JPS5918914A - Coupler of optical fiber and photosemiconductor element - Google Patents

Coupler of optical fiber and photosemiconductor element

Info

Publication number
JPS5918914A
JPS5918914A JP57128725A JP12872582A JPS5918914A JP S5918914 A JPS5918914 A JP S5918914A JP 57128725 A JP57128725 A JP 57128725A JP 12872582 A JP12872582 A JP 12872582A JP S5918914 A JPS5918914 A JP S5918914A
Authority
JP
Japan
Prior art keywords
frame
lens
optical fiber
receptacle
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57128725A
Other languages
Japanese (ja)
Inventor
Teruhito Matsui
松井 輝仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57128725A priority Critical patent/JPS5918914A/en
Publication of JPS5918914A publication Critical patent/JPS5918914A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Abstract

PURPOSE:To enable easy assembling by providing a refractive index distributing type lens freely advanceably/retreatably in order to make the imaging point of the light beam of a photosemiconductor element coincident with the end face part of an optical fiber. CONSTITUTION:A photosemiconductor element 1 is mounted to a heat sink 2, and a lens 3 is fixed to a lens holder 4 and is screwed to a frame 5 to combine and fix the heat sink 2 and the frame 5. The forward end of an optical fiber 9 when a receptacle 6 is mounted to a frame 7 is adjusted by placing a knife edge 15 in the position of the forward end of a connector plug 10, placing a screen 14 behind the same, observing a light beam 11, and moving the lens 3 forward or backward by using a groove 4a and rotating the holder 4 to bring a beam west point 13 to over the edge 15. The holder 4 is then fixed by means of an adhesive agent. The frame 7 and the frame 5 are fixed to the heat sink 2, and a connector plug 10 is inserted into the receptacle 6, and is adjusted until the power in the fiber 9 is maximized, then the receptacle 6 is fixed by means of a screw 8 to the frame 7.

Description

【発明の詳細な説明】 この発明は、光フアイバ通信において、光ファイバと光
半導体素子を効率よく結合させるための結合器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coupler for efficiently coupling an optical fiber and an optical semiconductor element in optical fiber communication.

光フアイバ通信用に、光源として使用される光半導体素
子、すなわち、半導体レーザや発光ダイオードはその発
光部が小さく、拡がり角が大きく、また、光ファイバも
光が伝搬されるコア部の大きさも、数μmから数10μ
mと小さいため、光半導体素子と光ファイバを効率よ(
結合させるためには、使用するレンズの選択と、レンズ
の調整を精度よ(行うことが必要である。
Optical semiconductor devices used as light sources for optical fiber communication, such as semiconductor lasers and light emitting diodes, have small light emitting parts and large divergence angles, and the size of the core part of optical fibers through which light is propagated also varies. From several μm to several tens of μm
m, which makes optical semiconductor devices and optical fibers more efficient (
In order to achieve this combination, it is necessary to select the lenses to be used and adjust the lenses with precision.

しかし、このようなレンズの位置の調整を行うことは一
般罠は容易ではない。
However, it is generally not easy to adjust the position of the lens in this way.

この発明は、上述の点にがんがみなされたもので、光ビ
ームの結像点を容易に検出し得る手段を用いて、組立て
が容易鈍行える光7フイパと光半導体素子の結合器を提
供することを目的としている。以下、この発明を図面に
ついて説明する。
This invention addresses the above-mentioned problems, and provides a coupler of an optical 7 fiber and an optical semiconductor element that can be easily and easily assembled by using a means that can easily detect the focal point of a light beam. is intended to provide. Hereinafter, this invention will be explained with reference to the drawings.

第1図〜第3図はこの発明の一実施例を示すものである
。第1図は各部を分離した状態を示す斜視略図、第2図
はレンズホルダの斜視図、第3図は第1図の組立て状態
を示す断面図である。
1 to 3 show an embodiment of the present invention. FIG. 1 is a schematic perspective view showing each part separated, FIG. 2 is a perspective view of the lens holder, and FIG. 3 is a sectional view showing the assembled state of FIG. 1.

第1図において、1は半導体ンーザや発光ダイオードな
どの光半導体素子、2は前記光半導体素子1を取り(ツ
げるヒートシンク、3は屈折分布型レンズ(以下単にレ
ンズと(づ)、4は前記レンズ3を取り付けるレンズホ
ルダで、第2図に示すように溝4aが端面に設けられ、
外周にねじ4bが形成される。5は前記レンズボルダ4
を移動調整するための枠で、内部にねじ孔が形成され、
これにレンズホルダ4のねじ4bが螺合される。6はレ
セプタクル、7は前記レセプタクル6を取り伺げるため
の枠であり、この枠7にレセプタクル6がねじ8により
取り付けられる。これを組立てたのが第3図で、9は光
ファイバ、1oはコネクタプラグである。
In FIG. 1, 1 is an optical semiconductor element such as a semiconductor sensor or a light emitting diode, 2 is a heat sink for the optical semiconductor element 1, 3 is a gradient refractive lens (hereinafter simply referred to as a lens), and 4 is a heat sink for the optical semiconductor element 1. A lens holder for attaching the lens 3, as shown in FIG. 2, a groove 4a is provided on the end surface,
A screw 4b is formed on the outer periphery. 5 is the lens boulder 4
A frame for adjusting the movement of the frame, with a screw hole formed inside.
The screw 4b of the lens holder 4 is screwed into this. Reference numeral 6 denotes a receptacle, and 7 a frame for accessing the receptacle 6. The receptacle 6 is attached to this frame 7 with screws 8. Figure 3 shows this assembled, with 9 being an optical fiber and 1o being a connector plug.

次に、この発明の動作について説明する。Next, the operation of this invention will be explained.

まず、第3図によりレンズ3の調整方法について説明す
る。光半導体素子1の出力光を所定の位1?l(光ファ
イバ9端面)に結像させるためには、レンズ3の位置を
正確に調整する必要がある。
First, a method for adjusting the lens 3 will be explained with reference to FIG. The output light of the optical semiconductor element 1 is set to a predetermined value of 1? In order to form an image on l (the end surface of the optical fiber 9), it is necessary to accurately adjust the position of the lens 3.

そこで、ナイフェツジ(例えばカミソリの刃)を使って
、結像点を検出する方法について第4図(a) 、  
(b)により説明する。
Therefore, Fig. 4(a) shows a method of detecting the imaged point using a knife (for example, a razor blade).
This will be explained using (b).

ナイフェツジ15で光ビーム11をしゃ断し、その後方
のビーム像16より判定するもので、ナイフェツジ15
の後方に置かれたスクリーン14に映るビーム像16を
観劇し、ビーム像16がしゃ断される方向で容易にビー
ムウェスト点(結像点)13を見出すことができる。例
えば、第4図(a)のように、ビームウェスト点13の
位置よりも後方(スクリーン14寄り)でナイフェツジ
15を光ビーム11と垂直に移動させた場合、ナイフェ
ツジ15の移動方向と同じ方向罠、スクリーン14上Q
)ビーム像16が欠けてい(のに対し、第4図(b)の
よ5に、ビームウェスト点13の位置よりも前方(光源
寄り)でナイフェツジ15を移動させた場合は、移動方
向と逆の方向からスクリーン14上ノヒーム像16が欠
けていく。ビームウェスト点13上でナイフェツジ15
を移動させた場合は、ビーム像16全体が一様に暗くな
る。
The light beam 11 is cut off by the knife 15, and the judgment is made based on the beam image 16 behind it.
When viewing the beam image 16 reflected on the screen 14 placed behind the theater, the beam waist point (imaging point) 13 can be easily found in the direction in which the beam image 16 is cut off. For example, as shown in FIG. 4(a), if the knife 15 is moved perpendicularly to the light beam 11 behind the position of the beam waist point 13 (closer to the screen 14), the knife 15 is moved in the same direction as the moving direction of the knife 15. , Q on screen 14
) The beam image 16 is missing (on the other hand, if the knife image 15 is moved in front of the beam waist point 13 (closer to the light source) as shown in FIG. The noheem image 16 on the screen 14 is missing from the direction of the beam waist point 13.
When the beam image 16 is moved, the entire beam image 16 becomes uniformly dark.

したがって、結像位置を調整するには、結像させたい位
置にナイフェツジ15を置き、スクリーン14上のビー
ム@16が、ナイフェツジ15の移動によって一様に暗
くなる点を探す。ビーム像16が、ナイフェツジ15の
移動方向と同じ方向から欠けていく場合には、レンズ1
2を光源側に移動させ、逆に、ナイフェツジ15の移動
方向とビーム像16の欠ける方向が元なる場合は、レン
ズ12をスクリーン14側に移動させればよい。
Therefore, to adjust the imaging position, place the knife 15 at the desired imaging position and look for a point where the beam @ 16 on the screen 14 becomes uniformly dark as the knife 15 moves. When the beam image 16 fades from the same direction as the direction of movement of the knife 15, the lens 1
2 toward the light source, and conversely, if the moving direction of the knife 15 and the direction in which the beam image 16 is missing are the same, the lens 12 may be moved toward the screen 14 side.

一般に、光ファイバ通信用光則丸として使用される光半
導体素子1は、うを光領域が赤外で、肉眼ではスクリー
ン14に映った像は見えない。そこで、赤外線スコープ
を使って像を観察する。光半導体素子10反対側からス
クリーン14を観察すればよい。
Generally, the optical semiconductor device 1 used as a light control device for optical fiber communication has an infrared light region, and the image reflected on the screen 14 is not visible to the naked eye. Therefore, we will use an infrared scope to observe the image. The screen 14 may be observed from the side opposite to the optical semiconductor element 10.

次に、笑際に第1図〜第3図を使って、光ファイバ9ど
光半導体素子1の結合器の組立、調整方法について述べ
る。
Next, a method for assembling and adjusting the coupler of the optical fiber 9 and the optical semiconductor element 1 will be described using FIGS. 1 to 3.

光半導体素子1をヒートシンク2に取り付け、レンズ3
をレンズボルダ4に接着剤等で固定し、枠5にねじ込み
、ヒートシンク2と枠5を組合わせ固定する。レセプタ
クル6を枠7に敗り付けた場合に予想される光ファイバ
9の先端、すなわち第3図の場合では、レセプタクル6
に挿入した場合のコネクタプラグ1oの先端の位置にナ
イフェツジ15を置き、後方にスクリーン14を置いて
、光ビーム11を観察し、ビームウェスト点13がナイ
ンエツジ15上にくるよプK、ねじ4bが切つであるレ
ンズボルダ4を溝4aをr史って回転させ、レンズ3を
前後さぜろことによってh;!1整し、その(1m着剤
でレンズポルダイを固定する。
The optical semiconductor element 1 is attached to the heat sink 2, and the lens 3
is fixed to the lens boulder 4 with adhesive or the like, screwed into the frame 5, and the heat sink 2 and frame 5 are combined and fixed. The expected tip of the optical fiber 9 when the receptacle 6 is attached to the frame 7, that is, in the case of FIG. 3, the receptacle 6
Place the knife 15 at the position of the tip of the connector plug 1o when it is inserted into the connector plug 1o, place the screen 14 behind it, observe the light beam 11, and make sure that the beam waist point 13 is on the nine edge 15. Rotate the lens bolt 4 along the groove 4a and shake the lens 3 back and forth. 1, and then fix the lens por die with 1m adhesive.

次に、枠7を枠5とビー1−シンク2に固定し、レセフ
”タクル6にコネクタプラグ1oを1中入し、レセプタ
クル6を光ビーム11に対して垂直に微動させ、光フア
イバ9内のパワーが最大になるよつ;す・2幣し、レセ
プタクル6を枠7にねじ8等でl1Ll定する。
Next, the frame 7 is fixed to the frame 5 and the beam 1-sink 2, the connector plug 1o is inserted into the receiver 6, the receptacle 6 is slightly moved perpendicular to the light beam 11, and the optical fiber 9 is inserted into the frame 7. 2. Then, fix the receptacle 6 to the frame 7 with screws 8, etc. so that the power of

なお、上記実施例では、光半導体素子1として半導体レ
ーザや発光ダイオード等の光りjxと、’t7フイバ9
を結合させる場合について述べたが、九ファイバ9がら
の光をレンズ3によってホト・ダイオードや7バランシ
エホトダイオードといった受光素子に結合させる場合に
ついても応用できる。
In the above embodiment, the optical semiconductor element 1 includes a light jx such as a semiconductor laser or a light emitting diode, and a 't7 fiber 9.
Although the case where the light from the nine fibers 9 is coupled is described above, it can also be applied to the case where the light from the nine fibers 9 is coupled to a light receiving element such as a photodiode or a seven-balanced photodiode.

この場合は、受光素子を配置されると想定される位1位
にナイフェツジ15を置き、レンズ3を調整することに
よって可能である。
This can be done by placing the knife 15 at the first position where the light receiving element is expected to be placed and adjusting the lens 3.

また1元ファイバ9はコネクタプラグ1oで脱着可fi
Bな場合について述べたが、光ファイバ9を)〜7半導
体素子1と一体化構造にする場合につい“Cもそのまま
利用できる。
In addition, the single fiber 9 can be attached and detached using the connector plug 1o.
Although case B has been described, case C can also be used as is when the optical fiber 9 is integrated with the semiconductor element 1.

さらに、レンズ3についても上記実施例では、屈折率分
布型レンズを使用する場合について述べたが、通常の微
小光学レンズや球ンンズといったものでもよい。
Furthermore, regarding the lens 3, although the case where a refractive index distribution type lens is used in the above embodiment has been described, it may be a normal micro optical lens or a ball lens.

また、上記実施例では、ねじ4bを形成したレンズホル
ダ4を回転させることにより調整したが、前後にレンズ
ホルダ4をスライドさせる構成であってもよい。
Further, in the above embodiment, adjustment was made by rotating the lens holder 4 on which the screw 4b was formed, but the lens holder 4 may be configured to slide back and forth.

以上説明したように、この発明によれば、ナイフェツジ
を使用して、レンズ位置を調整できる構成としたので、
装置が簡単で、精度の高いものが得られる利点がある。
As explained above, according to the present invention, since the lens position can be adjusted using the knife,
It has the advantage that the device is simple and that high precision can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第】図はこの発明の一実施例を示す光ファイバと光半導
体素子の結合器の各部を分離して示す斜視略図、第2図
は第1図のレンズホルダの斜視図、第3図は第1図の組
立状態を示す断面図、第4図(a)、  (+))はこ
の発明の調整原理を説明するための図である。 図中、1は光半導体素子、3はレンズ、4けレンズホル
ダ、4BはMl、4bはねじ、6はνセプククル、9は
光フフイバ、10はコネククプラグである。なお、図中
の同一符号は同一または相幽部分を示す。 代理人 葛 WP  信 −(外1名)( 第3図 第4図
1 is a schematic perspective view showing each part of a coupler for an optical fiber and an optical semiconductor element separated, showing one embodiment of the present invention; FIG. 2 is a perspective view of the lens holder shown in FIG. 1; and FIG. The sectional view of FIG. 1 showing the assembled state and FIGS. 4(a) and (+)) are diagrams for explaining the adjustment principle of the present invention. In the figure, 1 is an optical semiconductor element, 3 is a lens, a 4-piece lens holder, 4B is Ml, 4b is a screw, 6 is a ν septum, 9 is an optical fiber, and 10 is a connector plug. Note that the same reference numerals in the figures indicate the same or similar parts. Agent Kuzu WP Shin - (1 other person) (Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 光ファイバと光半導体素子を屈折率分布型レンズを用い
て結合する結合器において、前記光半導体素子の元ビー
ムの結像点を前記光ファイバの端面部に一致させるため
、前記屈折率分布型レンズを前進、後退自在に設けたこ
とを特徴とする光ファイバと光半導体素子の結合器。
In a coupler that couples an optical fiber and an optical semiconductor element using a gradient index lens, the gradient index lens is used in order to match the focal point of the original beam of the optical semiconductor element with the end face of the optical fiber. What is claimed is: 1. A coupler for optical fiber and optical semiconductor element, characterized in that the optical fiber and optical semiconductor element are provided so as to be freely forward and backward.
JP57128725A 1982-07-23 1982-07-23 Coupler of optical fiber and photosemiconductor element Pending JPS5918914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57128725A JPS5918914A (en) 1982-07-23 1982-07-23 Coupler of optical fiber and photosemiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57128725A JPS5918914A (en) 1982-07-23 1982-07-23 Coupler of optical fiber and photosemiconductor element

Publications (1)

Publication Number Publication Date
JPS5918914A true JPS5918914A (en) 1984-01-31

Family

ID=14991896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57128725A Pending JPS5918914A (en) 1982-07-23 1982-07-23 Coupler of optical fiber and photosemiconductor element

Country Status (1)

Country Link
JP (1) JPS5918914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120709A (en) * 1988-10-31 1990-05-08 Fujitsu Ltd Focus adjusting method for laser diode lens assembly
WO2022044182A1 (en) * 2020-08-27 2022-03-03 三菱電機株式会社 Optical module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776510A (en) * 1980-10-31 1982-05-13 Nec Corp Light transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776510A (en) * 1980-10-31 1982-05-13 Nec Corp Light transmitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120709A (en) * 1988-10-31 1990-05-08 Fujitsu Ltd Focus adjusting method for laser diode lens assembly
WO2022044182A1 (en) * 2020-08-27 2022-03-03 三菱電機株式会社 Optical module

Similar Documents

Publication Publication Date Title
US9285877B2 (en) Heads-up display
US20180095174A1 (en) Three-dimensional coordinate measuring device
US4753508A (en) Optical coupling device
EP1207599A3 (en) Micro-lens built-in vertical cavity surface emitting laser
BR8402296A (en) OPTICAL SYSTEM FOR A VIEWER
AU2436601A (en) Optical scheme for high flux low-background two-dimensional small angle x-ray scattering
EP3109681B1 (en) Optical assembly and optical module
JPS6065705U (en) Coupling device for dielectric optical waveguide
US7545492B2 (en) Sighting device and additional device for measuring, working, and/or operating with or without contact
US5040862A (en) Method of trimming optical power
US4556293A (en) Broadband unpolarized light source
WO1987000639A1 (en) Image intensifier binocular
JPS5918914A (en) Coupler of optical fiber and photosemiconductor element
CN108388065A (en) Structured light projector, optoelectronic device and electronic device
US7224864B2 (en) Method for connecting an optical fiber to a grin lens, and a method for producing optical filter modules and filter modules produced according to said method
WO2005006401A3 (en) Optical sub-assembly laser mount having integrated microlens
GB2229856A (en) Electro-optic transducer and sheet-metal microlens holder
IL116131A (en) Adapter for extracting a portion of an image from an optical system or device
CA1270131A (en) Method and apparatus for simultaneously observing a transparent object from two directions
JPS6049283B2 (en) Optical transmission lens terminal
CN217085256U (en) Laser range finder
US20040223705A1 (en) Bidirectional transmitting and receiving device
EP1240693B1 (en) Hybrid optical coupling component
KR102581528B1 (en) View finder module
JPH0497306A (en) Optical coupler