JPS59189906A - Hollow fiber membrane having physiologically active substance immobilized thereto and treatment of liquid using said membrane - Google Patents

Hollow fiber membrane having physiologically active substance immobilized thereto and treatment of liquid using said membrane

Info

Publication number
JPS59189906A
JPS59189906A JP6507183A JP6507183A JPS59189906A JP S59189906 A JPS59189906 A JP S59189906A JP 6507183 A JP6507183 A JP 6507183A JP 6507183 A JP6507183 A JP 6507183A JP S59189906 A JPS59189906 A JP S59189906A
Authority
JP
Japan
Prior art keywords
membrane
substance
hollow fiber
physiologically active
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6507183A
Other languages
Japanese (ja)
Other versions
JPH0364173B2 (en
Inventor
Hiroyuki Akasu
弘幸 赤須
Akio Omori
大森 昭夫
Yoshito Hamamoto
浜本 義人
Michihiro Nakamura
通宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP6507183A priority Critical patent/JPS59189906A/en
Publication of JPS59189906A publication Critical patent/JPS59189906A/en
Publication of JPH0364173B2 publication Critical patent/JPH0364173B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain an immobilized membrane excellent in the permeability of a macro-molecular substance with a M.W. of 10,000 or more and reduced in the effluence of a physiologically active substance, by using a hollow fiber membrane of which the transmittance of bovine serum albumin is 90% or more and to which a physiologically active substance is chemically bonded. CONSTITUTION:The pore size of max. probability in the pore size distribution curve of the thickness of a physiologically active substance immobilized fiber membrane is within a range of 0.035-15mum and the void ratio of the hollow fiber is 40% or more and the transmittance of bovine serum albumin thereof is 90% or more. This hollow fiber membrane comprises a substance with a M.W. of 10,000 or more or a substance with a M.W. of 10,000 or less and efficiently treats a liquid to be treated containing a substance converted to a substance with a M.W. of 10,000 or more by the treatment of said physiologically active substance. As the physiologically active substance to be immobilized, enzyme, a microbial cell, a cell, organera, an antigen, an antibody or medicine are represented.

Description

【発明の詳細な説明】 不発明は、生理活性物質が化学的に結合されている多孔
性中空繊維膜と、その膜を使用した液の処理方法に関す
るものである。さらに詳しくは抗庄勧質、ホルモン、酵
素、抗原、抗体、細胞、微生物函体、オルガイ、う、核
酸、医薬品等が化学的に結合苫7している、高分子量1
ス質、特に蛋白質、多糖類の透過性に優れた多孔性中空
繊維膜と、その膜を使用した液の処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porous hollow fiber membrane to which a physiologically active substance is chemically bonded, and a method for treating a liquid using the membrane. In more detail, anti-inflammatory substances, hormones, enzymes, antigens, antibodies, cells, microbial boxes, organs, bacteria, nucleic acids, pharmaceuticals, etc. are chemically bonded to high molecular weight substances.
The present invention relates to a porous hollow fiber membrane that has excellent permeability to liquids, especially proteins and polysaccharides, and a method for treating liquids using the membrane.

酵素や微生物函体、延らには動植物細胞やオルガネラ、
抗原あるいは抗体、ホルモン、抗生物質、核1波、医薬
品などをwJ理的、化学的に固定化した材料は各種有用
物質の合成手段として、あるいは各槁センサー用、医療
用、分析用なとに広範囲な用途’c7piする。従来こ
うした固定化材料として公知のものは、担体としてポリ
マー粒、活性炭など粒状物を用いるものが多く、中空繊
維型分離膜を担体とするものは比較的少ないが、例えば
特開昭53−18792号にはポリアクリロニトリルを
素材とする非対称型中空繊維膜に化学的結合法によって
酵素を固定する方法が提示され°Cいる。ま/ζ特開昭
56−39788号、同56−131387号、同56
−16478−9号にも表面に緻密層を有する中空繊維
型分離膜に物理的、あるいは(又は)化学的に酵素を固
定する方法が開示されている。しかし、なから、これ等
の方法によって得られる酵素固定膜は酵素の流出を防止
するために膜表面に、平均孔径0.001μ〜0.01
μ程度の細孔よりなる酵素不透過性緻密層を設けた限外
ヂ過膜を利用したものであり、本発明の目的とする分子
量1万以上の高分子量物質の透過性に優扛た中空繊維膜
型固定用担体とは基本的に異なっている。
Enzymes and microbial boxes, as well as animal and plant cells and organelles,
Materials in which antigens, antibodies, hormones, antibiotics, nuclear waves, pharmaceuticals, etc. are immobilized physically or chemically can be used as a means of synthesizing various useful substances, or for various sensors, medical purposes, and analytical purposes. Wide range of uses for 'c7pi'. Many of the conventionally known immobilization materials use granular materials such as polymer particles and activated carbon as carriers, and relatively few use hollow fiber type separation membranes as carriers; proposed a method for immobilizing enzymes on an asymmetric hollow fiber membrane made of polyacrylonitrile by chemical bonding. Ma/ζ Japanese Patent Publication No. 56-39788, No. 56-131387, No. 56
No. 16478-9 also discloses a method of physically and/or chemically immobilizing an enzyme on a hollow fiber type separation membrane having a dense layer on the surface. However, the enzyme-immobilized membranes obtained by these methods have an average pore size of 0.001μ to 0.01μ on the membrane surface to prevent the enzyme from leaking out.
It utilizes an ultra-permeable membrane with an enzyme-impermeable dense layer consisting of micro-sized pores, and has hollow membranes that are highly permeable to high molecular weight substances with a molecular weight of 10,000 or more, which is the object of the present invention. It is fundamentally different from the fiber membrane type fixation carrier.

本発明者らは、前記のような#累年透過性緻密層を有し
てない、精密濾過用中空域維膜への生理活性物質の固定
を鋭意@死し、その結果従来の担体よりはるかに孔径の
大きな、午血清アルブミンを90%以上透過させるよう
な中空繊維膜に生理活性物質を化学的に結合させfc膜
が、意外にも活性物質の流出も少なく実用的に優れた性
能を有する事を見い出し、不発明に至った。すなわち、
本発明は下記の生理活性物質固定中空繊維膜および該膜
を使用する液の処理方法である。
The present inventors have earnestly attempted to immobilize a physiologically active substance on a hollow fiber membrane for precision filtration that does not have the above-mentioned permeable layer densa, and as a result, it is far more effective than conventional carriers. The FC membrane, in which physiologically active substances are chemically bonded to a hollow fiber membrane with large pores that allows over 90% of serum albumin to pass through, surprisingly has excellent practical performance with little outflow of active substances. He discovered something and came up with an invention. That is,
The present invention is a hollow fiber membrane fixed with a physiologically active substance as described below, and a method for treating a liquid using the membrane.

(1)孔径分布曲線における最大確率(モード)の孔径
が0.035μ以上15μ以下の範囲にあり空孔率が4
0%以上、牛血清アルブミンの透過率が90%以上で、
かつ生理活性物質が化学的結合さ11でいる事を特徴と
する生理活性物質固定中空繊維膜。
(1) The maximum probability (mode) pore size in the pore size distribution curve is in the range of 0.035 μ to 15 μ and the porosity is 4
0% or more, the permeability of bovine serum albumin is 90% or more,
and a physiologically active substance-fixed hollow fiber membrane characterized in that the physiologically active substance is chemically bonded.

(2)孔径分布曲線における最大確率(モード)の孔径
が0.035μ以上15μ以1の範囲にあす、空孔率が
40襲以上、牛血清アルブミンの透過率が90%以上で
かつ生理活性物質が化学的に結合さ扛ている中空繊維膜
に(イ)該生理活性物質で処理される分子量1万以上の
物質−!たは(ロ)分子量1万以下の物質であって、該
生理活性物質で処理されで分子量1万以上の物質に変換
される物質を含む被処理液を供給して処理し、分子量1
万以上の物質を含む処理叡を絨中空繊維の膜壁(i−通
して取り田すことを特徴とする生理活性物質固定中空繊
維膜の使用による液の処理方法。
(2) The pore diameter of the maximum probability (mode) in the pore size distribution curve is in the range of 0.035μ or more and 15μ or more, the porosity is 40 or more, the permeability of bovine serum albumin is 90% or more, and the bioactive substance is (a) A substance with a molecular weight of 10,000 or more to be treated with the physiologically active substance -! or (b) supplying and treating a liquid to be treated containing a substance with a molecular weight of 10,000 or less that is converted into a substance with a molecular weight of 10,000 or more when treated with the physiologically active substance;
A method for treating a liquid by using a physiologically active substance-fixed hollow fiber membrane, characterized in that a treatment membrane containing more than 10,000 substances is passed through the membrane wall of a hollow fiber.

本発明において用いられる中空繊維j換は膜壁の孔径分
布曲線におり−る取太づ1述率(モード)の孔径が0.
035μ以上、15μ以下、より好tL、<は0.05
μ以上、10μ以下の範囲にかけれはならない。本発明
でいう孔径分Mi aEI劇は水銀ポロシメーターによ
って測足恣れるもので、ここでいうモードの孔径とV′
J、、膜内の全空隙に対して最大の坏桜分イ4全イ丁゛
する孔径の4誕である。
The hollow fibers used in the present invention have a pore diameter of 0.0 or less at a mode of 0.05 to 0.05.
035μ or more, 15μ or less, more preferable tL, <0.05
It must not exceed μ or more and must not exceed 10μ. In the present invention, the pore size M aEI can be measured using a mercury porosimeter, and the mode pore size and V'
J, the maximum size of the pores is 4, which corresponds to the total size of the pores in the membrane.

モードの孔径が0.03!5μより小゛きい噛合には酵
素、抗原、抗体の固定が凶猛で活性も低り、15μより
太きいと、細胞、オルガネラ、徽/:E吻1」体の固冠
が困徳である。
If the mode pore size is smaller than 0.03!5μ, the immobilization of enzymes, antigens, and antibodies will be severe and the activity will be low; if it is larger than 15μ, cells, organelles, A fixed crown is a bad virtue.

まグζ本発明で用いら匙る甲空稙維膜の空づ′L率は4
0%以上でなけれはならない。工す好ましくは50係以
上、さらに好ましくは60%以上である。
Mag ζ The empty space ratio of the hollow fibrous membrane used in the present invention is 4.
Must be 0% or more. It is preferably 50% or more, more preferably 60% or more.

空孔率が40係未−aだと膜の単位体積あた()の比\ 表面積が小さすき゛、固定化量が少なくなるため、膜面
積当りの活性が低い。なお、空孔率(P)は次式により
求められる値である。
When the porosity is less than 40, the surface area ratio per unit volume of the membrane is small, and the amount of immobilization is small, so the activity per membrane area is low. Note that the porosity (P) is a value determined by the following formula.

゛ p−(1−伍) X 100 ρa (ρa:中空繊維全構成している物質の比重、ρ。:中
窒稙維の見かけの比重) 本発明の生理活性物質を化学的に固定した中空繊維膜の
もつとも重要な璧件は、分子量1万以上より好ましくは
6万以上の高分子量物質の透過性である。従来の酵素不
透過層を有する中空繊維型酵累固ン亡膜や、己括型のゲ
ル構造膜では膜壁の孔径が小さすき゛、この様な高分子
量物質全透過させ得なかった。ぞn改、分子量1万以上
の物質を膜壁円全趙過烙せつつ処理し、なおかつ分子量
1万以上の物質を含む透過液全得る事は実質的に不可能
だった。また1らに、同じ理由により従来の固足膜では
分子量が1万より小さい物質を膜壁内で会合させ、ある
いは他物質と結合させて透過液中に分子量1万以上の物
質を座/E芒ぜるφもでさなかったが、不発切者らは、
十皿溝アルブミン(フナ千振6万7千)の透過率が9 
(J%以上、好ましくは十児投グロブリンG(分子量1
5万6千)の透過率が90%以上の膜に生理活性物質を
化学的に固定した多孔質中空繊維膜を用い扛は、従来不
可能でりつだ分子量1万以上の物質を含む、生理活性*
賀によって処理さnた透過液が容易に、かつ効率的に得
ら扛るqを見い田した。牛血清アルブミンに対する透過
率が90%より、J\さいと、生理活性′#責を同定し
た場合に分子量1万以上の物質の透過性−が低く、活性
も経時的に低下しゃ丁い。
゛ p- (1-5) The most important requirement of a fiber membrane is its permeability to high molecular weight substances having a molecular weight of 10,000 or more, preferably 60,000 or more. Conventional hollow fiber fermentation membranes with an enzyme-impermeable layer and self-contained gel structure membranes have small pore diameters in their membrane walls, and cannot allow such high molecular weight substances to completely permeate. However, it was virtually impossible to process a substance with a molecular weight of 10,000 or more while thoroughly heating the membrane wall, and to obtain all of the permeate containing the substance with a molecular weight of 10,000 or more. In addition, for the same reason, in conventional solid-foot membranes, substances with a molecular weight of less than 10,000 are assembled within the membrane wall, or are combined with other substances, and substances with a molecular weight of more than 10,000 are deposited in the permeate. Even the awning φ did not come out, but those who failed to do so,
The transmittance of ten-plate groove albumin (Funa Senji 67,000) is 9.
(J% or more, preferably 100% globulin G (molecular weight 1
Using a porous hollow fiber membrane in which physiologically active substances are chemically immobilized on a membrane with a permeability of 56,000% or more, it is impossible to remove physiologically active substances containing substances with a molecular weight of 10,000 or more. Activity*
We have found that the permeate can be easily and efficiently obtained by the process. When the permeability to bovine serum albumin is 90%, the permeability to substances with a molecular weight of 10,000 or more is low, and the activity does not decrease over time.

ここでいう透過率は37℃、 pf(7,4の等張りン
醒緩衝浴′#會浴媒とする0、 1係の蛋日蔭ン反のθ
」過笑験から?X i’cによって舅出石γしたイ直で
めな0尚、 Cin  −中空権維入口の蛋白濃度Co
ut=   l穐 出口の蛋白濃度CuF’=p衣の蛋
日磯度 本発明において用いられる中空繊維膜の累月は特に隔定
汀なく例えはガラス、シリカ、セラミック、アルミナ、
金属酸化物、グラファイトなどの無機材料、テキストラ
ン、セファデックス、セルロース、コラーゲン、キチン
などの天然有機高分子、ブーイロン、スチレン、ポリア
クリルアミド、ポリビニルアルコール、ポリアクリロニ
トリル、ポリメタクリレート、ポリメチルメタクリレー
ト、ポリビニルピロリドン、ポリエステル、ポリ塩化ビ
ニノソ、ポリカーボネート、ポリエチレン、ポリプロピ
レン、ポリブタジエン、ポリテトラフロロエチレン、ポ
リスルホン、ポリエーテルエーテルケトン、ポリアミノ
酸などの合成有機高分子材料がある。これらの材料は単
独で用いても良いし、共重合体やポリマーブレンドとし
て用いても良い。
The transmittance here is 37℃, pf (isotonic buffer bath of 7,4)
” From an accidental experience? The protein concentration Co at the entrance of the hollow fiber is Cin - the protein concentration Co at the entrance of the hollow fiber
The protein concentration at the outlet is CuF' = p The protein concentration at the outlet The concentration of the hollow fiber membrane used in the present invention is not particularly limited, and examples include glass, silica, ceramic, alumina,
Inorganic materials such as metal oxides and graphite, natural organic polymers such as Textran, Sephadex, cellulose, collagen, and chitin, Bouillon, styrene, polyacrylamide, polyvinyl alcohol, polyacrylonitrile, polymethacrylate, polymethylmethacrylate, and polyvinylpyrrolidone. There are synthetic organic polymer materials such as polyester, polyvinylchloride, polycarbonate, polyethylene, polypropylene, polybutadiene, polytetrafluoroethylene, polysulfone, polyetheretherketone, and polyamino acid. These materials may be used alone, or may be used as a copolymer or polymer blend.

また光照射、放射線照射、化学処理などにより、グラフ
ト化や官能基の導入全行なった素材を用いても良いが、
予じめ水酸基、アルデヒド、カルボキシル基、アミ7′
基、イミド基などを有するものは固定化のための工程が
少なく好適である。以下代表的なものについて簡単に説
明する。
In addition, materials that have been grafted or have functional groups introduced through light irradiation, radiation irradiation, chemical treatment, etc. may also be used.
Hydroxyl group, aldehyde, carboxyl group, amine 7'
Those having a group, an imide group, etc. are suitable because they require fewer steps for immobilization. Representative ones will be briefly explained below.

ポリビニルアルコールを生理活性物質固定用中空繊維膜
素材として用いる場合には、まず膜を水不溶性とし、か
つ多孔質構造を保持するだめの処理が必要である。不溶
化処理の方法としてはホルマリンやベンズアルデヒド等
によるホルマール化、グルタルアルデヒド、水酸化チタ
ン等の架橋剤による架橋、電子線やガンマ−線等による
架橋反応が用いられる。これ等不溶化処理によって元の
ポリビニルアルコール中の水酸基の一部が失われるが、
本発明の生理活性物質(2)定用担体として用いる場合
、水酸基の残存率は好ましくは20モル係以上、さらに
好ましくは35モルチ以上である。
When polyvinyl alcohol is used as a hollow fiber membrane material for immobilizing physiologically active substances, it is necessary to first make the membrane water-insoluble and to maintain its porous structure. As a method for the insolubilization treatment, formalization using formalin, benzaldehyde, etc., crosslinking using a crosslinking agent such as glutaraldehyde, titanium hydroxide, etc., and crosslinking reaction using electron beams, gamma rays, etc. are used. Although some of the hydroxyl groups in the original polyvinyl alcohol are lost through these insolubilization treatments,
When the physiologically active substance (2) of the present invention is used as a regular carrier, the residual ratio of hydroxyl groups is preferably 20 molar or more, more preferably 35 molar or more.

−また膜素材としてビニルアルコール系共重合体を用い
る場合にも共重合体中のビニルアルコール残基の含有率
は好葦しくに20モル%以上、さらに好ましくは35モ
ル%以上である。残存率が20%より小さいと水酸基を
利用する結合法だけでは固定化量が少なくなり、膜の比
活性が低い。
-Also, when a vinyl alcohol copolymer is used as the membrane material, the content of vinyl alcohol residues in the copolymer is preferably at least 20 mol%, more preferably at least 35 mol%. If the residual rate is less than 20%, the amount of immobilization will be small only by the bonding method using hydroxyl groups, and the specific activity of the membrane will be low.

本発明に≧いて用いられる多孔質中空繊維膜そのンもの
は公矧の製法により製造することができる。
The porous hollow fiber membrane itself used in the present invention can be manufactured by a method known by Kojiro.

例えばポリビニルアルコールの多孔質膜は特開昭52−
21420号に記載さnている方法により、エチレンビ
ニルアルコール系共重合体の多孔質膜は特開昭51−1
45474に記載されている方法をもとに製造する事が
できる。また、これらの多孔質中空繊維膜のプロフィー
ルは通常内径が50μ以上、20,000μ以下、好適
には100μ以上5000it以下、さらに好適には1
75μ以上2000μ以下である。これより細いと中空
繊維膜が機緘的に奥<、また県東、成形してモジュール
化した際に中窒部流路側の圧損が大きくなりすぎる。こ
れより太いと単位体積当りの膜面積が小さくなりすぎ 
   ・て十分な固定化量が得られず、被処理液の処理
効率が低い。
For example, a porous membrane of polyvinyl alcohol is
A porous membrane of ethylene vinyl alcohol copolymer was prepared by the method described in Japanese Patent Application Laid-open No. 51-1-21420.
It can be manufactured based on the method described in No. 45474. In addition, the profile of these porous hollow fiber membranes is usually such that the inner diameter is 50μ or more and 20,000μ or less, preferably 100μ or more and 5000μ or less, and more preferably 1
It is 75μ or more and 2000μ or less. If it is thinner than this, the hollow fiber membrane will be mechanically too deep, and when it is molded into a module, the pressure loss on the middle nitrogen flow path side will be too large. If it is thicker than this, the membrane area per unit volume will be too small.
・A sufficient amount of immobilization cannot be obtained, and the processing efficiency of the liquid to be processed is low.

固定化される生理活性物質としては、酵素(含補酵素)
、微生物掬体、細胞、オルカネラ、抗原、抗体、ホルモ
ン、抗生物質、核酸、医薬品などをあける事ができる。
Physiologically active substances to be immobilized include enzymes (including coenzymes);
It can open microbial capsules, cells, organelles, antigens, antibodies, hormones, antibiotics, nucleic acids, medicines, etc.

医薬品としては例えばシクロフォスフアミド、アザチオ
プリンなどの免役抑制剤、レバミゾールなどの免役調節
剤、インターフェロン、インターフゞ ロイキンなどの免疫1捉連9勿質〒、フ′ロスタ奔シン
ジン、トロンボキサン、プロスタサイクリン、ロイコト
リエン、副腎皮質ステコイドなどが同定化される。
Examples of pharmaceuticals include immunosuppressants such as cyclophosphamide and azathioprine, immunomodulators such as levamisole, immunostimulants such as interferon and interphyleukin, phrostacindin, thromboxane, and prostacyclin. , leukotrienes, adrenal corticosteroids, etc. are identified.

抗原としては、例えばサイログロブリン、ミクロゾーム
、甲状腺刺激ホルモン受容体、アセチルコリン受容体、
インスリン受容体、細胞核などの自己免疫疾患関連抗原
、α−フェトプロティンのような癌特異性抗原、アグル
チニン、病原性のないトレボネーマ、あるいはこれらの
疑似物質などが固定化さ2’Lる。抗体としては、例え
ば抗アルブミン抗体、抗免疫グロブリン抗体、B型肝炎
抗体、人繊毛性ゴナド)oピ/抗体などが固定化される
Examples of antigens include thyroglobulin, microsome, thyroid stimulating hormone receptor, acetylcholine receptor,
Insulin receptors, autoimmune disease-related antigens such as cell nuclei, cancer-specific antigens such as α-fetoprotein, agglutinin, non-pathogenic Trebonema, or pseudo-substances thereof are immobilized on the 2'L. Examples of the antibodies that can be immobilized include anti-albumin antibodies, anti-immunoglobulin antibodies, hepatitis B antibodies, and human ciliated gonad antibodies.

オルガネラとしCf′i、例えばミトコンドリア、核、
クロマトホアー、クロロプラスト、ペルオキシシ一台な
どが固定化さ1する。
Organelles such as Cf'i, such as mitochondria, nucleus,
Chromatophores, chloroplasts, peroxygens, etc. are immobilized.

細胞とし−Cは例えば腎細胞、肝細胞、ランゲルハンス
島細胞、各種リンパ球、およびノ・イブリッド化ぢ扛た
細胞なとが固定化される。
Cells such as kidney cells, hepatocytes, islets of Langerhans cells, various lymphocytes, and hybridized cells are immobilized.

値生物爾俸としては例えば大腸菌、枯草菌、放線凶、ブ
ドウ状球凶、メタノール1などの細菌類、酵母、各棟の
カビなどが固定化される。
Examples of biological substances that can be immobilized include bacteria such as Escherichia coli, Bacillus subtilis, actinobacterium, phlegmon, methanol 1, yeast, and molds of various types.

酵素としては、単離精製されたものの他、倣生物凶俸内
酵婚のように細胞内に存在する酢紫でも良いし、11!
I胞から抽出された酵素でも良い。あるいはまた単一の
酵素たけでなく、複数の酵素を固定化しても良いし、補
U素や、ATP、AIJPなどと共に固定化しでも良い
。具体例としては、例えはアミノ酸オキシタ゛−ゼ、カ
タラーゼ、キサンチンオキシダーゼ、グルコースオキシ
ダーゼ、グルコース−6−リン酸テヒドロゲナーゼ、グ
ルタミン酸デヒドロゲナーゼ、チトクロムCオキシダー
ゼ、テロシナーセ、乳酸デヒドロゲナーゼ、ベルオギシ
ダーゼ、6−ホスホグルコン酸デヒドロゲナーゼ、リン
ゴ酸デヒドロゲナーゼのような酸化還元酵素、アスバン
ギン酸アセチルトランスフェラーゼ、アスパラギン酸ア
ミントランスフエラーセ、クリシンアミノトランスフエ
ラーセ、グルタミン酸−オキザロ酢酸アミントランスフ
ェラーゼ、グルタミン酸−ビルビン酸アミノトランスフ
ェラーゼ、クレアチンホスホキナーゼ、ヒスタミンメチ
ルトランスフェラーゼ、ピルビン酸キナーゼ、フラクト
キナーゼ、ヘキソキナーゼ、8−IJレジンセチルトラ
ンスフェラーゼ、ロイシンアミノペプチターゼのような
転移酵素、アスノ<ラキナーゼ、アセチルコリンエステ
ラーゼ、アミノアミラーゼ、アミラーゼ、アルギナーゼ
、L−アルギニンデイミナーゼ、インベルターゼ、マル
ターゼ、ラクターゼ、ウレアーゼ、ウリカーゼ、ウロキ
ナーゼ、エステラーゼ、β−ガラクト7り−セ、カリク
レイン、キモトリプシン、トリプシン、トロンビン、ペ
プシン、ノ()くイン、ノくンクレアナン、ナリンギナ
ーゼ、ヌクレオチダーゼ、ヒ1fウロニダーゼ、プラス
ミン、ペクチナーゼ、ヘスペリジナーセ、ベニシリナー
ゼ、ペニシリンアミタ゛−セ、リパーゼ、ホスホリンく
一ゼ、ボスファターセ11ノボヌクレアーセ、レンニン
、メリビアーゼ、アルドラーゼ、セルラーゼ、アン/ト
シアプーーゼ、ナ1ノンジナーゼ、タンナーゼのような
加水分解酵素、アスパラギン酸デカルボキシラーゼ、ア
スノ<ルターゼ、クエン酸リアーゼ、グルタミン酸デカ
ルボキシラーゼ、ヒスチジンアンモニアリアーゼ、フェ
ニルアラニンアンモニアリアーゼ、フマラーゼ、フマー
ル酸ヒドラターゼ、リンゴ酸シンテターゼのようなリア
ーゼ、アラニンラセマーゼ、クルコースイノメラーゼ、
グリコ−スホスフェートイソメラーゼ、グルタミン酸ラ
セマーゼ、乳酸ラセマーゼ、メチオニンラセマーゼのよ
うな異性化酵素、アスパラギンシンターセ、ダルタチオ
ンシンターセ、ビルと6/酸シンターゼ、IJNAリガ
ーゼなどのりガーゼ、Ec oRI、Hindll、B
am HI 、 Sat I、Pst Iなどの制限酵
素等がある。
In addition to isolated and purified enzymes, enzymes that exist inside cells, such as the imitative organism Kyohanaikokon, can also be used, and 11!
Enzymes extracted from I cells may also be used. Alternatively, instead of just a single enzyme, a plurality of enzymes may be immobilized, or they may be immobilized together with a complementary element, ATP, AIJP, or the like. Specific examples include amino acid oxidase, catalase, xanthine oxidase, glucose oxidase, glucose-6-phosphate tehydrogenase, glutamate dehydrogenase, cytochrome C oxidase, telosinase, lactate dehydrogenase, berogysidase, 6-phosphogluconate dehydrogenase, Oxidoreductases such as malate dehydrogenase, asbanate acetyltransferase, aspartate amine transferase, chrysin aminotransferase, glutamate-oxaloacetate amine transferase, glutamate-pyruvate aminotransferase, creatine phosphokinase, histamine methyltransferase, Transferases such as pyruvate kinase, fructokinase, hexokinase, 8-IJ resin cetyl transferase, leucine aminopeptidase, asnola kinase, acetylcholinesterase, aminoamylase, amylase, arginase, L-arginine deiminase, invertase, maltase, Lactase, urease, uricase, urokinase, esterase, β-galactolyse, kallikrein, chymotrypsin, trypsin, thrombin, pepsin, no()kuin, nokunureanan, naringinase, nucleotidase, 1f uronidase, plasmin, pectinase , hesperidinase, venicillinase, penicillin amitase, lipase, phosphorinase, bosphatase 11 nobonuclease, rennin, melibiase, aldolase, cellulase, an/tocyapase, nalnondinase, tannase, hydrolytic enzymes, aspartate decarboxylase, Lyases such as Asno<lutase, citrate lyase, glutamate decarboxylase, histidine ammonia lyase, phenylalanine ammonia lyase, fumarase, fumarate hydratase, malate synthetase, alanine racemase, curcose inomerase,
Isomerase enzymes such as glycose phosphate isomerase, glutamate racemase, lactate racemase, methionine racemase, glue gauzes such as asparagine synthase, daltathione synthase, biru and 6/acid synthase, IJNA ligase, EcoRI, Hindll, B
There are restriction enzymes such as am HI, Sat I, and Pst I.

これらの生理活性物質を多孔質中空繊維膜に固定する方
法としては、担体結合法が用いら扛るが、微生物菌体、
細胞、オルガネラ等を固定する際には包括法を併用して
も良い。担体結合法のうちでは共有結合法、イオン結合
法か好適であり、共有結合法としては例えばジアゾ法、
アルキル化法、ペプチド法なとが好lしい。1 /こ、
こ!tらの化学薬品を用いる縞@痺のり′ト、光や放肩
緑の+11:<勃を利用して共肩結合ヘコ、イオン請合
をイ″′fなゎぜる柩も   (2)できる。
Carrier binding methods are used to immobilize these physiologically active substances on porous hollow fiber membranes, but microbial cells,
When fixing cells, organelles, etc., an entrapment method may be used in combination. Among carrier bonding methods, covalent bonding methods and ionic bonding methods are preferred; examples of covalent bonding methods include diazo method,
Alkylation methods and peptide methods are preferred. 1/ko,
child! Stripes using chemicals such as numbing glue, light and shoulder green +11: <Using erection to joint shoulders, ion pressure is also applied to the coffin (2) can.

不溶化処理されたポリビニルアルコールや、エチレンビ
ニルアルコール系ポリマー、セルロース等の水酸基は、
酵素、抗原、抗体、細胞、オルガネラ、微生物菌体、核
酸、不ルモン、抗生−、I′/JJA1医薬品などの有
する水酸基、−アミノ基、カルボキシル基等と適当な試
薬によって結合する事ができる。以下にビニルアルコー
ルの水酸基と、勺三理ン古性物声のアミノ基間の結合形
成法全ψ1」とし−C列挙する。ここで固定化物のアミ
ノ基をR−M(2、ビ  (3)ニルアルコール’lx
  !:Hテ示”’j−0H 1 α“ アクリル酸系ポリマーよりなる膜への生理活性物質の固
定は例えば次の様にして行なえる。ここは酵素を表わす
Hydroxyl groups in insolubilized polyvinyl alcohol, ethylene vinyl alcohol polymers, cellulose, etc.
It can be bonded to hydroxyl groups, -amino groups, carboxyl groups, etc. of enzymes, antigens, antibodies, cells, organelles, microbial cells, nucleic acids, urumones, antibiotics, I'/JJA1 pharmaceuticals, etc., using an appropriate reagent. Below, all the bond formation methods between the hydroxyl group of vinyl alcohol and the amino group of the ancient Japanese language ψ1 are listed. Here, the amino group of the immobilized product is
! :H te "'j-0H 1 α" Immobilization of a physiologically active substance onto a membrane made of an acrylic acid polymer can be carried out, for example, as follows. This represents an enzyme.

1− CO−NI(−NkLq +NaNO2−町→ナ
イロンよりなる膜−\の生理活性物質・つ固定は例え(
,1次。様(お6.ヶヶえお。。6ア凸−〇いオ晶 イロンを、R−NH2は酵素を宍わす〇1 本発明の生理活性物質固定中壁繊維膜によって(イ)分
子量1万以上の物質(体液・血漿等)−または分子量1
万以下の物質であって、該生理活性物質で処理されて分
子量1万以上の物質に変換される物質(酵素・細胞等の
栄養源となるアミノ酸、糖等を含む培養液。例えばME
;M、 NCTC,F−12゜cMwh、−1415等
、分子量1万以上のアルブミン、グロブリン等の免疫関
連物質が生合成される)を含む被処理液を処理すること
ができる。かかる被処理液は中空g、維が多孔性である
7tめ、中空繊維の膜壁を通しつつ、効率よく処理され
る。被処理液は全量が膜壁を通る必要はなく、中空繊維
の内部または外部を循環させ7+:がら、1部が膜壁全
通過し、有用物質が中空繊維の膜壁全通して取り出され
ればよい。
1- CO-NI(-NkLq +NaNO2-machi→membrane made of nylon-\) is fixed with an example of (
, 1st order. 6. Convex 〇 O crystal iron, R-NH2 destroys enzymes 〇1 By the physiologically active substance fixed inner wall fiber membrane of the present invention (a) Molecular weight of 10,000 or more substances (body fluids, plasma, etc.) - or molecular weight 1
Substances with a molecular weight of 10,000 or less that are converted into substances with a molecular weight of 10,000 or more when treated with the physiologically active substance (culture fluid containing amino acids, sugars, etc. that serve as nutritional sources for enzymes, cells, etc.; for example, ME
; M, NCTC, F-12°cMwh, -1415, etc., in which immune-related substances such as albumin and globulin with a molecular weight of 10,000 or more are biosynthesized) can be processed. The liquid to be treated is efficiently treated while passing through the membrane wall of the hollow fibers, which are porous. The entire amount of the liquid to be treated does not need to pass through the membrane wall, but if it is circulated inside or outside the hollow fiber, a portion of the liquid passes through the membrane wall and the useful substance is taken out through the membrane wall of the hollow fiber. good.

被処理液は、生理活性物質を固定し/ζ膜の反応収率、
反応速度、目的とする?!7質のβf望の純度等により
、バッチ式、連続式のうち好適な方法で処理する事がで
きる。また同様の見地より循環の有無、循環量と膜透過
量の比鳴最逸な条件を選択する事ができる。被処理液の
流路は中空繊維膜の中空部でも、外表面側でも良い。通
常は循環方式では中空部を、全量押込み透過(非循焦)
方式では外表面側を流す方が化学工学的に有オUである
。また上記の様な方法で処理を右なうに際し、本発明の
中空淑維膜は単繊維としてだけでな(、両端間ロ壓−片
端閉止型など公知のモジュール形態に集束、成形して用
いる事ができる。
The treated solution fixes physiologically active substances/ζ membrane reaction yield,
Reaction speed, objective? ! Depending on the desired purity of the 7-quality βf, the treatment can be carried out by either a batch method or a continuous method. Also, from the same point of view, it is possible to select conditions for the presence or absence of circulation and the optimum ratio between the amount of circulation and the amount of membrane permeation. The flow path for the liquid to be treated may be in the hollow part of the hollow fiber membrane or on the outer surface side. Normally, in the circulation method, the entire amount is pushed through the hollow part (non-circulation focusing).
In terms of chemical engineering, it is more advantageous to flow the water on the outer surface side. In addition, when processing by the method described above, the hollow fiber membrane of the present invention can be used not only as a single fiber, but also by being bundled and formed into a known module form such as a double-ended round-one-end closed type. I can do things.

本発明の中空繊維膜の具体的な利用例としては例えば医
療用として抗原(抗体)を固定した該中空繊維膜の中空
部に血液を加圧導入し、該膜によって血漿を一部分λ1
仁(〜、j膜壁内金通過せしめつつ抗体(抗原)を選択
的に奴着除云し、悪性物質を含有しない正常血清を・得
、それを再び血中へ戻す方法へのオU用を桔ける孕がで
きる。同様にして、免投似合体、コl/ステロール、フ
・イブリノーゲン、α、−タリコプロテイン、兄投抑制
因子、リウマチ因子号の除去にも利用できる。
As a specific example of the use of the hollow fiber membrane of the present invention, for example, for medical purposes, blood is introduced under pressure into the hollow part of the hollow fiber membrane on which an antigen (antibody) is immobilized, and a portion of plasma λ1 is absorbed by the membrane.
(~, j) A method for selectively removing antibodies (antigens) while allowing them to pass through the membrane wall, obtaining normal serum that does not contain malignant substances, and returning it to the blood. In the same way, it can be used to remove anti-inflammatory complexes, cholesterol/sterol, fibrinogen, α,-talicoprotein, anti-inflammatory factor, and rheumatoid factor.

生化学分野て゛は例えばDNA組換え技術で育種さ:j
した倣庄物を中空繊維膜の膜壁内および(また(Ci、
)表面に固定し、膜の一方の側より培養液と共にペプチ
ド、アミノ酸、糖、ATP、m類等の低分子量1g、別
物質を供伶し、他の側より人出来ホルモン、ポリペプチ
ド、インター フェロン、ワクチンなどの隅分子量生産
物を得る都に利用できる。
In the field of biochemistry, for example, breeding is done using recombinant DNA technology.
The simulated material was applied inside the membrane wall of the hollow fiber membrane and (also (Ci,
) Immobilized on the surface, 1 g of low molecular weight peptides, amino acids, sugars, ATP, m-type substances, and other substances are supplied from one side of the membrane along with the culture medium, and human hormones, polypeptides, and interferon are supplied from the other side. It can be used to obtain corner molecular weight products such as ferrons and vaccines.

同様に菌体外タンパク質生江菌を固定した膜を用いで、
飼料用−″V′穴料用タンパク質の生産を行なわぜる事
もできる。
Similarly, using a membrane immobilized with extracellular protein Namae bacteria,
It is also possible to produce protein for animal feed.

食品工業の分野では例えばβ−ガラクトシグーセを固定
した中空繊維膜に、外表面側よりチーズホエーを供給し
、ホエー中の乳糖を膜壁内を通過でせつつ連続的に加水
分解することができる。本発明によれば、この除に分子
量敵方のηくニータンパク質も膜壁内金通過し得るため
、従来の限外濾過膜を担体とする酵素固定膜の欠点でる
るホエータンパク質の膜面上への濃縮、ゲル層生成と、
それに伴なう加水分解速度の低下全防止する事ができる
In the food industry, for example, cheese whey can be supplied from the outer surface of a hollow fiber membrane on which β-galactosigose is immobilized, and the lactose in the whey can be continuously hydrolyzed while passing through the membrane wall. According to the present invention, in addition to this, η-kuni proteins with a higher molecular weight can also pass through the membrane wall. concentration, gel layer generation,
The accompanying decrease in the rate of hydrolysis can be completely prevented.

本発明の対象となる被処理液としては上記の例の外、体
液、血漿、細胞や微生物の培養液、多糖類、糖蛋白、蛋
白、ベプタイド、核酸等の合成のための調製原料および
(または)生成物含有液、さらに食品工業や医薬品製造
における製造工程液、廃液などがある。
In addition to the above-mentioned examples, liquids to be treated that are the object of the present invention include body fluids, plasma, culture fluids of cells and microorganisms, raw materials for the synthesis of polysaccharides, glycoproteins, proteins, peptides, nucleic acids, etc., and (or ) Product-containing liquids, as well as manufacturing process liquids and waste liquids in the food industry and pharmaceutical manufacturing.

以−1一実施例により本発明金さらに詳細に説明する0 実施例1 平均重合度1700のポリビニルアルコール8 kf、
分子ftl、000のポリエチレングリコール4橡、ホ
ウ酸16tl、酢酸302全50tの熱水に溶解した。
The present invention will be explained in more detail with reference to Example 1. Example 1 Polyvinyl alcohol with an average degree of polymerization of 1700 8 kf,
A total of 50 tons of polyethylene glycol, 16 tons of boric acid, and 302 tons of acetic acid were dissolved in hot water.

この溶液を環状ノズルより、カセイソーダs o y7
t。
Pour this solution through an annular nozzle and add caustic soda soy7.
t.

芒硝230μの凝固浴中へ吐出し、中空繊維を得た。つ
いでグルタルアルデヒド0.5μ、塩酸3必の浴中て5
0℃、2時間架橋処理を施し、さらに100℃の熱水中
で1時間熱処理後、水洗した。この様にして得られたポ
リビニルアルコール中空繊維の内径は700μ、外径は
1,000μで、その膜壁は均質多孔構造を有していた
。水銀ポロシメーターによる孔径分布曲線から求められ
たモードの孔径は0.26μであり、中空繊維の見掛比
重から求め牛 られる空孔率は57%で必った。また垂面τWアルフミ
ンの透過率は100%% 午ガンマーグロブリンGの透
過率は97カでめった。
It was discharged into a coagulation bath of 230μ of Glauber's salt to obtain hollow fibers. Then, in a bath containing 0.5μ of glutaraldehyde and 3 parts of hydrochloric acid,
Crosslinking treatment was performed at 0°C for 2 hours, and then heat treatment was performed in hot water at 100°C for 1 hour, followed by washing with water. The polyvinyl alcohol hollow fiber thus obtained had an inner diameter of 700 μm and an outer diameter of 1,000 μm, and its membrane wall had a homogeneous porous structure. The mode pore size determined from the pore size distribution curve using a mercury porosimeter was 0.26 μm, and the porosity determined from the apparent specific gravity of the hollow fibers was 57%. Also, the transmittance of vertical τW Alhumin was 100%, and the transmittance of Gamma Globulin G was 97%.

このポリビニルアルコール中空繊維膜を、5%のアミノ
アセトアルデヒドジメチルアセタールと10%の硫酸よ
りなる溶液中に80℃で5時間浸漬し、水酸基のアミノ
アセタール化を行なっり後5時間流水洗した。ついで5
%のグルタルアルデヒド水溶液中に呈温下で5時間浸漬
してシソ≠塩基全形成させ、5時間流水洗浄した。こう
して得られた中空繊維膜100本を県東し、仝助長10
αの両端開口型モジュールに成形、該モジュールの中空
繊維内部に、犬の遊離肝細胞i 5 ′?/lの濃度で
含有するEarl’s氏液を導入、液の1部は膜壁を透
過させつつ1時間循環した後ペニシリン10uALes
ストレプトマイシン10μ沙会全含有するEar1’s
氏液2tで中空部および膜壁内を洗浄し、遊離肝細胞を
固定した多孔質ポリビニルアルコール中空繊維モジュー
ルを得た。このモジュールの中空部にM E M培養液
(分子量200以下)全導入、全量膜壁を通過させつつ
4時間循環し、固定化さ詐た肝細胞によって産生さiし
るアルブミンを、抗アルブミン抗体で定量した。第1図
に示した経時的な産生アルブミン量の増加から、培養液
中のアミノ酸成分が膜表面および(又は)膜壁内に固定
さtた肝細胞によりアルブミン(分稽67000 )に
生計成さ詐、そ扛が膜壁を通過して取り出されている事
がわかる。
This polyvinyl alcohol hollow fiber membrane was immersed in a solution consisting of 5% aminoacetaldehyde dimethyl acetal and 10% sulfuric acid at 80° C. for 5 hours to convert the hydroxyl groups into aminoacetals, and then washed with running water for 5 hours. Then 5
% glutaraldehyde aqueous solution at a constant temperature for 5 hours to completely form perilla base, and washed with running water for 5 hours. 100 hollow fiber membranes obtained in this way were placed in the prefecture and 10
α is molded into a module with both ends open, and inside the hollow fiber of the module are free dog hepatocytes i 5 ′? Earl's solution containing a concentration of /l was introduced, and after circulating for 1 hour while a part of the solution permeated through the membrane wall, 10 uALes of penicillin was introduced.
Earl1's containing 10μ of streptomycin
The hollow part and the inside of the membrane wall were washed with 2 tons of liquid to obtain a porous polyvinyl alcohol hollow fiber module in which free hepatocytes were fixed. The entire MEM culture solution (molecular weight 200 or less) was introduced into the hollow part of this module, and the entire amount was allowed to circulate for 4 hours while passing through the membrane wall, and the albumin produced by the immobilized hepatocytes was detected using an anti-albumin antibody. It was quantified by The increase in the amount of albumin produced over time shown in Figure 1 shows that the amino acid components in the culture solution are converted into albumin by the hepatocytes fixed on the membrane surface and/or within the membrane wall. It can be seen that the particles pass through the membrane wall and are extracted.

実施例2 エチレン言有率32モル楚のエチレンビニルアルコール
共重合体全ジメチルスルホキシドに溶解し、ポリマー@
度20%の溶液を調製した。これtl−環状ノズルより
25℃の20襲ジメチルスルホキシド水溶液中に吐出し
、次いで延伸、熱処理後乾燥して中空繊維型多孔膜を得
た。この中空繊維膜の内径は220μ、外径は330μ
で、膜構造は外表面!−の孔径が膜壁内部の孔径より若
干小さい多孔質構造であった。水銀ポロシメーターによ
る孔径分布曲線から求められるモードの孔径は0.56
μであり、空孔率は68優でめった。また牛血清アルブ
ミンに対する透過率は96%、牛ガンマークロプリンG
に対する透過率は91%であった。
Example 2 An ethylene vinyl alcohol copolymer with an ethylene content of 32 moles was dissolved in total dimethyl sulfoxide, and the polymer @
A 20% solution was prepared. This was discharged from a TL-annular nozzle into a 20-layer dimethyl sulfoxide aqueous solution at 25°C, then stretched, heat treated, and dried to obtain a hollow fiber type porous membrane. The inner diameter of this hollow fiber membrane is 220μ and the outer diameter is 330μ.
So, the membrane structure is the outer surface! - It was a porous structure in which the pore diameter was slightly smaller than the pore diameter inside the membrane wall. The mode pore diameter determined from the pore diameter distribution curve using a mercury porosimeter is 0.56.
μ, and the porosity was less than 68. In addition, the permeability to bovine serum albumin is 96%, bovine gamma clopurin G.
The transmittance was 91%.

このエチレンビニルアルコール共重合体中空繊維膜を4
00本集束して実施例1.と同様のモジュールにルク形
した。次に該モジュール全ポンプに接kF、 L 、反
応液は循環方式で、水洗液はシングルパスで流し、実施
例1と同様の処理全行ない、アルデヒド基を導入した多
孔質膜モジュールを得た。
This ethylene vinyl alcohol copolymer hollow fiber membrane was
Example 1 by focusing 00 lines. It was shaped into a similar module. Next, all the pumps in the module were contacted with kF, L, the reaction liquid was circulated, and the washing liquid was passed in a single pass, and the entire treatment was carried out in the same manner as in Example 1, to obtain a porous membrane module into which aldehyde groups were introduced.

こうして得らkgモジュールの中空部に01矛の十免3
ジグロプリ/G(IgG)!Jンサン緩@溶液(1)H
7,4)200罰を導入し、1都(は膜壁を通過させつ
つ1時間循環し、ついで3tの生理食塩水を中空部に導
入、lNSは膜壁を通過でせつつ洗浄、午IgG固定化
エチレンビニルアルコール系多孔質中空繊維モジュール
を得た。
In this way, the hollow part of the kg module is filled with 01 pieces of jumen 3.
Giglopuri/G (IgG)! J Nsan Slow @Solution (1) H
7,4) Introduce 200 ml of water, circulate for 1 hour while passing through the membrane wall, then introduce 3 t of physiological saline into the hollow part, wash the 1NS while allowing it to pass through the membrane wall, and wash the IgG while passing through the membrane wall. An immobilized ethylene vinyl alcohol based porous hollow fiber module was obtained.

該モジュール、およびこnと同形同大で全く禾処理のエ
チレンビニルアルコール糸多孔負中空繊維膜400本よ
りなる対照モジュールに対し、各々■131標識抗牛i
gG抗体を含む抗生IgG抗体5■を0.1%牛血清ア
ルブミンのリンサン緩衝溶液(pH7,4)200iJ
に溶解した液を中空部に導入し、1部(は膜壁を通過き
せつつ4時間の循環処理を行なった。4時間恢の各モジ
ュールのアルフミン透過率、カウント変化率に第1表の
通りであった。11カここでいうカウント変化率とは次
式で計)γさ′nる値である。
131-labeled anti-cattle i
Antibiotic IgG antibodies containing IgG antibodies were added to 200 iJ of 0.1% bovine serum albumin Linsan buffer solution (pH 7,4).
One part of the solution was introduced into the hollow part and circulated for 4 hours while passing through the membrane wall.The alhumin permeability and count change rate of each module after 4 hours were as shown in Table 1. 11 The count change rate referred to here is the value calculated by the following equation.

処理前のカウント値 この結果から午IgG画定化モジュールでは、被処理液
中に共存する午血清アルブミンは膜壁全通過するが抗生
■εG抗拝は固定化fgGに吸着、除去されている事が
明らかでちる。
Count value before treatment From this result, it was found that in the IgG delimitation module, the serum albumin coexisting in the liquid to be treated passes through the entire membrane wall, but the antibiotic εG antibody is adsorbed and removed by the immobilized FGG. It's obvious.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1で得られた肝細胞的1定中空繊維膜
を用いてM E M培養液を処理したときの増養時間と
血清アルブミン景の関係を示す図である。 特許出願人 株式会社 り ラ し 代理人弁理士本多 堅
FIG. 1 is a diagram showing the relationship between culture time and serum albumin profile when MEM culture solution was treated using the hepatocyte-like hollow fiber membrane obtained in Example 1. Patent applicant: RiRa Co., Ltd. Representative patent attorney: Ken Honda

Claims (2)

【特許請求の範囲】[Claims] (1)孔径分布曲線における最大確率(モード)の孔径
が0.035μ以上15μ以下の範囲にtbす、空孔率
が40%以上、十皿悄アルブミンの透過率が90%以上
で、かつ生理活性vJ質が化学的結合さnている事を特
徴とする生理活性物質固定中空繊維膜。
(1) The pore size of the maximum probability (mode) in the pore size distribution curve is in the range of 0.035μ to 15μ, the porosity is 40% or more, the permeability of ten-plate albumin is 90% or more, and A physiologically active substance-fixed hollow fiber membrane characterized in that active VJ substances are chemically bonded.
(2)孔径分布曲線における最大確率(モード)の孔径
が0.035μ以上15μ以下の範囲にあり、空孔率が
40%以上、午血清アルブミンの透過率が90%以上で
、かつ生理活性物質が化学的に結合されている中空繊維
膜に(哨該主理活性物質で処理される分子量1万以上の
物質または仲)分子量1万以下の物質であって、該生理
活性物質で処理されて分子量1万以上の物質に変換され
る物質を含む被処理液を供給して処理し、分子量1万以
上の物質を含む処理液を該中空繊維の膜壁全通して取り
出すこと全特徴とする生理活性物質固定中空繊維膜の使
用による液の処理方法。
(2) The pore size of the maximum probability (mode) in the pore size distribution curve is in the range of 0.035 μ to 15 μ, the porosity is 40% or more, the permeability of serum albumin is 90% or more, and the bioactive substance is A substance with a molecular weight of 10,000 or less (a substance with a molecular weight of 10,000 or more that is treated with the biologically active substance) that is chemically bonded to the hollow fiber membrane and that is treated with the biologically active substance. Physiology characterized by supplying and processing a liquid to be treated containing a substance that is converted into a substance with a molecular weight of 10,000 or more, and taking out the treatment liquid containing a substance with a molecular weight of 10,000 or more through the entire membrane wall of the hollow fiber. A method for treating liquids by using active substance-immobilized hollow fiber membranes.
JP6507183A 1983-04-12 1983-04-12 Hollow fiber membrane having physiologically active substance immobilized thereto and treatment of liquid using said membrane Granted JPS59189906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6507183A JPS59189906A (en) 1983-04-12 1983-04-12 Hollow fiber membrane having physiologically active substance immobilized thereto and treatment of liquid using said membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6507183A JPS59189906A (en) 1983-04-12 1983-04-12 Hollow fiber membrane having physiologically active substance immobilized thereto and treatment of liquid using said membrane

Publications (2)

Publication Number Publication Date
JPS59189906A true JPS59189906A (en) 1984-10-27
JPH0364173B2 JPH0364173B2 (en) 1991-10-04

Family

ID=13276346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6507183A Granted JPS59189906A (en) 1983-04-12 1983-04-12 Hollow fiber membrane having physiologically active substance immobilized thereto and treatment of liquid using said membrane

Country Status (1)

Country Link
JP (1) JPS59189906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246765A (en) * 1984-05-22 1985-12-06 旭化成工業株式会社 Adsorbing column for purifying body fluids
EP1158047A1 (en) * 1999-03-05 2001-11-28 Mitsubishi Rayon Co., Ltd. Carriers having biological substance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332230B2 (en) * 2007-02-22 2013-11-06 東レ株式会社 Blood processing column

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246765A (en) * 1984-05-22 1985-12-06 旭化成工業株式会社 Adsorbing column for purifying body fluids
JPH0585191B2 (en) * 1984-05-22 1993-12-06 Asahi Chemical Ind
EP1158047A1 (en) * 1999-03-05 2001-11-28 Mitsubishi Rayon Co., Ltd. Carriers having biological substance
EP1158047A4 (en) * 1999-03-05 2002-11-13 Mitsubishi Rayon Co Carriers having biological substance
EP1595948A2 (en) * 1999-03-05 2005-11-16 Mitsubishi Rayon Co., Ltd. Carriers having biological substance
EP1595948A3 (en) * 1999-03-05 2006-03-01 Mitsubishi Rayon Co., Ltd. Carriers having biological substance

Also Published As

Publication number Publication date
JPH0364173B2 (en) 1991-10-04

Similar Documents

Publication Publication Date Title
US6630315B1 (en) Process for preparing major histocompatibility antigen class II protein and materials in which the same is bound
Rosevear Immobilised biocatalysts—a critical review
Khan Immobilized enzymes: a comprehensive review
US4004979A (en) Preparation of active proteins cross-linked to inactive proteins
Costa et al. 17 Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications
GB2094833A (en) Process and system for producing biological materials from encapsulated cells
US3649457A (en) Enzymatic processing with polymer-enzyme product
Klein et al. Immobilized enzymes in clinical medicine: an emerging approach to new drug therapies
JPS6190672A (en) Treatment of fluids using porous hollow fiber having physiologically active substance fixed thereto
EP0069869B1 (en) A membrane and an arrangement for the removal of a substance from a solution
JPS59189906A (en) Hollow fiber membrane having physiologically active substance immobilized thereto and treatment of liquid using said membrane
WO1988000237A1 (en) Covalent membranes
Kitano et al. Hollow fiber enzyme reactors
Freitag Synthetic polymers for biotechnology and medicine
JPS5826316B2 (en) Continuous reaction method using enzymes or microorganisms
JPS59132883A (en) Biological catalytic reaction apparatus
Mazzola et al. Immobilization and characterization of L-asparaginase on hollow fibers
Chang [46] Methods for the therapeutic applications of immobilized enzymes
JPH0611327B2 (en) Multi-layered hollow fiber having a physiologically active substance fixed thereto and a method for treating a liquid using the hollow fiber
JPH0245064A (en) Device for removing interleukin 2 receptor and blood extra-corporeal circulating device provided with this device
Gombotz et al. The immobilization of L-asparaginase on porous hollow fiber plasma filters
JPH04183392A (en) Production of membrane immobilizing physiologically active substance
JPH05261281A (en) Carrier for immobilizing bioactive substance and its production
JPS59228847A (en) Carrier for immobilizing physiologically active substance
Keyes et al. Immobilized enzymes