 100. The results are shown in Table 1.

第  1  表 参考例4 実施例1で調製した触媒5 meを内径10 m、n+
φ。
Table 1 Reference Example 4 The catalyst 5 me prepared in Example 1 had an inner diameter of 10 m and n+
φ.

長さ130咽のステンレス製反応管に充填し、乳酸エチ
ルの接触水素添加反応を、 eV 6000hr  。
A stainless steel reaction tube with a length of 130 mm was filled, and the catalytic hydrogenation reaction of ethyl lactate was carried out at eV 6000 hr.

反応圧力61<y/a/l−G +水素/乳酸エチル(
モル比)60、反応温度185℃の条件で実施した。そ
の結果は、乳酸エチルの転化率96.2%、プロピレン
グリコールへの選択率90.5 L%であった。
Reaction pressure 61<y/a/l-G + hydrogen/ethyl lactate (
The reaction was carried out under the following conditions: molar ratio) 60 and reaction temperature 185°C. The results were that the conversion rate of ethyl lactate was 96.2% and the selectivity to propylene glycol was 90.5 L%.

実施例2 硝酸第2銅・3水和物25311を750−の水に溶解
し、これに濃アンモニア水’750 tnl!を加えて
pHを約11〜12とし、銅アンミン錯体を含む深青色
の溶液を得た。この深青色溶液に、平均粒子径lθ〜2
0mμの超微粒子シリカゲル100Iを1000−の水
に懸濁させた懸濁液を加えた後、室温で数時間攪拌した
Example 2 Cupric nitrate trihydrate 25311 was dissolved in 750-tnl water, and concentrated aqueous ammonia '750 tnl! was added to adjust the pH to about 11 to 12 to obtain a deep blue solution containing the copper ammine complex. In this deep blue solution, the average particle size lθ~2
A suspension of 0 mμ ultrafine silica gel 100I suspended in 1000 m water was added, followed by stirring at room temperature for several hours.

次いで、混合液の温度を約85℃ないし約100℃に上
けて大部分の水を蒸発させ、さらに、120℃で16時
間乾燥した。乾燥物を充分に水洗し。
The temperature of the mixture was then raised to about 85° C. to about 100° C. to evaporate most of the water, and then dried at 120° C. for 16 hours. Wash dry items thoroughly with water.

再度120℃で24時間乾燥した後、水素気流中200
℃で12時間還元処理し、触媒を調製した。
After drying again at 120°C for 24 hours, it was dried at 200°C in a hydrogen stream.
A catalyst was prepared by reduction treatment at ℃ for 12 hours.

触媒の銅の含有率は約40 wt%であり、二酸化ケイ
素に対する銅の重量比は、約o、67であった。
The copper content of the catalyst was about 40 wt%, and the weight ratio of copper to silicon dioxide was about 0.67.

参考例5〜・7 実施−例2により調製した触a5献を内径10mmφ、
長さ130市のステンレス製反応管に充填し、グリコー
ル酸エチルの接触水素添加反応を反応圧力6に9/cn
I・0. SV 200001+r−1,水素/グリコ
ール酸エチル(モル比)1ooの条件下、所定温度で実
施した。その結果を、第2表に示す。
Reference Examples 5 to 7 The sample a5 prepared according to Example 2 had an inner diameter of 10 mmφ,
A stainless steel reaction tube with a length of 130 mm was filled, and the catalytic hydrogenation reaction of ethyl glycolate was carried out at a reaction pressure of 6 to 9/cn.
I・0. It was carried out at a predetermined temperature under the conditions of SV 200001+r-1, hydrogen/ethyl glycolate (molar ratio) 1oo. The results are shown in Table 2.

第2表 実施例3 硝酸第2銅・3水和物50/lを150 rnI!の水
に溶解し、これに濃アンモニア水200 rNJヲ加え
てpHを約11〜12とし、銅アンミン錯体を含む深青
色の溶液を得た。この深青色の溶液に、華均粒子径10
0μの微粒子シリカゲル19.2 gを加え室温で数時
間1!拝した。
Table 2 Example 3 Cupric nitrate trihydrate 50/l at 150 rnI! 200 rNJ of concentrated ammonia water was added thereto to adjust the pH to about 11 to 12 to obtain a deep blue solution containing a copper ammine complex. In this deep blue solution,
Add 19.2 g of 0μ microparticle silica gel and leave it at room temperature for several hours! I worshiped it.

次いで、混合液の温度を約85℃ないし約100℃に上
げて大部分の水を蒸発させ、さらに、]20℃で16時
間乾燥した。乾燥物を充分に水洗し。
The temperature of the mixture was then raised to about 85° C. to about 100° C. to evaporate most of the water, and then dried at ]20° C. for 16 hours. Wash dry items thoroughly with water.

再度120℃で24時間乾燥した後、水素気流中200
℃で12時間還元処理し、触媒を調製した。
After drying again at 120°C for 24 hours, it was dried at 200°C in a hydrogen stream.
A catalyst was prepared by reduction treatment at ℃ for 12 hours.

触媒の銅の含有率は約40 wt%であり、二酸化ケイ
素に対する銅の重量比は、約0.67であった。
The copper content of the catalyst was about 40 wt% and the copper to silicon dioxide weight ratio was about 0.67.

参考例8および9 実施例3で調製した触媒25 meを内径19.4mm
φ。
Reference Examples 8 and 9 Catalyst 25me prepared in Example 3 with an inner diameter of 19.4 mm
φ.

長さ’i’00ηlll−のステンレス製反応管に充填
し1反応圧力20 K9/cnl・G 、  S v 
20000 hr−3,水素/グリコール酸エチル(モ
ル比)100の条件下、所定温度でグリコール酸エチル
の水素添加反応を行なった。その結果を、第3表に示す
A stainless steel reaction tube with a length of 'i'00ηlll- was filled with one reaction pressure of 20K9/cnl・G, Sv
A hydrogenation reaction of ethyl glycolate was carried out at a predetermined temperature under the conditions of 20,000 hr-3 and hydrogen/ethyl glycolate (molar ratio) 100. The results are shown in Table 3.

第  3  表 比較例1 平均粒子径100μのシリカゲルに代えて、平均粒子径
、250μのシリカゲル19.219を用いた他は、実
施例1と同様の操作により触媒をB周製した。触媒の銅
の含有率は、約4Qwt%であり、二酸化ケイ素に対す
る銅の重量比は、約0.67であった0 参考例10〜・12 比較例1により調製した触媒5 ml!を内径10mm
φ。
Table 3 Comparative Example 1 A catalyst B was prepared in the same manner as in Example 1, except that silica gel 19.219 with an average particle size of 250 μm was used instead of silica gel with an average particle size of 100 μm. The copper content of the catalyst was about 4 Qwt%, and the weight ratio of copper to silicon dioxide was about 0.67. Reference Examples 10 to 12 5 ml of the catalyst prepared according to Comparative Example 1! inner diameter 10mm
φ.

長さ”r’:SOmn+のステンレス製反応管に充填し
9反応圧力6 K9/cnl・(J 、 5V2000
0hr−1,水素/グリコール酸エチル(モル比)]0
0の条件下、所定i?n′1度でグリコール酸エチルの
接触水素添加反応を実施しだ。その結果を、第4表に示
す。
Length "r': Fill a stainless steel reaction tube with SOmn+ 9 reaction pressure 6 K9/cnl・(J, 5V2000
0hr-1, hydrogen/ethyl glycolate (molar ratio)] 0
0, given i? A catalytic hydrogenation reaction of ethyl glycolate was carried out at n'1 degree. The results are shown in Table 4.

第  4  表 比較例2 硝酸第2 lil (cu(No3)2・3H20) 
24.22 f:220m1!の水に溶解し、これに硝
酸亜鉛〔Zn(NO3)26H20〕29、’7 gを
270 ml、の水に溶かした液を混合し。
Table 4 Comparative Example 2 Nitric acid No. 2 lil (cu(No3)2.3H20)
24.22 f: 220m1! A solution of 7 g of zinc nitrate [Zn(NO3)26H20] 29, dissolved in 270 ml of water was mixed therewith.

次いでクロム酸アンモニウム((NH4)2− cro
4) 45.62を1.40 ml、の水に溶かした液
を混合し、茶褐色の沈殿を得た。この沈殿溶液に、アン
モニアをjJIIえpHを7に調製し1次いで1〜2時
間攪拌し熟成した後 11Ti過して得た1集物を12
0℃で15時間乾燥した。該乾燥物を、約400℃に保
だ牙1だ容器上に少しづつ入れ、熱分解を行った。この
時触媒は、茶褐色から黒色に変化した。次いでこの黒色
になった触媒を、200℃で水素により51tX間還冗
処I441を行い、 jjlil−クロム qti鉛系
触媒を得た。
Then ammonium chromate ((NH4)2- cro
4) A solution obtained by dissolving 45.62 in 1.40 ml of water was mixed to obtain a brown precipitate. Add ammonia to this precipitate solution to adjust the pH to 7, stir for 1 to 2 hours, age, and pass through 11 Ti.
It was dried at 0°C for 15 hours. The dried product was put little by little into a container kept at about 400° C. to carry out thermal decomposition. At this time, the catalyst changed from brown to black. Next, this blackened catalyst was subjected to reflux treatment I441 with hydrogen at 200° C. for 51 tX to obtain a jjlil-chromium qti lead-based catalyst.

参考例13〜15 比較例2により賜1製した触媒5ml!を用い、参考例
−L〜・3と同じ条件下にグリコール酸エチルの接触水
素添加反応を実施した。その結果を、第5表に示す。
Reference Examples 13-15 5ml of the catalyst prepared according to Comparative Example 2! A catalytic hydrogenation reaction of ethyl glycolate was carried out under the same conditions as in Reference Examples L to 3. The results are shown in Table 5.

第  5  表Table 5

Claims (1)

【特許請求の範囲】[Claims] 銅のアンミン錯体を含む水溶液に、平均粒子径が200
μ以下の微粒子シリカゲルを混合し、得られる銅含有シ
リカゲルを還元処理することを特徴とする。低級ヒドロ
キシカルボン酸エステルの水素添加用触媒の製法。
In an aqueous solution containing a copper ammine complex, an average particle size of 200
It is characterized by mixing fine particles of silica gel with a particle size of less than μ and subjecting the resulting copper-containing silica gel to a reduction treatment. A method for producing a catalyst for hydrogenation of lower hydroxycarboxylic acid esters.
JP58063006A 1983-04-12 1983-04-12 Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester Granted JPS59189936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58063006A JPS59189936A (en) 1983-04-12 1983-04-12 Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58063006A JPS59189936A (en) 1983-04-12 1983-04-12 Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester

Publications (2)

Publication Number Publication Date
JPS59189936A true JPS59189936A (en) 1984-10-27
JPS6260938B2 JPS6260938B2 (en) 1987-12-18

Family

ID=13216799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58063006A Granted JPS59189936A (en) 1983-04-12 1983-04-12 Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester

Country Status (1)

Country Link
JP (1) JPS59189936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267601A (en) * 2007-04-18 2008-11-06 Dr Ing H C F Porsche Ag Gap sealing device for sealing block spring of spring strut
JP2015231611A (en) * 2014-06-10 2015-12-24 国立研究開発法人国立環境研究所 Highly dispersed transition metal catalyst and high dispersion supporting method of transition metal atoms on surface of silica support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267601A (en) * 2007-04-18 2008-11-06 Dr Ing H C F Porsche Ag Gap sealing device for sealing block spring of spring strut
JP2015231611A (en) * 2014-06-10 2015-12-24 国立研究開発法人国立環境研究所 Highly dispersed transition metal catalyst and high dispersion supporting method of transition metal atoms on surface of silica support

Also Published As

Publication number Publication date
JPS6260938B2 (en) 1987-12-18

Similar Documents

Publication Publication Date Title
EP0064241B1 (en) Process for producing ethylene glycol and/or glycolic acid ester, catalyst composition used therefor, and process for the production of this composition
US4511744A (en) Process for producing lower alkylene glycol, catalyst composition used therefor and process for production thereof
WO1995005241A1 (en) Ammoxidation catalyst composition
US3408309A (en) Fe, mo, co, and w mixed oxides as oxidation catalysts
JP2003126695A (en) Potassium niobate photocatalyst and manufacturing method therefor
CN107335465B (en) Preparation method of Silicate-1 molecular sieve catalyst, catalyst and method for preparing caprolactam
JPH0596B2 (en)
US4021371A (en) Process for the preparation of metal oxide catalysts and metal oxide supported catalysts
CN112934225B (en) Bimetallic component isophthalonitrile hydrogenation catalyst, preparation and application thereof
EP0171297A2 (en) A method for preparing dual colloid catalyst compositions
JPS59189936A (en) Preparation of hydrogenating catalyst of lower hydroxycarboxylic ester
JPS58219132A (en) Manufacture of cyclohexanol and cyclohexanone
JP2766040B2 (en) Production method of saturated alcohol
JPS58207945A (en) Hydrogenation catalyst for oxalic diester
JPH06254414A (en) Preparation of catalyst
US3241949A (en) Method of producing molybdenum alloy compositions from ammoniacal solutions
US3403112A (en) Process for producing a mixed oxide oxidation catalyst having improved selectivity
DE1518702C3 (en) Process for the production of acrylonitrile from propylene
JPH0326339A (en) Production of iron catalyst and production of primary amine through hydrogenation of nitrile by using that catalyst
CN112934210A (en) Isophthalonitrile hydrogenation catalyst, preparation and application thereof
US4372934A (en) Production of isocyanic acid
JPH05156326A (en) Production of fine silver powder
JPH0763625B2 (en) Method for producing iron molybdate catalyst for oxidation
JPS60161745A (en) Preparation of catalyst for hydrogenating lower hydroxycarboxylic ester
US3925481A (en) Process and catalyst for the preparation of ketones and/or aldehydes from olefines