JPS59189134A - Novel foam and production thereof - Google Patents

Novel foam and production thereof

Info

Publication number
JPS59189134A
JPS59189134A JP6330083A JP6330083A JPS59189134A JP S59189134 A JPS59189134 A JP S59189134A JP 6330083 A JP6330083 A JP 6330083A JP 6330083 A JP6330083 A JP 6330083A JP S59189134 A JPS59189134 A JP S59189134A
Authority
JP
Japan
Prior art keywords
foam
foaming
formula
weight
moderator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6330083A
Other languages
Japanese (ja)
Other versions
JPH0218693B2 (en
Inventor
Koriku Hoshi
星 光陸
Masaji Noro
野呂 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6330083A priority Critical patent/JPS59189134A/en
Publication of JPS59189134A publication Critical patent/JPS59189134A/en
Publication of JPH0218693B2 publication Critical patent/JPH0218693B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a foam having a uniform cell structure, excellent mechanical characteristics, heat resistance, etc., by blending a specified expansion retarder and a nucleating agent with high-density, high-melting, non-crosslinked polyethylene, adding a volatile org. blowing agent thereto, and expanding the compsn. CONSTITUTION:0.05-10pts.wt. expansion retarder capable of prolonging foaming time for at least one sec as compared with the case of no addition as measured by a glass tube expansion test method, e.g., 2-hydroxyethylamine and 0.001- 5pts.wt. nucleating agent such as talc are blended with 100pts.wt. non-crosslinked polyethylene having a density of 0.935g/cm<3> or above and a m.p. of 117 deg.C or above. A volatile org. blowing agent such as dichlorotetrafluoroethane is added to the resulting comsn. and the resulting mixture is expanded to obtain a foam which is composed of cloed cells having an average cell size of 0.05-3mm. and a density of 0.007-0.1g/cm<3> and in which fluctuation in the thickness of cell membrane is within + or -30% and coefficient of variation of cell size is within 70%.

Description

【発明の詳細な説明】 不発明ばla、械的特性及び耐熱性に優ノ11、外観良
好な新規な発泡体に関するものであり、さらに詳しくい
えば、均一で独立な気泡@造と平滑な外観2有すると共
に、従来得られなかった機械的特性と耐熱性を具備し、
かつ長期間にわたって高い信頼性を有する、密度0,9
:う5 g / cd以上、融点117゛°C以上の実
質的に無架橋のポリエチレン(以後高密度ポリエチレン
と称ず)から成る高性能発泡体に関するもので゛ある。
[Detailed Description of the Invention] This invention relates to a novel foam with excellent mechanical properties and heat resistance, and a good appearance. In addition to having an appearance of 2, it also has mechanical properties and heat resistance that were previously unobtainable.
Density 0.9 with high reliability over a long period of time
This invention relates to a high-performance foam made of substantially non-crosslinked polyethylene (hereinafter referred to as high-density polyethylene) with a weight of 5 g/cd or more and a melting point of 117°C or more.

これまで、市場に出ている発泡体としては、例えば軟質
ポリウレタンや硬質ポリウレタン発泡体、架橋低密度ポ
リエチレンや無架橋低密度ポリエチレン樹脂発泡体、ポ
リプロピレン樹脂発泡体、高密度ポリエチレン樹脂とア
イオノマー樹脂との混合樹脂発泡体などが提案されてい
るか、これらの発泡体はいずれも機械的特性と耐熱性を
合わせて具備するには至っておらす、必ずしも満足しう
ろものではなかつ1こ。
So far, foams on the market include flexible polyurethane foam, hard polyurethane foam, crosslinked low-density polyethylene and non-crosslinked low-density polyethylene resin foam, polypropylene resin foam, and combinations of high-density polyethylene resin and ionomer resin. Mixed resin foams have been proposed, but none of these foams have been able to provide both mechanical properties and heat resistance, and are not necessarily satisfactory.

例えば、前記の軟質ポリウレタン発泡体及び硬質ボリウ
レクン発削体は耐熱性に優れろものの、機械的特性に劣
り、架橋低密度ポリエチレン樹脂発泡体は機械的特性及
び耐熱性の両特性に劣り、無架橋低密度ポリエチレン樹
脂発泡体は、架橋低密度ポリエチレン樹脂発泡体よりさ
らに一段と耐熱性に劣るという欠点がある。ま1こ、ポ
リプロピレン樹脂発泡体は耐熱性に優れろものの、機械
的特性の点で劣り、多方高密度ポリエチレン樹脂とアイ
オノマー樹脂との混合樹脂発泡体は機械的特性に優れろ
ものの、耐熱性に劣るという欠点がある。
For example, although the above-mentioned soft polyurethane foam and hard polyurethane foam have excellent heat resistance, they have poor mechanical properties, and cross-linked low-density polyethylene resin foam has poor both mechanical properties and heat resistance, and non-cross-linked Low-density polyethylene resin foams have the disadvantage of being even more inferior in heat resistance than cross-linked low-density polyethylene resin foams. First, although polypropylene resin foam has excellent heat resistance, it has poor mechanical properties, while mixed resin foam of high-density polyethylene resin and ionomer resin has excellent mechanical properties but has poor heat resistance. It has the disadvantage of being inferior.

例えば、これまで高密度ポリエチレン発泡体に対して、
アイオノマー、ポリスチレン、低密度ポリエチレン、部
分架橋ゴムなどをブレンドして改質することが提案され
ているか(特公昭56−16184号公報、特公昭56
−40]66号公報、特開昭54−33569号公報、
特開昭54−161671号公報)、所望の効果を挙げ
るには多量の樹脂のブレンドが必要となるため、耐熱性
の低下を免れない。
For example, until now, for high-density polyethylene foam,
Has it been proposed to blend and modify ionomers, polystyrene, low-density polyethylene, partially cross-linked rubber, etc.?
-40] Publication No. 66, JP-A-54-33569,
(Japanese Unexamined Patent Publication No. 54-161671), since a large amount of resin is required to be blended to achieve the desired effect, heat resistance inevitably deteriorates.

また、刀口圧容器中に高圧で封入し1こ活囲化液に浴か
したポリマーの過熱浴液を、春定の濃度、温度条件下、
lO秒又はそれ以下という短時間で低圧域に押出して、
活性化成をフラッシュ蒸発させ、多数+7)セルから成
る発泡体を形成させろと同時に急冷してセル構造を固定
させろ、いわゆるフラッシュ押出法により、良質な高密
度ポリエチレン発泡体を得ろ方法も知られている(米国
特許第3.227,784号明細書)。しかし、このよ
うに急激な発泡と冷却で均質発泡体を形成させるには、
押出速度を著しく太きくしなければならないし、また、
非常に狭い許容条件下で発泡させろfこめ、発泡体表面
にしわや凹凸を生じゃすく、外観的に良好な製品を得々
)ことができない上に、厚さ3 mm以上のシート状発
泡体の製造には不適当であるという欠点がある。
In addition, a superheated bath solution of a polymer sealed at high pressure in a pressure vessel and exposed to an active surrounding solution was heated under Harusada's concentration and temperature conditions.
By extruding into a low pressure area in a short time of 10 seconds or less,
It is also known to flash-evaporate the activated chemical composition to form a foam consisting of a large number of +7) cells, and at the same time rapidly cool it to fix the cell structure.It is also known to obtain a high-quality high-density polyethylene foam by the so-called flash extrusion method. (U.S. Pat. No. 3,227,784). However, in order to form a homogeneous foam through rapid foaming and cooling,
The extrusion speed must be increased significantly, and
It is not possible to foam the foam under extremely narrow tolerance conditions, which may cause wrinkles and unevenness on the surface of the foam, making it difficult to obtain a product with a good external appearance. It has the disadvantage of being unsuitable for manufacturing.

さらに、このフラッシュ押出法の改良として、引裂強度
を向上させろためにセル径’i 500μ以上にする方
法も知られている(米国特許第3,787,543号明
細書)。
Further, as an improvement of this flash extrusion method, a method is known in which the cell diameter 'i is increased to 500 μm or more in order to improve the tear strength (US Pat. No. 3,787,543).

しかし、この方法においては大きなセルを形成させろた
めに、押出の際発生する気泡の数を制限する必要がある
。したがって、通常添加されている核剤はもちろん、偶
発的に混入してくる塵埃、ゲル粒子のような気泡の数を
増7101−ろ原因となろものの存在はできろたけ避け
なげizばならないが、このように核剤を使用しないと
、均一なセル径、セル膜厚を得ることができないため、
圧縮回復率の低下、発泡体表面のしわや凹凸の発生を免
れない上に、厚さ、つ朧以上の発へ体を得ろことができ
ないという欠点がある。
However, in order to form large cells in this method, it is necessary to limit the number of bubbles generated during extrusion. Therefore, it is necessary to avoid as much as possible the presence of not only the normally added nucleating agents but also the presence of substances that increase the number of air bubbles such as dust and gel particles that are accidentally introduced. Without using a nucleating agent, it is not possible to obtain a uniform cell diameter and cell film thickness.
In addition to the inevitable reduction in compression recovery rate and the occurrence of wrinkles and unevenness on the surface of the foam, there are also disadvantages in that it is impossible to obtain a foam with a thickness that is more than opaque.

さらに、溶融状態のポリエチレン中に、発泡剤として、
1.2−ジクロロテトラフルオロエタンを加圧下に加え
、これを耐圧容器中に高圧に保持したまま収容し、大気
中に急激に押出して膨張発泡させろ方法も提案されてい
るが(米国特許第3.067.147号明細書)、高密
度ポリエチレン中用いろ場合、溶融粘弾性が低いものを
無理に発泡させろために、機械的強度や表面状態の良好
な発泡体を得ろことは困難である。
Furthermore, as a blowing agent in the molten polyethylene,
A method has also been proposed in which 1.2-dichlorotetrafluoroethane is added under pressure, stored at high pressure in a pressure-resistant container, and rapidly extruded into the atmosphere to cause expansion and foaming (U.S. Patent No. 3). 067.147), it is difficult to obtain a foam with good mechanical strength and surface condition because it is forced to foam a material with low melt viscoelasticity.

その他、高密度、高結晶性ポリエチレンを発泡させろ際
に、溶融ポリエチレン中に発泡剤とともにヒートシンク
例えば炭素数2〜5のアルカノールを加えろことにより
発泡過程中にポリエチレンの固化が膨張ガスの発生に追
従せず、後者が逸散するのを防ぎ、良好な発泡体を形成
させろ方法も提案されているか(米国特許第3,102
,865号明細書〕、この方法においては、急速発泡、
急速冷却が条件となるため、前記の方法と同様に機械的
強度が優れ、表面状態の良好な発泡体を得ろことば困難
である。
In addition, when foaming high-density, high-crystalline polyethylene, it is recommended to add a heat sink, such as an alkanol having 2 to 5 carbon atoms, to the molten polyethylene along with a foaming agent, so that the solidification of the polyethylene follows the generation of expansion gas during the foaming process. Has a method been proposed to prevent the latter from escaping and form a good foam (U.S. Pat. No. 3,102)?
, No. 865], in this method, rapid foaming,
Since rapid cooling is required, it is difficult to obtain a foam that has excellent mechanical strength and a good surface condition, similar to the method described above.

他方、ポリエチレンに発泡剤を俗解させた高温組成物乞
、押出機のダイから押出す際に、未発泡組成物の押出線
速度以下の引取線速度で引き取り、徐冷しながら全体の
気泡の50係以上乞気泡径5喘以上に成長させろことに
より圧縮強度の高い硬い発泡体を得ろ方法も提案されて
いるが(%公昭57−22741号公報)、このように
して得られろ発泡体は、クッション性、圧縮回復性、断
熱性などほとんどの物性が不十分であり、実用上満足し
うろものとはいえない。
On the other hand, when high-temperature compositions made of polyethylene containing a foaming agent are extruded from the die of an extruder, they are drawn at a drawing line speed lower than the extrusion line speed of unfoamed compositions, and while gradually cooling, 50% of the total bubbles are removed. A method has also been proposed in which a hard foam with high compressive strength is obtained by growing the foam to a diameter of 5 mm or more (Japanese Publication No. 57-22741), but the foam obtained in this way is Most of the physical properties such as cushioning properties, compression recovery properties, and heat insulation properties are insufficient, and it cannot be said to be practically satisfactory.

このように、融点が高(結晶化度の大きい高密度ポリエ
チレンは、低密度ポリエチレンに比べ、発泡に適した融
点付近での粘弾性変化が大きいため、適正発泡温度の範
囲が著しく制限されている上に、発泡時に生じろ結晶化
発熱その他の要因が複雑に影響しあうため、適正な発泡
条件の維持が困難であり、発泡体表面の荒れや、気泡の
破壊による品質の低下を生じやすくなる。しかも、低密
度ポリエチレンは長鎖分岐を有していて溶融粘弾性が高
いのに対し、高密度ポリエチレンは、長銀分岐乞もたず
浴融粘弾性が低いため、発泡剤を加えて、高温高圧域か
ら低温低圧域に開放して発泡成形する際、均一な気泡の
膨張が起こりにくく、気泡の破れによる物性の低下や、
成形性不良等の外観不良を起こしやすい。例えは押出発
泡においては、ダイから低温低圧域に押出して発泡させ
ろ際、ダイ内での気泡の生5y、’fx抑制できず、ダ
イ内ですでに生成された気泡が押出量ど包されろ過程で
熱及びせん断力を受けて破壊され、発泡体の品質劣fヒ
をもたらす。そして、これはダイ開口部の断面積を大き
くするほど、すなわち発泡体の厚みを厚くする程著しい
傾向がある。この点を解決するには押出量を極端に増大
させたり、発泡剤を含む溶融樹脂を密閉容器中に入れ瞬
時に開放することが考えられろ。しかし、発泡速度が著
しく速いため、押出に際して、ダイ内での気泡生成によ
る悪影響を完全に除くには著しく大量の押出量を必要と
f7:)L、火押出容量の極めて特殊な装置を用いなげ
ればならない。また、押出量を極端に増加させろと、メ
ルトフラクチャーなどの流れの乱れを生じ、発泡体表面
の凹凸や厚みむら等の外観不良を引き起こす。−万、密
閉容器中から瞬時に開放する方法においても、発泡速度
に対応するだけの開放速度を与えろことが困難であるば
かりでなく、表面状態、成形性等の外観良好な発泡体を
得ろことが困難で゛ある。
In this way, high-density polyethylene, which has a high melting point (high degree of crystallinity), has a larger viscoelastic change near the melting point suitable for foaming than low-density polyethylene, so the range of suitable foaming temperatures is significantly limited. In addition, the crystallization heat generated during foaming and other factors interact in a complex manner, making it difficult to maintain proper foaming conditions, making it easy for the surface of the foam to become rough and quality to deteriorate due to the destruction of bubbles. In addition, low-density polyethylene has long chain branches and high melt viscoelasticity, whereas high-density polyethylene does not have long chain branches and has low bath melt viscoelasticity. When performing foam molding by opening from a high pressure region to a low temperature and low pressure region, it is difficult for uniform cell expansion to occur, resulting in deterioration of physical properties due to cell rupture.
Easy to cause appearance defects such as poor moldability. For example, in extrusion foaming, when extruding from a die into a low-temperature, low-pressure region for foaming, it is not possible to suppress the generation of bubbles in the die, and the bubbles already generated in the die are wrapped up in the extruded amount. In the process, it is destroyed by heat and shear forces, resulting in poor quality of the foam. This tendency tends to be more pronounced as the cross-sectional area of the die opening increases, that is, as the thickness of the foam increases. To solve this problem, it may be possible to dramatically increase the extrusion rate or to place the molten resin containing a blowing agent in a closed container and instantly open the container. However, since the foaming speed is extremely high, a significantly large amount of extrusion is required to completely eliminate the negative effects of bubble generation in the die. Must be. Furthermore, if the extrusion rate is excessively increased, flow disturbances such as melt fractures occur, resulting in poor appearance such as unevenness and uneven thickness on the surface of the foam. - Even in the method of instantaneously opening a sealed container, it is not only difficult to provide an opening speed sufficient to correspond to the foaming speed, but also to obtain a foam with good appearance such as surface condition and moldability. It is difficult.

したがって、これまで種々の提案かなさ、lt”i(t
、・ろにもかかわらず、実際に実用化されているのは、
低密度ポリエチレンやポリプロピレンの発泡体や巨大セ
ルの発泡体のみで、均一で独立微細な気泡構造を有し、
優れた外観と機械的特性2合わせもつ高密度ポリエチレ
ン発泡体は、全(実用化されていないのが実状である。
Therefore, various proposals have been made so far, lt”i(t
Despite this, what has actually been put into practical use is
Made of low-density polyethylene or polypropylene foam or giant cell foam, it has a uniform, closed, fine cell structure.
High-density polyethylene foam, which has both excellent appearance and mechanical properties, has not yet been put to practical use.

不発明者らは、このような事情に鑑み、優れた外観と機
械的特性及び耐熱性を合わせて具備する発泡体を開発す
べく鋭意研究を重ねた結果、特定の発泡減速剤を用いろ
ことにより、その目的を達成しうろことを見出し本発明
をなすに至った。
In view of these circumstances, the inventors have conducted intensive research to develop a foam that has excellent appearance, mechanical properties, and heat resistance, and have found that a specific foaming moderator can be used. As a result, the inventors discovered how to achieve the object and came up with the present invention.

すなわち、不発明は、密fl O、93sy / C1
11以上、融点117℃以上の実質的に無架橋のポリエ
チレン100重量部に対し、ガラス管発泡試験法におい
て無添加の場合に比べ発泡時間を1秒以上延長し5ろ能
力乞もつ発泡減速剤0.05〜10重量部及び場合によ
り核剤0.001〜5重量部を配合した組成物乞発泡し
て得らJtろ、平均気泡径0.05〜3の独立気泡から
成り、発泡体密度が0 、007〜0−10 &/cn
i、気泡膜の厚みのばらつきが±30係以内、気泡径の
変動係数が70係以内であることを特徴と1−ろ発泡体
を提供するものである。
That is, non-invention is dense fl O, 93sy / C1
A foaming moderator 0 that extends the foaming time by 1 second or more compared to the case without additives and has a low capacity of 5% in the glass tube foaming test method for 100 parts by weight of substantially non-crosslinked polyethylene with a melting point of 117°C or higher and a melting point of 117°C or higher. A composition containing 0.05 to 10 parts by weight and optionally 0.001 to 5 parts by weight of a nucleating agent is obtained by foaming. 0,007~0-10&/cn
i. A 1-fila foam is provided, characterized in that the variation in the thickness of the cell membrane is within ±30 factors, and the coefficient of variation of the cell diameter is within 70 factors.

すなわち、発泡減速剤を含ませろことにより、無除肌で
は極めて速い発泡速度を遅くし、発泡初期の気泡生成を
抑制して、気泡壁の破れが少なく機械的特性及び耐熱性
に優れ、かつ外観の艮好な発泡体を得ろことができるの
である。
In other words, by including a foaming moderator, the foaming speed, which is extremely high in non-removed skin, is slowed down, and the generation of bubbles at the initial stage of foaming is suppressed, resulting in less tearing of the cell walls, excellent mechanical properties and heat resistance, and a high appearance. It is possible to obtain a beautiful foam.

ここで発泡減速剤は、ガラス管発泡試験法により定義さ
れろものであるが、このガラス管発泡試験法は、発泡1
生組成物を高温高圧域から低温低圧域に開放する発泡現
象において、その挙動を代表する指標となり、しかも観
察容易な方法である。
Here, the foaming moderator is defined by the glass tube foaming test method.
In the foaming phenomenon in which a biocomposition is released from a high temperature and high pressure region to a low temperature and low pressure region, this method serves as a representative indicator of the behavior and is easy to observe.

そしてこのガラス管発泡試験法において、発泡減速剤を
添加しない場合に比べ、発泡時間を延長する能力をもつ
添加剤を加えろことにより、優」tた物性と外観を兼ね
備えた発泡体が得られろことが分った。
In this glass tube foaming test method, by adding an additive that has the ability to extend the foaming time compared to when no foaming moderator is added, a foam with superior physical properties and appearance can be obtained. I found out that Rokoto.

このガラス管試1験法ば、次のように行われろ。This glass tube test method is carried out as follows.

すなわち、第1図に示すような内容積16cc(内径1
2關φ、長さ140關)の一端を閉じられた透明な耐圧
ガラス管1中に、実際の発泡体に使用する樹脂又は樹脂
混合物(所定量の添7J[]7¥IJケポリエチレン中
に練込んだ後粉料又はペレタイズしたもの)2乞4.O
g入れ、約10 ranH9に減圧した後、ジクロロテ
トラフルオロエタン1.03.!9とトリクロロトリフ
ルオロエタン 注入し、ボールバルブ4を閉じて密閉ずろ。次いでガラ
ス管1乞第2図の如くガラス製の常温のオイルバス5に
浸せきし、油浴に入れて昇温し】40°Cにする。14
0℃に約1時間保持して、発泡剤を樹脂又は樹脂混合物
中に含浸させ、均一で透明な溶融混合物3を生じさせろ
。なお、樹脂中に既に他の添加剤が含まれていて溶融混
合物が透明にならない場合は、添加剤を除いた樹脂を用
いて試,験を行う。その後、0.75±0.1”C7分
の降温速度で、油温を降温しつつ透明な溶融混合物3の
変化ケ観察1−ろ。やがて透明な溶融混合物3円にうず
もやが見え始めろか、油温かその温度から0.5℃下っ
た蒲,度に達した時、急速にボールバルブ4ビ開放し、
カラス管1円の圧力を大気圧まで低下させろと同時なガ
ラス管1内の溶融m@物3の状況を観察する。観察して
いるとガラス管の溶融混合物3I7旧C微細な気?包が
生じ、その後発泡を開始し、ガラス管lの中に充満して
発2己1−ろ。発泡終了まで円容物はガラス管外にはで
ない。
In other words, as shown in Fig. 1, the internal volume is 16 cc (inner diameter 1
A resin or resin mixture used for the actual foam (a predetermined amount of additive 7J[ ] 7\IJ ke) is placed in a transparent pressure-resistant glass tube 1 with one end closed (2 mm φ, 140 mm long) in polyethylene. After kneading, powder or pelletized) 2.4. O
g, and after reducing the pressure to about 10 ranH9, dichlorotetrafluoroethane 1.03. ! Inject 9 and trichlorotrifluoroethane and close ball valve 4 to seal the tank. Next, the glass tube 1 is immersed in a room-temperature glass oil bath 5 as shown in Figure 2, and then placed in the oil bath and heated to 40°C. 14
Hold at 0° C. for about 1 hour to impregnate the blowing agent into the resin or resin mixture to form a homogeneous, transparent molten mixture 3. If the resin already contains other additives and the molten mixture does not become transparent, conduct the test using the resin without the additives. After that, observe changes in the transparent molten mixture 3 while lowering the oil temperature at a cooling rate of 0.75±0.1"C7 minutes. Before long, swirls begin to appear in the transparent molten mixture 3. When the oil temperature reaches 0.5℃ below that temperature, the ball valve 4 is rapidly opened.
Observe the state of the molten material 3 in the glass tube 1 at the same time as the pressure in the glass tube 1 is lowered to atmospheric pressure. As I was observing, I noticed that the molten mixture in the glass tube was fine 3I7 old C? A capsule forms and then begins to foam, filling the glass tube and causing further expansion. The cylindrical material does not come out of the glass tube until the foaming is completed.

バルブ開放から発泡が終了するまでの時間な測定し、こ
れを゛発泡時間”とする。このよ5にして樹脂に対し種
々の添加剤を組み合せて行った実験結果を第1表に示す
。データは全て5回の測定値の平均値である。この実験
に使った添加剤については第2〜4表に示1−0第1表
において実験NIL31.32は添7JO剤が入ってい
ないもので、N代1〜30が添加剤を入れたものである
。添刀口剤によって発泡時間を短かくするものも長くす
るものもある。発泡時間乞同−樹脂の無添加の場合に比
べ1秒以上長くするような発泡減速剤が、不発明の発泡
減速剤として適している。
The time from the opening of the valve until the end of foaming is measured and is referred to as the "foaming time".Table 1 shows the results of experiments conducted in 5 using various combinations of additives for the resin.Data are all average values of five measurements.The additives used in this experiment are shown in Tables 2 to 4.1-0 In Table 1, the experiment NIL 31.32 does not contain additive 7JO agent. , N range 1 to 30 contains additives. Some additives shorten the foaming time, while others lengthen it. Foaming time - 1 second or more compared to when no resin is added. Foam moderators that lengthen the foam are suitable as non-inventive foam moderators.

不発明の気泡のセル壁を構成する材料の組成の大部分は
密度0.935g/cc以上、融点117°C以上の実
質上無架橋のポリエチレンであって、その一部に発泡減
速剤が混合されたものであり、また、ある場合にはさら
に一部に核剤が混合されたものである。
Most of the composition of the material constituting the cell walls of the non-inventive cells is substantially non-crosslinked polyethylene with a density of 0.935 g/cc or more and a melting point of 117°C or more, and a part of it is mixed with a foaming moderator. In some cases, a nucleating agent is further mixed in a portion.

ポリエチレンは実質上無架橋であることが必要で、架橋
はセル壁を脆化せしめてポリエチレンの特徴で′Jr)
7)柔軟性を失わせろと共に引張比強度などの物性を低
下させるので好ましくない。
Polyethylene must be virtually non-crosslinked; crosslinking can cause the cell walls to become brittle, which is a characteristic of polyethylene.
7) It is not preferable because it causes loss of flexibility and decreases physical properties such as tensile specific strength.

また、このポリエチレンは密度0.935g/CC以上
、融点117℃以上であることが必要であり、0.93
5g/ cn1未満のものは、十分な引張比強度を与え
ないし、また融点が117 ”C未満のものは十分低い
加熱収縮率をもたらさない。
In addition, this polyethylene needs to have a density of 0.935 g/CC or more and a melting point of 117°C or more, and 0.93
Those with a melting point of less than 5 g/cn1 do not provide sufficient tensile specific strength, and those with a melting point of less than 117''C do not provide a sufficiently low heat shrinkage rate.

不発明で用いろポリエチレンは、密度0 、935.9
/cn1以上、融点117℃以上のエチレンを主成分と
する重合体であって、エチレンの単独重合体だけでなく
、エチレンと、例えばプロピレン、1−ブテン、1−ヘ
キセン、2−ナチルペンテン等の他の単量体との共重合
体であってもよい。また、その重量の30重量係?限度
として、他の樹脂やゴムを含んだものでもよいし、慣用
の添7JIJ剤を含んだもので゛もよい。
The polyethylene used in the invention has a density of 0.935.9
/cn1 or higher and a melting point of 117°C or higher, which is a polymer mainly composed of ethylene, and includes not only ethylene homopolymers but also ethylene and other polymers such as propylene, 1-butene, 1-hexene, 2-natylpentene, etc. It may also be a copolymer with a monomer of Also, is that the 30 weight person? As a limit, it may contain other resins or rubbers, or it may contain a commonly used additive 7JIJ agent.

不発明で用いられろポリエチレンとしては、190°、
荷g21.6に9におけろメルトインデックス(HLM
工)が0.02〜40.!1I710分、スウェル値が
20〜50 fj / 20 onであろものが特に好
適である。このメルトインデックスが0.02g/l 
0分より小さいと成形状態(表面平滑性、形状安定性)
が悪(,40g710分より大きいとWttr性不良と
なり好ましくない。スウェル値が20.9720 cm
より小さいと発泡状態が悪くなり、50 g 720 
cmより太きいと成形状態(表面平滑性、形状安定性)
が悪くなるので好ましくない。
As the polyethylene used in the invention, 190°,
Load g21.6 to 9 melt index (HLM
engineering) is 0.02 to 40. ! Particularly suitable are those with a swell value of 20 to 50 fj/20 on. This melt index is 0.02g/l
If it is less than 0 minutes, the molding condition (surface smoothness, shape stability)
(If it is larger than 40g710 minutes, the Wttr property will be poor and it is not preferable.The swell value is 20.9720 cm
If it is smaller, the foaming condition will be poor, so 50 g 720
If it is thicker than cm, the molding condition (surface smoothness, shape stability)
This is not preferable because it worsens the condition.

膜壁を構成するもう一つの成分の発泡減速剤は、先に記
したような理由から該ポリエチレンにm合されているも
のであって、ガラス管発泡試験法でこれを加えない場合
に比べ発泡時間を1秒以上、好ましくは2秒以上延長し
5石能力を有するもので、さらに融点が該ポリエチレン
の融点よりも低く、浴融した該ポリエチレンに均一に混
和1−ろものが好ましい。
The foaming moderator, which is another component constituting the membrane wall, is mixed with the polyethylene for the reasons mentioned above, and the foaming rate is lower than when it is not added in the glass tube foaming test method. It is preferable that the melting time be extended for 1 second or more, preferably 2 seconds or more, and that the melting point is lower than the melting point of the polyethylene, and that it can be uniformly mixed into the bath-melted polyethylene.

このような発泡減速剤の好適なものとしては、一般式 %式%(1) (式中のR,は炭素数1〜5のフルキレン基、Aは水素
原子又はアシル基、nは1〜10の整数、XはO又は1
〜2の整数である) 又は、一般式 %式%( (式中の各R2はたがいに同一でも異なっていてもよい
炭素数1〜6の二価炭化水素基、mは1以上の整数であ
る) 又は、一般式 R11は炭素数1〜6の炭化水素基、lは0又は1〜6
の整数である)で示されろ置侯基、R6,R,は水素又
は炭素数1〜23の炭化水素基、R8は水素又は炭素数
】〜6の炭化水素基であゐ。〕で示されろ化合物を挙げ
ろことができろ。
Suitable foaming moderators include the general formula % (1) (where R is a fullylene group having 1 to 5 carbon atoms, A is a hydrogen atom or an acyl group, and n is 1 to 10 integer, X is O or 1
- 2) or the general formula % (in the formula, each R2 is a divalent hydrocarbon group having 1 to 6 carbon atoms, which may be the same or different from each other, m is an integer of 1 or more) Or, the general formula R11 is a hydrocarbon group having 1 to 6 carbon atoms, and l is 0 or 1 to 6
R6 and R are hydrogen or a hydrocarbon group having 1 to 23 carbon atoms, and R8 is hydrogen or a hydrocarbon group having 1 to 6 carbon atoms. ] Can you name a compound?

不発明において、発泡減速剤として用いられろ一般式t
l)で示さitろ化合物の例としては、2−ヒドロキシ
エチルアミン、ジー2−ヒドロキシエチルアミン、トリ
ー2−ヒドロキシエチルアミン、2−ヒドロキシプロピ
ルアミン、ジ−2−ヒドロギシグロピルアミン、トリー
2−ヒドロキシプロピルアミン、3−ヒドロキシプロピ
ルアミン、ジー3−ヒドロキシプロピルアミン、トリー
3−ヒドロキシプロピルアミン、トリーポリオキシエチ
レンアミン及びこれらと脂肪酸とのエステル化合物、例
えはトリー2−ヒドロキシエチルアミンモノステアレー
ト、トリー2−ヒドロキシエチルアミンジステアレ−1
・、トリー2−ヒドロキシエチルアミン) IJステア
レー)・、1−IJ−2−ヒドロキシエチルアミンシラ
ウリレート、トリー2−ヒドロキシエチルアミンシラウ
リレート、トリー2〜ヒドロキシエチルアミントリラウ
リレートを挙げろことができろ。特に好ましいものは、
2−ヒドロキシエチルアミン、ジー2−ヒドロキシエチ
ルアミン、トリー2−ヒドロキシエチルアミン、2−ヒ
ドロキシプロピルアミン、ジー2−ヒドロキシプロピル
アミン、トリー2−ヒドロキシプロピルアミンなどであ
る。こ」tらアミン類&ま1種で用いてもよいし、2種
以上を組み合せて使用することもできろ。
In the present invention, the general formula t is used as a foaming moderator.
Examples of the compounds shown in l) include 2-hydroxyethylamine, di-2-hydroxyethylamine, tri-2-hydroxyethylamine, 2-hydroxypropylamine, di-2-hydroxyglopylamine, tri-2-hydroxypropyl amine, 3-hydroxypropylamine, di-3-hydroxypropylamine, tri-3-hydroxypropylamine, tri-polyoxyethyleneamine, and ester compounds of these with fatty acids, such as tri-2-hydroxyethylamine monostearate, tri-2- Hydroxyethylamine distear-1
, tri-2-hydroxyethylamine) IJ Stearley), 1-IJ-2-hydroxyethylamine silaurylate, tri-2-hydroxyethylamine silaurylate, and tri-2-hydroxyethylamine trilaurate. Particularly preferred are
These include 2-hydroxyethylamine, di-2-hydroxyethylamine, tri-2-hydroxyethylamine, 2-hydroxypropylamine, di-2-hydroxypropylamine, and tri-2-hydroxypropylamine. These amines may be used alone or in combination of two or more.

一般式(Il+で示されろ化合物の例としては、エチレ
ングリコール、フロパンジオール、ブタンジメール、ベ
ンタンジオール、ヘギザンジオール、ポリエチレングリ
コール、ポリプロピレングリコール、ポリオキシテトラ
メチレングリコール、ポリオキシエチレンポリオキシプ
ロピレングロツクボリマー等を挙げろことができろ。特
に好ましいものは、一般式 %式% (式中のR3、R4は炭素数1〜6の炭化水素基であり
、R3とR4は異なる炭化水素である。a、b。
Examples of compounds represented by the general formula (Il+) include ethylene glycol, fropanediol, butanedimer, bentanediol, hegyzanediol, polyethylene glycol, polypropylene glycol, polyoxytetramethylene glycol, and polyoxyethylene polyoxypropylene glycol. Particularly preferred are polymers having the general formula % (in the formula, R3 and R4 are hydrocarbon groups having 1 to 6 carbon atoms, and R3 and R4 are different hydrocarbons). a, b.

Cは1以上の整数である) で示されろブロックポリマーであり、より好ましいもの
は、一般式(Itつ中のR3が−CH2−CH2−、R
4がCH3 −CH−CH2−の、ポリオキシエチレンボリオギシプ
ロピレンブロツクポリマーで゛ある。
C is an integer of 1 or more.
4 is a polyoxyethylene polyoxypropylene block polymer of CH3-CH-CH2-.

一般式+1>で示されろ化合物の例としては、ベタイン
、ラウリルベタイン、ステアリルベタイン、ラウリルグ
リシン、ステアリルグリシン、ラウリルジ(アミノエチ
ル)グリシン、ステアリルジ(アミノエチルグリシン)
、グリシン、アラニン、バリン、ロイシン等が挙げらハ
、ろ。精に好ましい化合物は、ラウリルベタイン、ステ
アリルベタイン、ラウリルジ(アミノエチル)グリシン
、ステアリルジ(了ミノエチル)グリシンて・ある。
Examples of compounds represented by the general formula +1> include betaine, laurylbetaine, stearylbetaine, laurylglycine, stearylglycine, lauryldi(aminoethyl)glycine, and stearyldi(aminoethylglycine).
, glycine, alanine, valine, leucine, etc. Particularly preferred compounds are lauryl betaine, stearyl betaine, lauryl di(aminoethyl)glycine, and stearyl di(minoethyl)glycine.

これらの化合物は1神で用いてもよいし、2種以上を組
み合わせて使用することもできろ。また、他σ)添加剤
と組み合わせて用いることもできる。
These compounds may be used alone or in combination of two or more. It can also be used in combination with other σ) additives.

これらの発泡減速剤の混合割合としては、ポリエチレン
100重量部に対し0,05〜10重量部、好ましくは
0.1〜8重量部の範囲内で選択されろ。
The mixing ratio of these foaming moderators should be selected within the range of 0.05 to 10 parts by weight, preferably 0.1 to 8 parts by weight, based on 100 parts by weight of polyethylene.

この量が0.05重量部未満では、発泡速度を遅らせろ
効果が十分でなく、得られた発泡体の外観が劣化したり
、機械的特性が低下したりする。また、10重量部より
多くなると配合量の割には大きな効果は望めないし、し
かもセル壁を構成′1−ろポリエチレンの強度を低下さ
せるので好ましくない。
If this amount is less than 0.05 part by weight, the effect of slowing down the foaming speed will not be sufficient, and the appearance of the obtained foam will deteriorate and the mechanical properties will deteriorate. Moreover, if the amount is more than 10 parts by weight, no great effect can be expected considering the amount blended, and furthermore, the strength of the polyethylene constituting the cell walls is reduced, which is not preferable.

さらに発泡用混合物中に核剤o、ooi〜5重量部をポ
リエチレン100重量部に対し加えろのが不発明の特徴
であり、これによって従来の技術(例えは米国特許第3
,787,543号明細書用達成できなかった微細セル
で、セル径の均一な独立気泡率の高い(すなわち圧縮回
復系の高い)発泡体が得られた。核剤としては従来慣用
されているものを使用し得ろ。このようなもθ、)とし
ては、例えば、クレー、タルク、シリカ等の無機質の微
粉末や、ステアリン酸亜鉛、ステアリン酸カルシウム等
の脂肪酸金属塩等がある。また、発泡時に分解して発泡
体中から検出され得ないもので゛あってもよいし、微粉
末の顔料等であってもよい。
Furthermore, it is a feature of the invention that ~5 parts by weight of a nucleating agent o, ooi to 100 parts by weight of polyethylene is added to the foaming mixture, and this eliminates the conventional technology (for example, U.S. Pat.
, 787,543, a foam with a uniform cell diameter and a high closed cell ratio (that is, a high compression recovery system) was obtained. As the nucleating agent, any conventionally used nucleating agent may be used. Examples of such materials include fine inorganic powders such as clay, talc, and silica, and fatty acid metal salts such as zinc stearate and calcium stearate. Further, it may be something that decomposes during foaming and cannot be detected in the foam, or it may be a finely powdered pigment or the like.

核剤の量が5重量部を超え4)と外観、及び′動性が劣
化するので好ましくない。
If the amount of the nucleating agent exceeds 5 parts by weight (4), the appearance and mobility will deteriorate, which is not preferable.

不発明の発泡体は、平均気泡径が0.05〜3胴、好ま
しくは0.1〜2 mmの独立気泡から成り、発泡体密
度が0.007〜0 、10 、!710/I、好まし
くは帆0工〜Q、05g/c!、気泡月莫の厚みのばら
つきが±30係以内、好ましくは±2525係、気泡径
の変動係数が70係以内になるように発泡されているこ
とが必要であって、この範囲をはずれ2)と、引張比強
度、圧縮回復率、加熱収縮率及び外観において満足し得
ろものにならない。
The inventive foam consists of closed cells with an average cell diameter of 0.05 to 3 mm, preferably 0.1 to 2 mm, and a foam density of 0.007 to 0,10,! 710/I, preferably sails 0 to Q, 05g/c! It is necessary that the foaming be carried out so that the variation in the thickness of the bubbles is within ±30 coefficients, preferably ±2525 coefficients, and the coefficient of variation of the bubble diameter is within 70 coefficients, and outside this range 2) However, the tensile specific strength, compression recovery rate, heat shrinkage rate, and appearance are unsatisfactory.

不発明でいう独立気泡とは、ASTMD−2856に示
されろエアピラノメーター法で測定されろ連続気泡率が
20係以下であることを意味し、連続気泡率が20係を
越えろと圧縮回復率等の物性が低下する。好ましい連続
気泡率の値は10%以下である。
Closed cell means that the open cell ratio is 20 parts or less as measured by the air pyranometer method as shown in ASTM D-2856, and compression recovery is required when the open cell ratio exceeds 20 parts. Physical properties such as ratio decrease. A preferable open cell ratio value is 10% or less.

不発明の発泡体は、前記のよ5な発泡2威速剤を含む特
定のポリエチレンから成り、独立でかつ気泡膜の厚みの
ばらつき及び気泡径の変動係数の小さい均一な気泡構造
を有ずろことによって、引張比強度150Kg/cr1
以上、圧縮回復率80係以上、刃口熱収縮率50係以下
でかつ厚みむらが50係未満、コルゲート値が50係未
満、表面平滑度が2聞未満という優れた物性を達成しえ
たのである。
The non-inventive foam is made of a specific polyethylene containing the above-mentioned foaming accelerator, and has a uniform cell structure that is independent and has a small variation in cell membrane thickness and a small coefficient of variation in cell diameter. tensile specific strength 150Kg/cr1
As described above, we were able to achieve excellent physical properties such as a compression recovery rate of 80 coefficients or more, a cutter edge heat shrinkage rate of 50 coefficients or less, a thickness unevenness of less than 50 coefficients, a corrugation value of less than 50 coefficients, and a surface smoothness of less than 2 coefficients. .

不発明の発泡体の気泡膜は、偏光顕微鏡で直交ニコル下
で複屈折の観察を行うと、消光位において、第3図aに
示したよ5に、暗黒の中に径5μ以下の点をほぼ均一に
散らしたよ5な像に見えろ。
When the birefringence of the foam membrane of the inventive foam is observed under crossed Nicols using a polarizing microscope, at the extinction position, as shown in Figure 3a, a point with a diameter of approximately 5 μm or less is observed in the dark. It looks like a 5-shaped image that has been scattered evenly.

これは、不発明の発泡体が、発泡2速剤馨含み、気泡が
形成さオを8際ゆっくりと膨張され、均一に膨張してい
るためと考えら」1.ろ。これに対し、急激に発/8さ
せられろ市販のポリプロピレン発泡体は、第3図すに示
すように、全面が暗黒に見えろ。
This is thought to be because the non-inventive foam contains a second foaming agent, which expands slowly and uniformly as air bubbles are formed. reactor. On the other hand, commercially available polypropylene foams that are exposed to rapid expansion/8 appear dark all over, as shown in Figure 3.

不発明の発泡体は公知の方法によって製造できろが、好
ましくは押出発泡法が用いられろ。
Although the inventive foam can be produced by known methods, extrusion foaming is preferably used.

不発明の方法に従えば、(イ)密度0.935 E/ 
/ad以上、融点117℃以上の実質的に無架橋σ)ポ
リエチレン100重量部、(ロ)ガラス管発泡試験法に
おいて、無添刀口に比べ発泡時間ビニ秒以上延長し5ろ
能力をもつ発泡減速剤0.05〜10重量部、?・)接
剤0.001〜5重量部及び(ニ)揮発性有機発泡剤3
0−140重量部と乞、高圧下に該ポリエチレンの融点
以上の温度で助口熱混線し、高温高圧域から低温低圧域
に押出して連続発泡させろことにより所望の発泡体を得
ろことができろ。
According to the uninvented method, (a) density 0.935 E/
/ad or higher, substantially non-crosslinked σ polyethylene with a melting point of 117°C or higher, (b) 100 parts by weight of polyethylene, (b) a foaming retarder with a foaming time of more than 100 seconds and a 5-filtration capacity compared to a non-additive foam test method according to the glass tube foaming test method. agent 0.05 to 10 parts by weight, ?・) 0.001 to 5 parts by weight of adhesive and (d) volatile organic blowing agent 3
0 to 140 parts by weight of the polyethylene is heated under high pressure at a temperature higher than the melting point of the polyethylene, and extruded from a high temperature and high pressure area to a low temperature and low pressure area for continuous foaming, thereby obtaining the desired foam. .

この方法を好ノxに実施づ−ろには、特定のポリエチレ
ン100重量部と特定な発泡減速剤0.05〜1゜の十
分高い温度まで’71D熱して該ポリエチレンを溶融せ
しめ混合物をよく混練し、これに十分な圧力を付与する
。この溶融混合物中に押出機先端に設けた注入口より揮
発性有機発泡剤1o〜14oz量部な押出機内圧力より
も十分高い圧力で注入し、さらによく混練して揮発性有
機発泡剤を均一π分散させろ。この混合物を押出機に連
結した冷却装置を用いてポリエチレンの融点のわずかに
高い温度(高くても20 ℃)まで冷却し、ダイより低
温低圧機に押出す。この際、揮発性有機発泡剤を含む混
合組成物は発泡しようと1−ろが、発泡減速剤の作用に
よりダイ内でσつ気泡の生成か抑制され、ダイから出て
わずか進んだところから発泡を開始し、表面外観の良好
なしかも機械的物性の浸れた発泡体を生成fろ。
To best carry out this method, 100 parts by weight of a specific polyethylene and a specific foaming moderator are heated to a sufficiently high temperature of 0.05 to 1°C to melt the polyethylene and knead the mixture well. and apply sufficient pressure. 1 to 14 oz of volatile organic blowing agent is injected into this molten mixture through an injection port provided at the tip of the extruder at a pressure sufficiently higher than the internal pressure of the extruder, and the mixture is thoroughly kneaded to uniformly distribute the volatile organic blowing agent into π. Disperse it. This mixture is cooled to a temperature slightly higher than the melting point of polyethylene (20° C. at most) using a cooling device connected to the extruder, and extruded through a die into a low temperature, low pressure machine. At this time, whether the mixed composition containing the volatile organic blowing agent foams or not, the foaming moderator suppresses the formation of σ bubbles in the die, and the foaming begins a short distance after exiting the die. The process begins to produce a soaked foam with good surface appearance and mechanical properties.

ここで用いるポリエチレンは、密度0.935g/cc
以上、融点117 ”C1以上の実質的に無架橋のポリ
エチレンであり、発泡減速剤はガラス管発泡試験−し法
で無添加の場合に比べ、発泡時間を]秒以上、好ましく
は2秒以上に延長しつる化合物で、さらに好ましくは前
記一般式(1)ないしく1it)で示されろ化合物の少
な(とも1種から戎ろものである。
The polyethylene used here has a density of 0.935g/cc
As described above, it is substantially non-crosslinked polyethylene with a melting point of 117" C1 or more, and the foaming moderator is used in the glass tube foaming test method to increase the foaming time to 2 seconds or more, preferably 2 seconds or more, compared to the case without additive. It is an extended vine compound, more preferably one or more compounds represented by the general formulas (1) to 1it).

なお、本発明に用いろ発泡剤は揮発性有機発泡剤であっ
て、これを用いろことによって、無架橋を主に用いろ方
法では、無架橋ポリエチレンから高倍率の発泡体7得ろ
ことはできない〔「プラスチックフオームハンドブック
l(牧、小坂田遍、日刊工業新聞社刊)、第119〜1
20ページ〕。
Note that the blowing agent used in the present invention is a volatile organic blowing agent, and by using this, it is not possible to obtain a foam with a high ratio from non-crosslinked polyethylene using a method that mainly uses non-crosslinking. [“Plastic Form Handbook I (Maki, Hen Osakata, published by Nikkan Kogyo Shimbunsha), No. 119-1
20 pages].

揮発性有機発泡剤としては、ハロゲン化炭化水素か好ま
しく、異梗のハロゲン化炭化水素との?17合糸がより
好ましい。この好ましい例としては、例えばジクロロテ
トラフルオロエタンとそれ以外のハロケン化炭化水素か
ら成る混合系発泡剤であり、該ハロゲン化炭化水素のう
ち特に好ましいものt″S、、トリクロロモノフルオロ
メタン、ジクロロモノフルオロメタン、ジクロロジフル
オロメタン、トリクロロトリフルオロエタン、塩化メチ
ル、及び二塩化メタンの中から選ばれた少なくとも1種
である。この混合系発泡剤におけろジクロロテトラフル
オロエタンとそれ以外のハロゲン化炭化水素との混合割
合は、モル比でl:4ないし4:1の範囲が望ましく、
好ましくば3ニアないし7:3の範囲で゛ある。
As the volatile organic blowing agent, halogenated hydrocarbons are preferable, and different types of halogenated hydrocarbons are used. 17 doubling yarn is more preferable. Preferred examples include mixed blowing agents consisting of dichlorotetrafluoroethane and other halogenated hydrocarbons, and particularly preferred among the halogenated hydrocarbons are trichloromonofluoromethane, dichloromonofluoromethane, and dichloromonofluoromethane. At least one selected from fluoromethane, dichlorodifluoromethane, trichlorotrifluoroethane, methyl chloride, and dichloride methane.In this mixed blowing agent, dichlorotetrafluoroethane and other halogenated carbonized The mixing ratio with hydrogen is preferably in the range of 1:4 to 4:1 in terms of molar ratio.
It is preferably in the range of 3:3 to 7:3.

不発明におけろ前記揮発性有機発泡剤の混合割合は、ポ
リエチレン100重量部当り10〜140重量部の範囲
が好ましく、さらに好ましくは20〜70重量部の範囲
であって、10重量部未満では高発泡体を得ろことが困
難であり、また140重量部暑超7ろと混合量を増加さ
せてもあまり発泡培率が増大せず不経済であり、その上
発泡体の品質の劣化を招くので好ましくない。
In the present invention, the mixing ratio of the volatile organic blowing agent is preferably in the range of 10 to 140 parts by weight, more preferably in the range of 20 to 70 parts by weight, and less than 10 parts by weight. It is difficult to obtain a highly foamed product, and even if the mixing amount is increased to 140 parts by weight, the foaming ratio does not increase much and it is uneconomical, and furthermore, the quality of the foam deteriorates. So I don't like it.

なお、不発明において押出機に供給f7;)ポリエチレ
ン混合物中に通常用いられろ程度の量り慣用の添刀口剤
例えばヌテアリン酸亜鉛などの滑剤、紫外線吸収剤、帯
電防止剤、安定剤、着色剤、難燃剤などを配合させろこ
とができろ。
In addition, in the case of non-invention, feed f7 to the extruder;) Additives commonly used in polyethylene mixtures, such as lubricants such as zinc nateate, ultraviolet absorbers, antistatic agents, stabilizers, colorants, You can add flame retardants, etc.

不発明の発泡体は、独立気泡体であって、優れた断熱性
と緩衝性を有しており、断熱材、包装材などに非常に有
用である。
The non-inventive foam is a closed-cell foam with excellent heat insulation and cushioning properties, making it very useful for insulation materials, packaging materials, and the like.

次に実施例により不発明をさらに詳細に説明するが、各
例中に示された物性値は、以下のようにして測定された
ものである。
Next, the invention will be explained in more detail with reference to examples, and the physical property values shown in each example were measured as follows.

/ \ / (1)  ポリエチレンの密度 ポリエチレン(比較例の市販品については発泡体より気
泡を構成するセル壁を切り出しだもの)を温度20±2
℃、相対湿度65±5%の温度状態に12時間以」二保
ったのち、JISK6760に従って作成した23℃の
ノルマルブタノール−トリエチレングリコール系の密度
勾配管に投入して密度を測定した。試験片は3個とし、
その平均値にで示す。
/ \ / (1) Density of polyethylene Polyethylene (comparative commercial products are made by cutting out cell walls constituting cells from foam) at a temperature of 20 ± 2
After being maintained at a temperature of 65±5% at a relative humidity of 65±5% for 12 hours, the sample was placed in a n-butanol-triethylene glycol density gradient tube prepared according to JIS K6760 at 23°C, and its density was measured. There are three test pieces,
The average value is shown as .

(2)ポリエチレンの融点 ポリエチレン(比較例の市販品については発泡体より気
泡を構成するセル壁を切シ出したもの)を示差走査熱量
計(D、S、C,)による融解曲線のピーク湿度をもっ
て融点とする。測定条件は下記のとおシである。
(2) Melting point of polyethylene The peak humidity of the melting curve of polyethylene (comparative commercial products are obtained by cutting out the cell walls constituting the cells from the foam) using a differential scanning calorimeter (D, S, C,) is the melting point. The measurement conditions are as follows.

ザンブル重量: 7 mq スキャン速度=16℃/ mln く 定 (3)ポリエチレンのスウェル1直1 ポリエチレン(比較例の市販品については、発泡体を1
50℃のプレス叛で圧縮した後、微粉砕し/こもの)を
口径50mmφ(シリンクー長/ノリンダーロ径−30
)押出機に供給する6、押出機の先端には下向きに内径
10mmφ、外径16mmφの環状ダイをあらかじめ装
備しておき、スクリュー回転数46 rpm、温度18
0℃にてチューブ状の成形体を押出し、ダイ表面より下
方20nnにて該ナユーブを素早く切り出し、押出直後
の長さ20crnのチューブの重量を測定し、その値を
スウェル11区(単位: ?/ 20crn )とする
。、(4)ポリエチレンのメルトインテックスポリエチ
レン(比較例の市販品についてはづ耐j1体より気泡を
構成するセル壁を切り出したもの)を、JISK676
0に従って6i11 ’iし/こ。
Zamble weight: 7 mq Scan speed = 16 ° C / mln (3) Polyethylene swell 1 round 1 Polyethylene (For commercial products as comparative examples, foam
After compressing with a press at 50℃, finely pulverize the powder to a diameter of 50 mmφ (silicone length/Norindaro diameter -30
) Supply to the extruder 6. A circular die with an inner diameter of 10 mmφ and an outer diameter of 16 mmφ is installed downward at the tip of the extruder, and the screw rotation speed is 46 rpm and the temperature is 18 mm.
A tube-shaped molded product is extruded at 0°C, the naube is quickly cut out 20 nm below the die surface, the weight of the tube with a length of 20 crn immediately after extrusion is measured, and the value is calculated as the swell 11 section (unit: ?/ 20crn). , (4) Polyethylene melt intex polyethylene (for the commercial product of comparative example, the cell wall constituting the air bubbles was cut out from the J1 body) was prepared according to JISK676.
0 according to 6i11'i/ko.

/こだし召41]定l胤度は190℃であるが、d用定
不パ了11rは21.6Kgに変更して実施した。
/ Kodashi 41] The constant temperature was 190°C, but the constant temperature for d was changed to 21.6 kg.

5)発泡体の平均気泡径及び気泡径の変動係数測定は必
要に応じて拡大鋭を用いて次の袋頒で・テなう。発泡体
の試料から1辺LOmm以上の立方体を任意に3個切り
出す。ただし厚みが10sn未満の場合には、直方体と
してよい。切り出した立方体の一つの面において、任意
の一方向における個々の気泡の最長の長さを測定する。
5) Measure the average cell diameter of the foam and the coefficient of variation of the cell diameter at the next bag distribution using a magnifying knife if necessary. Three cubes with one side of LO mm or more are arbitrarily cut out from the foam sample. However, if the thickness is less than 10 sn, it may be a rectangular parallelepiped. On one side of the cut cube, measure the longest length of each bubble in any one direction.

測定は一つの方向について少なくとも10個以上の気泡
について行うものとする。次にこの方向と直角の方向に
ついて、同様の測定を行う。測定は立方体の直交する3
つの面について行う。3個の立方体についての測定値の
相加平均値を平均気泡径とする。
The measurement shall be performed on at least 10 bubbles in one direction. Next, similar measurements are made in a direction perpendicular to this direction. Measurements are made on three orthogonal cubes
Do this for two aspects. Let the arithmetic mean value of the measured values for the three cubes be the average bubble diameter.

上記のようにして求めた気泡径の測定値から標準偏差を
求め、次いで次式に従って求めた気泡径の変動係数を、
気泡径のばらつきの評価尺度とする。
The standard deviation is calculated from the measured value of the bubble diameter obtained as above, and then the coefficient of variation of the bubble diameter is calculated according to the following formula:
This is used as an evaluation scale for the variation in bubble diameter.

気を色枠の変動係数が70%を超えると、気泡径の不均
一さが目立ち、四重価値が者しく劣る。好ましくは、4
0%以下でめる。
When the coefficient of variation of the air color frame exceeds 70%, the non-uniformity of the bubble diameter becomes noticeable and the quadruple value becomes noticeably inferior. Preferably 4
Set it at 0% or less.

(6)発泡体の気泡膜の厚みのばらつき気泡膜の厚みの
測定は、下記の要領で、断面を直接顕微鏡で観察するか
、顕微鏡写真を撮影してその写真から測定して求める。
(6) Variation in the thickness of the cell membrane of the foam The thickness of the cell membrane is determined by directly observing the cross section with a microscope, or by taking a photomicrograph and measuring from the photo, as described below.

1ず発泡体の試料から一辺10+nm以−」−の立方体
をカミソリの刃で切り出す。ただし厚みが]、 Omm
以−Fの場合には直方体としてよい。切り出した立方体
の一つの断面に平行な面で、カミソリの刃を用いて0.
5〜1mmの厚みの切片を切り出す。この際前記立方体
は切片を切り出しやすい大きさに切断してもよい。切り
出しブC切片を顕微鏡で観察して気泡の膜厚を測定才る
。膜厚が薄い場合には(1μ以下)真空蒸着装置で、金
を試別表面に蒸廃させた後、走査型電子顕微鏡で観察し
て測定づ−る。測定は、一つの気泡膜に対して気泡膜の
交点間を6等分する5つの点で行い、乎均膜膜(X)、
最大膜厚(X、)、最小膜厚(xz)を求めるuill
ll定の際、倍率は、有効数字2けた以上mしみ取れる
倍率とする。(?Uえば膜厚10〜20μの場合300
倍以上) 測定は一つの方向について、異なる気泡に属する任意の
3つ以上の気泡膜について行い、直交する3つの方向に
ついて同様の測定を繰り返す。
1. Cut out a cube with a side of 10+ nm or more from a foam sample using a razor blade. However, the thickness is ], Omm
In the case of -F, a rectangular parallelepiped may be used. On a plane parallel to one cross section of the cut cube, use a razor blade to cut 0.
Cut out sections with a thickness of 5 to 1 mm. At this time, the cube may be cut into a size that makes it easy to cut out sections. The cut sections were observed under a microscope to measure the thickness of the bubbles. If the film is thin (less than 1 μm), the gold is evaporated onto the sample surface using a vacuum evaporation device, and then observed and measured using a scanning electron microscope. The measurement was performed at five points dividing the intersection of the bubble membrane into six equal parts for one bubble membrane, and the uniform membrane (X),
uill to find the maximum film thickness (X,) and minimum film thickness (xz)
When determining, the magnification should be such that it can remove stains of at least two significant figures. (For example, 300 if the film thickness is 10 to 20μ
Measurement is performed on any three or more bubble membranes belonging to different bubbles in one direction, and the same measurement is repeated in three orthogonal directions.

個々の気泡壁について、Xi −x/ x x 100
(%)及びXX2/X X 100(%)の値を計算し
て膜厚のばらつきを評価する。測定した全ての気泡膜の
厚みばらつきが±30%以内であるとき、気泡膜の厚み
が均一であるとする。好ましくは±25%以内である。
For each cell wall, Xi −x/ x x 100
(%) and XX2/X X 100 (%) to evaluate the variation in film thickness. When the thickness variation of all the measured bubble membranes is within ±30%, it is assumed that the thickness of the bubble membrane is uniform. Preferably it is within ±25%.

(7)発?包体の気泡膜の複屈折試験 発泡体の試料から、気泡膜の厚みの測定と同様にして、
カミソリの刃で一枚の気泡膜を切り出す。。
(7) Departure? Birefringence test of the bubble membrane of the envelope From the foam sample, in the same way as the measurement of the thickness of the bubble membrane,
Cut out a piece of bubble membrane with a razor blade. .

気泡径の大きな試料に対しては、厚み0 、5 +nm
以下の切片を切り出し、切片中で気泡膜の一枚かhbr
血にほぼ平行になっている部分を観察すればよい3゜気
泡径が小さい試料には、試別を界面活性剤水浴液の中に
浸せきし、凍結させて切ytrしてもよい。
For samples with large bubble diameters, the thickness is 0, 5 + nm.
Cut out the section below, and in the section, either one of the bubble membranes or hbr
For samples with small bubble diameters of 3°, for which it is sufficient to observe the part almost parallel to the blood, the specimen may be immersed in a surfactant water bath, frozen, and then cut.

少屈折試験は、切り出した気泡膜を含む切片あるいは気
泡1臭を、直交ニコル下で偏光顕微鏡で観察して行なう
。直交ニコル下で試料を回転し、消光位に達した時の1
象を観察する。
The low refraction test is performed by observing a section containing a cut-out bubble film or a single bubble under a polarizing microscope under crossed Nicols. 1 when the sample is rotated under crossed Nicols and the extinction position is reached.
Observe elephants.

f睨祭される1象は大さく分けると、(イ)第3b図の
ように気/@)換全面が暗黒に見える場合、(r+)第
3a図のように暗黒の中に5μ以上の寸法の円あるいは
長円状の無数の燻点(色の異なる部分)が児える場合及
びンi5μを超える寸法の斑点が見える場合、(→気泡
膜の一部が色が変わって見える場合になる。
An elephant to be glared at can be roughly divided into: (a) When the air/@) ventilation surface appears dark as shown in Figure 3b, (r+) When there is an elephant with a diameter of 5 μ or more in the darkness as shown in Figure 3a. If numerous circular or elliptical smoke spots (parts of different colors) appear, or if spots with dimensions exceeding 5μ are visible, (→ Part of the bubble film may appear to change color.) .

これらの価1光顕微鏡による観察は、倍率約700倍で
行うのが適当でめるQ (=)とに)のように見える場
合は、気泡が不均一に膨張させられており、物性の低下
をまねく。これに比べ、第3a図と第、3b図のような
場合は均一な膨張がなされていると考えられる。
It is appropriate to perform these observations using a single valence light microscope at a magnification of about 700 times.If it looks like Q (=) and ni), the bubbles are expanding non-uniformly and the physical properties have deteriorated. cause In contrast, in the cases shown in Figures 3a, 3b, and 3b, it is considered that the expansion is uniform.

(7)発泡体の密度と比重 試験片として体積50 cni以−にのものを用、@ル
、祉ず重量を±1粁までの41一度で秤量する。次いで
約半分の容量1で水をイ1にjたしたメス/リンダ−中
に試験片を没し、その水’+16の上昇篩さより試験片
の体gを±1%丑での精度で量り、次式により試験片の
発泡体密度D(f / ari )を算出する。。
(7) Density and specific gravity of foam A test piece with a volume of 50 centimeters or more is used, and the weight is weighed to the nearest ±1 centimeter. Next, the test piece was immersed in a knife/linda filled with water to about half the volume, and the body g of the test piece was measured with an accuracy of ±1% from the rising sieve of the water '+16. , calculate the foam density D(f/ari) of the test piece using the following formula. .

D = −− ■ ここにW:試験片の重量(7) V:試験片の体積(c2y) 試験片は試験開始前に温度2o±2℃、相対湿度65±
591;の温湿状態に12時間以上保ったものを使用し
、試験片数は3個とし、その平均値を求める。
D = -- ■ Where W: Weight of the test piece (7) V: Volume of the test piece (c2y) The test piece was kept at a temperature of 2°C ± 2°C and a relative humidity of 65°C before the start of the test.
591; kept at a temperature and humidity for 12 hours or more, the number of test pieces was three, and the average value was determined.

また、発泡体密度り全4℃の水の密度(12Zcrd 
)で除し、発泡体の比重とする。この値は発泡体の引張
比強度を求めるために用いる。
In addition, the foam density is the total density of water at 4°C (12Zcrd
) to determine the specific gravity of the foam. This value is used to determine the tensile specific strength of the foam.

(8)発泡体の引張比強度 試験片は長き8011111、巾10 +nm、厚さ5
閾の直方体にて温度20℃、相対湿度65±5%の温湿
状態に12時間以上保ったものとする。試料に異方性が
ある場合は縦及び横方向についてそれぞれ試験片を採取
するものとする。
(8) Tensile specific strength test piece of foam is long 8011111, width 10 + nm, thickness 5
It is assumed that the threshold rectangular parallelepiped is maintained at a temperature of 20° C. and a relative humidity of 65±5% for 12 hours or more. If the sample has anisotropy, specimens shall be taken in both the vertical and horizontal directions.

発泡体試料の厚みが5謹未満の場合は、そのま丑の厚み
で試験片を採取する。
If the thickness of the foam sample is less than 5 cm, take a test piece at the same thickness.

引張試験イ裂は最大荷重の指示装置rもち、試験時の最
大荷重がその容量の]5〜85%の範囲になるものを使
用する。試験片のつかみの相対移動速度の許容差は±5
%とし、荷卸目盛の♂許容差は12%とする。試験片は
試、験中にゆがみ、その他の不都合を生じないように正
イ1’(Mにつかみ具に取りイ」け、つかみ具間の間隔
は50mmとし、引張速度500 mm / mrnで
試験片を引張り、その最大荷車全測定する。そして次の
式により引張強度(”9/cn1)を遭−出する。
For tensile test cracking, use a device that has a maximum load indicator and the maximum load during the test is in the range of 5 to 85% of its capacity. Tolerance of relative movement speed of specimen grip is ±5
%, and the male tolerance of the unloading scale is 12%. The test piece was placed in the grips at the right angle 1' (M) to avoid distortion or other inconveniences during the test, the distance between the grips was 50 mm, and the test was carried out at a tensile speed of 500 mm/mrn. Pull the piece and measure its maximum weight.Then, find the tensile strength (9/cn1) using the following formula.

1+1 ここにF:切断に到る寸での最大荷重(K2)W:試験
片の巾(、n) t:試験片の厚さく、、、) 次に得られた引張強度を発泡体試料の比重で除し、引張
比強度を求める。試1験片数は5個とし、(試料に異方
性がるる場合は、試験片採取刀釦]能な限りにおいて、
縦、憤及び厚み方向についてそれぞれ5個)、結果はそ
れらすべての平均11自で7]’%す。
1+1 where F: Maximum load at the point of cutting (K2) W: Width of the test piece (, n) t: Thickness of the test piece, etc. Next, the obtained tensile strength is calculated as the value of the foam sample. Divide by the specific gravity to find the tensile specific strength. The number of specimens for test 1 shall be 5 (if the sample has anisotropy, use the specimen collection button) to the extent possible.
(5 pieces each in the longitudinal, longitudinal, and thickness directions), and the result is an average of 11% for all of them, which is 7%.

(9)発泡体の圧縮回復率 試験片は長さ100 +tan 、巾40糟、厚さ50
簡の直方体で温度20±2℃、相対湿度65±5%の温
湿状態に12時間保ったものとする。
(9) Compression recovery rate of foam The test piece has a length of 100 +tan, a width of 40 mm, and a thickness of 50 mm.
A simple rectangular parallelepiped was kept at a temperature of 20±2° C. and a relative humidity of 65±5% for 12 hours.

発泡体試料の厚みが50咽未満の場合には、重ね合わせ
て50mmとする。圧縮試験機は定速圧縮のできるもの
を使用し、10 mjn/ #+Inの圧縮速度で試験
片の初期厚みの50%まで圧縮し、直ちに荷重を除き、
30秒間放置し、厚みの回復を待ち、回復後の厚みに対
しさらに2回目の50%圧縮試験を同様に実施する。こ
の操作を合計5回繰り返し、5回目圧縮後の回復厚みを
測定する。そして次の式により圧縮回復率を葬出する。
If the thickness of the foam sample is less than 50mm, overlap them to make 50mm. Use a compression testing machine capable of constant speed compression, compress the specimen to 50% of its initial thickness at a compression speed of 10 mjn/#+In, immediately remove the load,
Leave it for 30 seconds, wait for the thickness to recover, and then perform a second 50% compression test in the same manner on the recovered thickness. This operation is repeated five times in total, and the recovered thickness after the fifth compression is measured. Then, calculate the compression recovery rate using the following formula.

1 圧縮同包率(%)=−X100 2 ここにtl:初期厚み(c、、) t2:5回圧縮後の回復厚み(ロ) 試験片数は3個とし、その平均値で示す。1 Compression enclosing rate (%) = -X100 2 Here tl: initial thickness (c,,) t2: Recovery thickness after 5 compressions (b) The number of test pieces is 3, and the average value is shown.

σO発泡体の加熱収縮率 試験片は長さ40■、巾40y++m、厚さ5謹の立方
体で、温度20±2℃、相対温度65±5%の温湿状態
に12時間以上保ったものとする6、発泡体試料の厚み
が5Tmn未満の場合は、そのままの厚みで試験片を採
取する。温度調節の精度が13.0±2℃の熱風循環式
乾燥機を使用し、1:30℃に保った熱風循環式乾燥機
の中に試験片を水平に置き、5時間加熱を行ったのち取
り出し、標準状態の試験場所に1時間放置し、その後試
験片の体積を求め加熱後の体積とする。体積は水を約半
分満たしたメスシリンダー中の水中に試験片を没し、水
面の上昇高さより求める。そして次の式により130℃
の加熱収縮率(%)を鼻出する。
The heat shrinkage test piece for σO foam was a cube with a length of 40mm, a width of 40y++m, and a thickness of 5cm, and was kept at a temperature of 20±2℃ and a relative temperature of 65±5% for more than 12 hours. 6. If the thickness of the foam sample is less than 5Tmn, take a test piece with the same thickness. Using a hot air circulation dryer with a temperature control accuracy of 13.0±2°C, the test piece was placed horizontally in the hot air circulation dryer maintained at 1:30°C and heated for 5 hours. Take out the test piece and leave it in the test place under standard conditions for 1 hour, then calculate the volume of the test piece and use it as the volume after heating. The volume is determined by submerging the test piece in water in a graduated cylinder approximately half filled with water, and determining the height of the rise of the water surface. And 130℃ according to the following formula
Figure out the heating shrinkage rate (%).

O ここにVo:初めの体M (clll)■l:l:加熱
体積(clll) 試験片は3個とし、その平均値で示す。
O Here Vo: Initial body M (clll) ■l: l: Heating volume (clll) Three test pieces were used, and the average value is shown.

(11)発泡体の外観 (1)発泡体の厚みむら 厚みむらはシート、又はボード状の場合発泡体の押出方
向に直角な面で切断し、その断面について、発泡体の端
部から巾の]、0%に相当する部分を除いた部分の厚み
の最大値(1+)と最小値(t2)を求める。厚みむら
は次式により求める。
(11) Appearance of the foam (1) Thickness unevenness of the foam To measure the thickness unevenness of the foam, in the case of a sheet or board, cut the foam in a plane perpendicular to the extrusion direction, and measure the width from the edge of the foam. ], find the maximum value (1+) and minimum value (t2) of the thickness of the portion excluding the portion corresponding to 0%. The thickness unevenness is determined by the following formula.

1.12 厚みむら−−X 100 (%) 2 断面5か所について測定しその平均をとる。1.12 Thickness unevenness--X 100 (%) 2 Measurements are taken at five locations on the cross section and the average is taken.

円柱又は円筒状の場合は、発泡体の押出方向に直角な面
で切断し、その断面について、径又は厚みの最大値(1
,)と最小値(t2)を求め、上式にょシ求める。
In the case of a columnar or cylindrical shape, cut the foam in a plane perpendicular to the extrusion direction, and measure the maximum diameter or thickness (1
, ) and the minimum value (t2), and calculate the above formula.

(11)発泡体のコルゲート値 シー)・又d:ボード状の発泡体の場合には、壕ず、発
泡体を押出方向に直角なm」で切断する。この際巾20
crn以上の試料の場合には、li’120cn+以上
の長さについて測定するものとし、巾20 on未満の
場合には原寸とする。この発泡体を力を加えずに平面上
におき、切町面における、平面から発泡体の上面凍での
距離を測り、最大距離(tt )と最小距離(t2)を
求める。この際、発泡体の端部から巾の10%に相当す
る部分は除く。コルケート値は次の式により求める。断
面5個所について測定し、その平均をとる。
(11) Corrugation value of foam (see) and d: In the case of a board-shaped foam, cut the foam at m' perpendicular to the extrusion direction without trenching. At this time width 20
In the case of a sample crn or more, the length shall be measured at li'120cn+ or more, and if the width is less than 20 on, it shall be measured at the original size. This foam is placed on a flat surface without applying any force, and the distance from the flat surface to the upper surface of the foam is measured to determine the maximum distance (tt) and minimum distance (t2). At this time, a portion corresponding to 10% of the width from the end of the foam is removed. The collate value is determined by the following formula. Measurements are taken at five locations in the cross section and the average is taken.

/−112 コルゲート値−−X 100 (%) 2 円柱又は円筒状の発泡体の場合には、発泡体き押出方向
に直角な面で切断し、切断[niの外接円の中心から発
泡体の外表面までの最大距離(−g+)及び最小距離(
t2)を求める。コルゲート値は上式によシ同イ氷に求
める。
/-112 Corrugation value - - Maximum distance (-g+) and minimum distance (
Find t2). The corrugation value can be calculated using the above formula.

(iii)  発泡体の表面平滑度 シート又はボート状の発を包体の表面平滑度は、次のよ
うにして評1曲する1゜ 発泡体を、端部から巾の10%にA・1]当する部分を
除き、長さ及び巾が30 cm以上になるように切り出
す。長さ及び1つが38on未満の場合はW:M ml
sを除いて取り得る眠りの最大の長さ及び1Jとする。
(iii) Surface smoothness of the foam The surface smoothness of the sheet or boat-shaped foam wrapper is evaluated as follows. ] Cut out the pieces to a length and width of at least 30 cm, excluding the corresponding part. If the length and one piece is less than 38 on, W: M ml
The maximum length of sleep that can be taken excluding s and 1J.

切シ出した発、包体を、力を加えずに千mJ上におき、
4つの切断面において、平面から発泡体士−囲までの距
離を測定し、最大距離(L)を求める。
Place the cut out package above 1,000 mJ without applying any force,
In the four cut planes, the distance from the plane to the foam wall is measured to determine the maximum distance (L).

円柱又は円筒状の発泡体の場合には、発泡体を押出方向
に直角な面で切断し、長さが30 or+以上になるよ
うに切シ出す。長さが30w未満の場合には取シ得る限
シの最大の長さとする。
In the case of a cylindrical or cylindrical foam, the foam is cut along a plane perpendicular to the extrusion direction and cut to a length of 30 or+ or more. If the length is less than 30W, it shall be the maximum length that can be obtained.

切9出した発泡体を、力を加えずに平面上におき、発泡
体断面の長手方向の側面から観測し、前記平面から発泡
体下面捷での最大距離(L)を求める。
9. Place the cut foam on a flat surface without applying any force, observe the cross section of the foam from the side in the longitudinal direction, and determine the maximum distance (L) from the flat surface to the lower surface of the foam.

測定は発泡体を90°ずつ回転した位置について4点行
う。全測定の最大圧m1l(L)をもって、表面平滑度
とする。
Measurements are made at four points at positions where the foam is rotated by 90 degrees. The maximum pressure m1l (L) of all measurements is taken as the surface smoothness.

次に以下に示す実施例の中に使用する発泡体の外観評価
のランク伺けの定義を記す。
Next, the definition of the rank of the appearance evaluation of the foam used in the examples shown below will be described.

(1)発泡体の厚さむら A:厚さむらが30%未満 B:厚さむらが30%以上、50%未満C:厚さむらが
50%以上 (2)発泡体のコルケート値 Aニコルゲート値が50%未満 Bニコルゲート値が50%以上1.00%未満Cニコル
ゲート値が100%以上 (3)発泡体の表面平滑度 A:表面平滑度が1 mm未満 B:表面平滑度が1配以上2調未満 C:表面平滑度が2晒以上 (4)発泡体の外観の総合評価 発泡体外観の総合評価はり、下の基準に従って行う。
(1) Thickness unevenness of the foam A: Thickness unevenness of less than 30% B: Thickness unevenness of 30% or more but less than 50% C: Thickness unevenness of 50% or more (2) Colcate value A Nicol of the foam Gate value is less than 50% B Nicol gate value is 50% or more and less than 1.00% C Nicol gate value is 100% or more (3) Surface smoothness of foam A: Surface smoothness is less than 1 mm B: Surface smoothness C: Surface smoothness is 2 or more (4) Comprehensive evaluation of foam appearance Comprehensive evaluation of foam appearance is performed according to the following criteria.

A 厚みむら、コルゲート埴及Q・表面平i′1′!度
のいずれの評価項目もAである発泡体。
A Thickness unevenness, corrugated clay and Q surface flat i'1'! A foam that is A in all evaluation items.

外観良好で、商品価値の優れた発泡体でるる。Ruru foam with good appearance and excellent commercial value.

B 厚みむら、コルケート値及び表面平滑度のいずれか
の評価項目において、Bの評1曲を含み、Cの評価を含
まない発泡体。
B A foam that contains one score of B and no score of C in any of the evaluation items of thickness unevenness, corkate value, and surface smoothness.

外観は若干劣るが、十分な商品111II埴をイj−す
る発泡体。
Although the appearance is slightly inferior, the foam is sufficient to match the product 111II clay.

C厚みむら、コルゲート値及び4 i7o平滑度のいず
れかの評1曲項目において、Cの評1曲をき−むブ亡l
包体。
If one song is rated C in any of the following items: thickness unevenness, corrugated value, and 4 i7o smoothness, it will be rejected.
Wrapping body.

発泡体表面の凹凸、しわ等が目立し、間品111fi瞭
の劣る発泡体である。
The surface of the foam has noticeable unevenness, wrinkles, etc., and the foam has poor clarity.

次に実施例によって本発明の詳細な説明する。Next, the present invention will be explained in detail by way of examples.

実施例及び比較例中に用いた樹脂及び化合物については
表2〜5に示した。
The resins and compounds used in Examples and Comparative Examples are shown in Tables 2 to 5.

実施例1 樹脂としてサンチックB870 100重量部、発泡減
速剤としてプロノン2010.5  重量部及び核剤と
してメルク0.1重量部をヘンシュルミキサ−でトライ
ブレンドした後、混線押出機で十分均一に混練して発泡
成形用基材を調整した。
Example 1 100 parts by weight of Santic B870 as a resin, 0.5 parts by weight of Pronone 2010.5 parts by weight as a foaming moderator, and 0.1 part by weight of Merck as a nucleating agent were triblended using a Henschel mixer, and then sufficiently uniformly kneaded using a mixed wire extruder. A base material for foam molding was prepared.

前記発泡成形用基材を最高220℃に加熱された口径6
5欄φの押出機に40Kg/hrの速度で供給し押出慨
先端に設けられた発泡剤注入口よシ圧入された発泡剤と
加熱混線した。発泡剤としては、ジクロロテトラフルオ
ロエタンとトリクロロトリフルオロエタンとを1.5 
: 1.3のモル比で混合したものを用い、高密度ポリ
エチレン100重量部に対し、50■量部の割合で高圧
ポンプで連続的に供給した。加熱混合物を押出機に膀く
冷却装置で126℃に冷却し、開口部の寸法が巾35嗣
厚み2.2露の矩形グイより大気中に連続押出発泡させ
、厚み15咽、巾125腸の板状発泡体全得た。
The base material for foam molding was heated to a maximum of 220°C with a diameter of 6.
The mixture was supplied to an extruder with a diameter of 5 columns at a rate of 40 kg/hr, and heated and mixed with the foaming agent press-fitted through the foaming agent injection port provided at the tip of the extrusion tube. As blowing agents, dichlorotetrafluoroethane and trichlorotrifluoroethane were used at 1.5
: A mixture with a molar ratio of 1.3 was used, and 50 parts by weight were continuously supplied using a high-pressure pump to 100 parts by weight of high-density polyethylene. The heated mixture was placed in an extruder and cooled to 126°C with a cooling device, and then continuously extruded into the atmosphere through a rectangular shape with an opening dimension of 35 mm wide and 2.2 mm thick to form a foam with a thickness of 15 mm and a width of 125 mm. A whole plate-shaped foam was obtained.

得られた発泡体の特性は第6表に小したl) ′0#ら
れた発泡体は、気泡膜の厚みのばらつきは最大上22%
で、独立で均一々気泡分布を有する発泡体であり、良好
な外観、優れた機械的特性及び1制熱性を兼ね備えたも
のでめった。壕だ、気泡膜の偏光顕微鏡による複屈折試
験においては、微細な白点が分散して見える第3a図の
タイプでめった。、比較例1〜7 市販されている各種発泡体の特性を第6表に示した。
The properties of the obtained foams are shown in Table 6.1) The foams produced by '0# have a maximum variation in the thickness of the cell membrane of 22%.
It is a foam that has independent and uniform cell distribution, and has a good appearance, excellent mechanical properties, and heat control properties. In a birefringence test using a polarized light microscope on a bubble film, the type shown in Figure 3a, in which minute white dots appear dispersed, was found. , Comparative Examples 1 to 7 Table 6 shows the characteristics of various commercially available foams.

それぞれの発泡体の種類は下記のとおりである3、比較
例1 無架橋低密度ポリエチレン元泡体比較例2 無架
橋高智度ポリエチレン発泡体比較例3 無架倫ポリプロ
ピレン発泡体比較例4 高密度ポリエチレンとアイオノ
マーの混合樹脂樹脂発泡体 比較例5 架橋低蓄度ポリエチレン発泡体比較?U6 
 架橋ポリプロピレン発泡体比較例7 軟質ウレタン発
泡体 実施例1に比べ比較例1〜7の発泡体は、外観、機械的
特性、耐熱性のいずれかにおいて劣るものであった。
The types of each foam are as follows3. Comparative Example 1 Non-crosslinked low-density polyethylene foam Comparative Example 2 Non-crosslinked high-density polyethylene foam Comparative Example 3 Non-crosslinked polypropylene foam Comparative Example 4 High-density polyethylene Comparison example 5 of mixed resin resin foam of and ionomer Comparison of cross-linked low accumulation polyethylene foam? U6
Crosslinked Polypropylene Foam Comparative Example 7 Compared to the flexible urethane foam Example 1, the foams of Comparative Examples 1 to 7 were inferior in appearance, mechanical properties, and heat resistance.

実施例2 樹脂及び発泡減速剤の種類及び量が、第7表実験番号1
〜6に示した種類及び量である以外は、実施例1と同様
にして発泡体を得だ。
Example 2 The types and amounts of resin and foaming moderator were as shown in Table 7, Experiment No. 1.
A foam was obtained in the same manner as in Example 1, except for the types and amounts shown in 6 to 6.

得られた発泡体の特注は第7表実@番号1〜9に示しだ
。なお、樹脂及び発泡減速剤は押出発泡と同じで、核剤
を除いた組成のガラス管発泡試験による発泡時間の結果
も示した。
The customization of the resulting foams is shown in Table 7 @ numbers 1-9. Note that the resin and foaming moderator are the same as those for extrusion foaming, but the results of the foaming time in a glass tube foaming test for the composition excluding the nucleating agent are also shown.

得られた発泡体は、連続気泡率が実験−釘号1〜8では
10%以下、実)横奇号9では18%と、いずれも独立
で均一な気泡を有し、気泡膜の厚みのばらつきは、いず
れも±30%以下の発泡体でめ9、良好な外観と、優れ
た89.械的特性及び酬熱性を兼ね11tfiえたもの
であった。壕だ、気泡膜の偏光顕微鏡による複屈折試験
においては、いずれも微細な白点が分散して見える第3
a図のタイプであつた。
The resulting foams had open cell ratios of 10% or less for Experimental Nail Nos. 1 to 8, and 18% for Yokoki No. 9, both of which had independent and uniform cells. The foam has a variation of less than ±30% in all cases, with a good appearance and an excellent score of 89. It had mechanical properties and heat dissipation properties of 11tfi. In the birefringence test of bubble membranes using a polarizing microscope, fine white dots appear dispersed.
It was the type shown in figure a.

比較例8 樹脂が第7表実験番号10〜13に示した樹脂であシ、
発泡款速剤を丑ったく加えないか、発泡減速剤の代わり
に第7表実1験番号12.13に示した添加剤を加えた
以外は、実施例1と同様にして発泡体を得た。
Comparative Example 8 The resin was the resin shown in Table 7 Experiment Nos. 10 to 13,
A foam was obtained in the same manner as in Example 1, except that the foaming speeder was not added too much, or the additive shown in Table 7 Experiment 1 Experiment No. 12.13 was added instead of the foaming moderator. Ta.

得られた発泡体の特性は第7表実験査号10〜13に示
した。表中には樹脂及び添加剤は押出発泡と同じで核剤
を除いた組成のガラス管発泡試験による発泡時間の結果
も示した1、無砲加の場合及び、ガラス管発泡試験にお
いて発泡速度を減速する効果の認められない除加剤を加
えた場合は、いずれの発砲体も、独立気泡性及び気泡径
の均一性において劣る気泡構造を有し、外6兄、憬械的
特性とも劣る発泡体であった。
The properties of the obtained foam are shown in Table 7, Experimental Nos. 10 to 13. The table also shows the results of the foaming time in a glass tube foaming test using the same resin and additives as in the extrusion foaming, but excluding the nucleating agent1. When additives with no deceleration effect were added, all foams had a cell structure with poor closed-cell properties and uniformity of cell diameter, and foamed materials with poor mechanical properties. It was the body.

実施例3 づ剰月旨としてサンチックB880 100 月i j
i: 14rlsに対し発泡減速剤としてスタホームF
 :3 、0重量部、核1i11としてタルク0.05
重量部及び発泡剤としてジクロロテトラフルオロエタン
と二塩化メタンの等モル混合物を80重量部とを用い、
実施例1と同様にして発泡体を得た。
Example 3 Santic B880 100 months i j
i: Starhome F as a foaming moderator for 14rls
:3, 0 parts by weight, talc 0.05 as core 1i11
using 80 parts by weight and an equimolar mixture of dichlorotetrafluoroethane and dichloride methane as a blowing agent,
A foam was obtained in the same manner as in Example 1.

得られた発泡体は、均一で独立な気泡構造を有し、気泡
膜の厚みのばらつきは±30%以内であり、発泡体密度
0.0107 q/atl、平均気泡径0.52順、気
泡径の変動係数48%、引張比強度185に9/Cd、
圧縮回復率85%、加熱収縮率32%で外観良好な発泡
体であった。
The obtained foam has a uniform and closed cell structure, the variation in the thickness of the cell membrane is within ±30%, the foam density is 0.0107 q/atl, the average cell diameter is 0.52, and the cell size is Coefficient of variation in diameter 48%, tensile specific strength 185 and 9/Cd,
The foam had a compression recovery rate of 85%, a heat shrinkage rate of 32%, and a good appearance.

実施例4 樹脂としてショーレックス6002B 100 重量部
に対し、発泡減速剤としてジェタノールアミン0.5重
量部、核剤としてシリカ0.05重量部、及び発泡剤と
してジクロロテトラフルオロエタンとトリクロロモノフ
ルオロメタンとを1=2のモル比で混合したものを25
重量部用い、実施例1と同様にして発泡体を得た。
Example 4 100 parts by weight of Shorex 6002B as a resin, 0.5 parts by weight of jetanolamine as a foaming moderator, 0.05 parts by weight of silica as a nucleating agent, and dichlorotetrafluoroethane and trichloromonofluoromethane as blowing agents. 25
A foam was obtained in the same manner as in Example 1 using parts by weight.

得られた発泡体は、均一で独立な気泡構造を有し、気泡
膜の厚みのばらつきは±30%以内であり、発泡体密度
0.0356 y/cd、平均気泡径2.52胴、気泡
径の変動係数23%、引張比強度155 K7/ cn
f 、圧縮回復率83%、加熱収縮率22%の優れた発
泡体であった。
The obtained foam has a uniform and closed cell structure, the variation in the thickness of the cell membrane is within ±30%, the foam density is 0.0356 y/cd, the average cell diameter is 2.52 cells, and the cell size is 2.52 mm. Coefficient of variation in diameter 23%, specific tensile strength 155 K7/cn
It was an excellent foam with a compression recovery rate of 83% and a heat shrinkage rate of 22%.

実施例5 樹脂としてザンテツクF180 1.00重量部に対し
、発泡減速剤としてジェタノールアミンを1.5重量部
とプロノン204を1.5重量部、核剤とし7てタルク
を0.5重量部、発泡剤としてジクロロテトラフルオロ
エタンと塩化メチルとを2:1のモル比で混合したもの
を30重量部用い、実施例1と同様にして発泡体を得た
。得られた発泡体は、独立な気泡構造を有し、気泡膜の
厚みのばらつきは±30%以内であり、発泡体密度0 
、0240 ? /cni、平均気泡径0.09mm、
気泡径の変動係数56%、引張比強度185 K9/c
ut、圧縮回復率85%、加熱収縮率35%で、外観は
若干しわがあるが評価はBで商品価値のあるものであっ
た。
Example 5 1.00 parts by weight of Zantek F180 as a resin, 1.5 parts by weight of jetanolamine as a foaming moderator, 1.5 parts by weight of Pronone 204, and 0.5 parts by weight of talc as a nucleating agent. A foam was obtained in the same manner as in Example 1, using 30 parts by weight of a mixture of dichlorotetrafluoroethane and methyl chloride in a molar ratio of 2:1 as a blowing agent. The obtained foam has an independent cell structure, the thickness variation of the cell membrane is within ±30%, and the foam density is 0.
,0240? /cni, average bubble diameter 0.09 mm,
Coefficient of variation of bubble diameter 56%, specific tensile strength 185 K9/c
ut, the compression recovery rate was 85%, the heat shrinkage rate was 35%, and although the appearance was slightly wrinkled, it was rated B and had commercial value.

実施例6 樹脂としてザンテソクM 700 E  1.00 B
7量部に対し、発泡減速剤としてプロノン2082.0
  重量部、核剤としてステアリン酸マグネシウム0.
2重惜部、発泡剤としてジクロロテトラフルオロエタン
とジクロロモノフルオロメタンとを等モル比で混合した
ものを40重量部用い、実施例1と同様にして発泡体を
得た。得られた発泡体は、独立で均一な気泡構造を有し
、発泡体密度0.0207 y/cA、平均気泡径0.
85Mで、外観、機械的特性共優れた発泡体であった。
Example 6 Zante Soku M 700 E 1.00 B as resin
Pronone 2082.0 as a foaming moderator for 7 parts
Part by weight, 0.0% magnesium stearate as a nucleating agent.
A foam was obtained in the same manner as in Example 1 using 40 parts by weight of a mixture of dichlorotetrafluoroethane and dichloromonofluoromethane in an equimolar ratio as a foaming agent. The obtained foam had a closed and uniform cell structure, a foam density of 0.0207 y/cA, and an average cell diameter of 0.
85M, the foam had excellent appearance and mechanical properties.

比較例8 核剤を用いない以外は、実施例1と同様にして発泡体を
得た。得られた発泡体は、独立な気泡を有し、発泡体密
度0.0217/cril、平均気泡径2.5媚であっ
たが、気泡膜の厚みのばらつきが±30%を超え、気泡
径の変動係数は77%と気泡の均一性に欠ける発泡体で
あり、機械的特性に劣るものであった。
Comparative Example 8 A foam was obtained in the same manner as in Example 1 except that no nucleating agent was used. The obtained foam had independent cells, a foam density of 0.0217/cril, and an average cell diameter of 2.5%, but the variation in the thickness of the cell membrane exceeded ±30%, and the cell diameter The coefficient of variation was 77%, indicating that the foam lacked uniformity of cells and had poor mechanical properties.

比較例9 発泡剤として、ジクロロテトラフルオロエタンとトリク
ロロトリフルオロエタンの等モル混合物を、樹脂100
重量部に対し8重量部加えた以外は実施例1と同様にし
て発泡体を(4た。得られた発泡体は、発泡体密度0.
]、18 ?/cnl、と高く、圧縮回復率は55%と
低い柔軟性に欠けるものであつ/こ。
Comparative Example 9 As a blowing agent, an equimolar mixture of dichlorotetrafluoroethane and trichlorotrifluoroethane was added to 100% of the resin.
A foam was prepared in the same manner as in Example 1 except that 8 parts by weight were added. The foam obtained had a foam density of 0.
], 18? /cnl, and the compression recovery rate is as low as 55%, which lacks flexibility.

比較例10 発m 剤として、ジクロロテトラフルオロエタントトリ
クロロトリフルオロエタンの等モル混合物を、樹脂10
0重量部に対し150重量部加えた以外は、実施例1と
同様にして発泡体を得だ。得られた発泡体は、発泡体密
度は0.0065 f/ari  と高倍率であったが
、独立気泡性に劣り、発泡体表面のしわがひどく外観の
評価はCであり、圧縮回復率は62%と低いものであっ
た。
Comparative Example 10 An equimolar mixture of dichlorotetrafluoroethane and trichlorotrifluoroethane was used as a developing agent for resin 10.
A foam was obtained in the same manner as in Example 1 except that 150 parts by weight was added compared to 0 parts by weight. The obtained foam had a foam density of 0.0065 f/ari and a high magnification, but the closed cell property was poor, the foam surface was severely wrinkled, the appearance was rated C, and the compression recovery rate was poor. It was low at 62%.

比較例11 樹脂100重量部に対し、発泡減速剤の代わりにガラス
管発泡試験において発泡時間を延ばす効果が1秒未満で
あるステアリン酸(商品名NAA]]、0゜日本油脂■
製)を1.0重量部添加し、発泡剤としてブタンを30
重量部用いた以外は、実施例1と同様にして発泡体を得
た。得られた発泡体は、発泡体密度0.064 ’if
 /cnl、外観の評価はBであったが、平均気泡径は
4.1胴と粗く、圧縮回復率は40%と低いものであっ
た。
Comparative Example 11 Stearic acid (trade name: NAA), which has an effect of extending the foaming time of less than 1 second in the glass tube foaming test, and 0° NOF ■ were added to 100 parts by weight of the resin instead of the foaming moderator
1.0 parts by weight of
A foam was obtained in the same manner as in Example 1 except that parts by weight were used. The resulting foam has a foam density of 0.064'if
/cnl, and the appearance was evaluated as B, but the average cell diameter was coarse at 4.1 cells, and the compression recovery rate was low at 40%.

又、気泡膜の複屈折試験においては不均一な像を示し、
発泡時に均一な膨張がなされていなかつ/ζ0 比較例12 樹脂100重量部に対して、発泡剤としてジクロロテト
ラフルオロエタン40’li:針部、核剤としてタルク
6重量部加えた以外は、実施例1と同様にして発泡体を
得た。得られた発泡体の特性は、発泡体密度は0.02
82 ?/cJであったが、 平均気泡径は0.02m
m と微細で独立気泡性が劣り外観は厚みむら、コルゲ
ート値とも100%以上であり、形状安定性のまったく
ない発泡体であった。
In addition, the birefringence test of the bubble film showed a non-uniform image,
Uniform expansion was not achieved during foaming /ζ0 Comparative Example 12 Example except that 40'li of dichlorotetrafluoroethane as a blowing agent and 6 parts by weight of talc as a nucleating agent were added to 100 parts by weight of the resin. A foam was obtained in the same manner as in 1. The properties of the obtained foam are that the foam density is 0.02
82? /cJ, but the average bubble diameter was 0.02m.
It was a foam with a fineness of m 2, poor closed-cell properties, uneven thickness and corrugation value of 100% or more, and no shape stability at all.

比較例13 樹脂としてサンチックB870 100重量部に対して
、発泡減速剤としてジェタノールアミンを15重量部、
核剤としてメルク0.05重量部、発泡剤として、ジク
ロロテトラフルオロエタンとトリクロロトリフルオロエ
タンとを7:3のモル比で混合した混合発泡剤60重量
部用い、実施例1と同様にして発泡体を得だ。得られた
発泡体の特性は、発泡体密度は0.0158 ?/ct
tlであったが、平均気泡径2.3脳、気泡径の変動係
数71%と気泡の均一性に欠け、また独立気泡性に劣り
圧縮回復率の低いものであった1、 第1表 Ll)添加剤の添加叶は、樹脂100重量部に対する重
量・1.1′イ11角の丁8ト1枦−な贋、]」月均’
Y、 11;ン[(・址カ二ノスシ占発冷;1ユしjL
突d−1に1−5・l、)−(、カラス’Gに11°ノ
コ脂混音′吻を人ね、′【二状「古L6・1スし、ろj
’T; 2H図は、)j fyス管をオ(、ル・・ス(
′・て入行マニ加熱し5−でいる状態を示す。、 第、3図は本発明及び公知の介1泡体の気泡膜の偏光顕
微鏡写真図である1つ 特許出願人 旭化成上YVA、、式会社代理人 1(i
IJ  形  明 第1図 第2図 手続補正書(方式) 昭和58年8 月24日 1事件の表示 昭和58年特許願第63300号 2発明の名称 新規な発泡体及びその製造方法 3、補正をする者 事件との関係 特許出願人 住 所大阪府大阪市北区堂島浜1丁目2番6号、、、 
 、 (003)旭化成下業株式会社代表者宮  崎 
    輝 4、代 埋 人 図面の簡単な説明の欄及び図σ月 8補正の内容 (1)明細書第19ページ第コ9の「第3図aに示すよ
うに、」及び同ページ第8行の1−第3図すに示すよう
に、」を削除します。
Comparative Example 13 100 parts by weight of Santic B870 as a resin, 15 parts by weight of jetanolamine as a foaming moderator,
Foaming was carried out in the same manner as in Example 1 using 0.05 parts by weight of Merck as a nucleating agent and 60 parts by weight of a mixed blowing agent in which dichlorotetrafluoroethane and trichlorotrifluoroethane were mixed at a molar ratio of 7:3 as a blowing agent. Get a body. The properties of the obtained foam are as follows: the foam density is 0.0158? /ct
However, the average bubble diameter was 2.3 mm, the coefficient of variation of the bubble diameter was 71%, and the bubbles lacked uniformity, and the closed cell property was poor and the compression recovery rate was low1. Table 1 Ll ) The amount of additive added is the weight per 100 parts by weight of the resin.
Y, 11;
1-5・l on the protrusion d-1, )-(, 11° saw fat mixed sound on the crow'G)
'T; Figure 2H shows )j fys tube o(, le s(
'・ Shows the state where the input manifold is heated and at 5-. , Figure 3 is a polarized light micrograph of the foam film of the present invention and the known foam.
IJ Form Ming Figure 1 Figure 2 Procedural Amendment (Method) August 24, 1988 1 Case Indication 1988 Patent Application No. 63300 2 Title of Invention Novel Foam and Process for Producing the Same 3 Amendments Relationship with the case involving the person who filed the patent application Patent applicant address: 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture.
, (003) Asahi Kasei Shigyo Co., Ltd. Representative Miyazaki
4. Brief description of drawings and details of amendments to drawings (1) "As shown in Figure 3 a" in page 19 of the specification, line 8 of the same page As shown in Figure 1-3, delete ".

(2)同第37ページ末行〜第38ぺ一7第1行の1第
3b図のように」及び第38ペー/第1〜2行の[第3
a図のように雪を削除しまず。
(2) As shown in the last line of page 37 to 1, figure 3b in the 1st line of page 38, and [3
First, delete the snow as shown in figure a.

(3)同第38ページ第10〜11行の「第3a図と第
3b図のような」を「(イ)と(ロ)のような」に訂正
します。
(3) On page 38, lines 10 to 11, "as in Figures 3a and 3b" is corrected to "as in (a) and (b)."

(4)同第48ページ第9行の「第3a図の」を削除し
ます。
(4) Delete "in Figure 3a" from line 9 on page 48.

(5)同第49ページ末行の「第3a図の」を削除しま
す。
(5) Delete "In Figure 3a" from the last line of page 49.

(6)同第64ページ第6〜7行の「第3図は・・・で
ある。」を削除します。
(6) Delete "Figure 3 is..." from lines 6 to 7 on page 64.

(7)  添付図面中筒3図(al及び第3図(1)l
を削除します。
(7) Attached drawings Middle cylinder Figure 3 (al and Figure 3 (1) l
Delete.

手続補正書 昭和58年8−0日 1、事件の表示 昭和58年特許願第63300号 2発明の名称 新規な発泡体及びその製造方法 3、補正をする者 4卯トとの関係  特許出願人 住 所大阪府大阪市北区堂島浜1丁目2番6号代表者 
宮  崎     輝 4代 理 人 5 補正命令の日付 自発 8補正の内容 (1)  特許請求の範囲を別紙のとおり訂正し1す。
Procedural amendment dated 8-0, 1982 1. Indication of the case 1988 Patent Application No. 63300 2. Name of the invention Novel foam and its manufacturing method 3. Person making the amendment 4. Relationship with U. Patent applicant Address: 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka Representative
Teru Miyazaki 4th Director 5 Date of amendment order Contents of spontaneous 8th amendment (1) The scope of the claims has been amended as shown in the attached sheet.

(2ン  明細書第19ページ第コ9行の「架橋はJの
前に以下の文章を加入します。
(2) In the 9th line of page 19 of the specification, ``Crosslinking'' adds the following sentence before J.

「ゲル含量が10%以下、好ましくは5係以下であるこ
とが必要である。このゲル含量は約1gの精秤したポリ
エチレンを乾燥したキシレン約300m1を用いて約2
0時間沸騰して抽出し、残留不溶部を精秤して、その重
量を初期試料の重量に対する百分比で表わしたものであ
る。」(3)  同第20ページ第8行の「融点117
°C以」二」の次に「、好ましくは密度0.945〜9
70 g/ crd、融点122’C:以上」を加入し
ます。
"It is necessary that the gel content is 10% or less, preferably 5% or less. This gel content is determined by mixing approximately 1 g of precisely weighed polyethylene with approximately 300 ml of dry xylene.
The sample was extracted by boiling for 0 hours, and the remaining insoluble portion was accurately weighed, and the weight was expressed as a percentage of the weight of the initial sample. ” (3) “Melting point 117” on page 20, line 8 of the same
°C or less "2" followed by ", preferably density 0.945 to 9
70 g/crd, melting point 122'C: or higher.

(4)同第20ページ第11行の「2−ナテルペンテン
」を「2−メチルペンテン」に訂正します。
(4) Correct "2-natalpentene" in line 11 of page 20 to "2-methylpentene."

+511JIE20ペ一ジ第15行の「でもよい。」を
「でもよいが、エチレン成分を全重量に対して70重量
φ以上、好捷しくは80fi量係以上含むことが必要で
ある。」に訂正し寸す。
+511 JIE 20, page 1, line 15, "may be" is corrected to "may be, but it is necessary to include the ethylene component in an amount of 70 weight φ or more, preferably 80 fi or more relative to the total weight."I'm sorry.

(6)同第21ページ第6行の「 好1しくな八」の次
に「さらに好適なのは、荷重21.6Kpにおけるメル
トインデックスが帆5〜359 / 10 分、スウェ
ル値が30〜509720 cmのものである。」を刀
0人し捷す。
(6) On the 21st page, line 6, next to ``Preferably 8'', it says ``More preferably, the melt index at a load of 21.6 Kp is 5 to 359 / 10 minutes, and the swell value is 30 to 509720 cm. "It is a thing." is used as a sword.

(7)同第25ページ第4〜5行の「ステアリルジ(ア
ミノエチルグリシン)」を「ステアリルジ(アミノエチ
ル)グリシン」に訂正します。
(7) "Stearyl di(aminoethylglycine)" in lines 4 and 5 of page 25 will be corrected to "stearyl di(aminoethyl)glycine."

(8)同第26ページ第2行のV 0.001〜5重量
部」の次に「、好ましくは0.002〜3重量部」を加
入します。
(8) Add "preferably 0.002 to 3 parts by weight" next to "V 0.001 to 5 parts by weight" on the second line of page 26.

(9)同第27ページ下から3行のrso係」を「10
0係」に訂正します。
(9) Change “rso section” from the bottom 3 lines from the bottom of page 27 to “10”
I will correct it to 0 person in charge.

00)  同第35ページ下から3行の「40係」を「
50係」に訂正します。
00) Change "40 Section" from the bottom three lines of page 35 to "
I will correct it to ``50 Section.''

(11)  同第36ページ第10〜11行の「膜厚が
薄い場合VCは(1μ以下)」を「膜厚が薄い場合、例
えば20μ以下の場合は、」に訂正します。
(11) On page 36, lines 10 and 11, "If the film thickness is thin, VC is (1μ or less)" will be corrected to "If the film thickness is thin, for example 20μ or less,".

(12)  同第37ページ第2行のrX+−又/え×
100(チ)」をr(XI−X)/又xtoo(%)」
に訂正します。
(12) rX+-also/e× on page 37, line 2
100 (chi)" to r (XI-X)/xtoo (%)"
I will correct it.

(13)  同第37ページ第3行の[反−X2/又×
100(係)を「(X−X2)/XX100(係)」に
訂正し寸す。
(13) On page 37, line 3, [Anti-X2/Also ×
Correct 100 (person in charge) to "(X-X2)/XX100 (person in charge)".

(14)  同第38ページ第13行のrf71Jをr
[81Jに訂正し寸す。
(14) rf71J on page 38, line 13
[Corrected to 81J.

(15)  同第39ページ下より9行のr−ts+」
をri9月に訂正します。
(15) 9 lines from the bottom of page 39, r-ts+”
will be corrected in September.

(16)  同第41ページ第1行の「(9月を「(1
の」に訂正します。
(16) In the first line of page 41, “(September is “(1
Corrected to ``.

(17)  同第41ページ下より2行の「(1の」を
r (11) Jに訂正し捷す。
(17) Correct "(1 no)" in the bottom two lines of page 41 to r (11) J and edit.

(18)  同第42ページ下より3行のr (11)
 Jをr (12) Jに訂正し寸す。
(18) r in the 3rd line from the bottom of page 42 (11)
Correct J to r (12) J.

(1つ)  同第43ページ下より9行のrt::l 
 発泡体のコルゲート値」の次に改行して以下の文章を
加入し1す。
(One) 9th line from the bottom of page 43 rt::l
Next to "Corrugate value of foam", add the following text on a new line.

「発泡体の比較的大きなシワ、ねじi”L等を評価する
ファクターであり、次のようにして測定する。」(困)
  同第43ページ下より4〜3行の「この発泡体 平
面上におき、」を[この発泡体を平面上におき、発泡体
の波形の複数個の凸部が、平面に最初に接するところま
で、発泡体表面を平均した力で押しつけ、」に訂正し捷
す。
``This is a factor for evaluating relatively large wrinkles, threads i''L, etc. of the foam, and is measured as follows. ” (difficult)
From the bottom of page 43, lines 4 to 3, "Place this foam on a flat surface." Press the surface of the foam with an average force until it reaches 100 degrees, then shake it off.

■) 同第44ページ下より10行のrtlil)発泡
体の表面平滑度」の次に改行して、「発泡体表面の小さ
な凹凸の有無を評価するファクターでありJを加入しま
す。
■) On page 44, line 10 from the bottom, after rtli) "Surface smoothness of foam", add a new line and add "J, which is a factor that evaluates the presence or absence of small irregularities on the surface of foam.

(22〕  同第44ページ下より3〜2行の「力を力
りえずに平面上におき、」を「平面上におき、発泡体表
面の凹凸の凸部が押しつぶされることなく、できるだけ
多く、平面に接するように1発泡体表面を均一に押しつ
げ、」に訂正します。
(22) In the 3rd to 2nd line from the bottom of page 44, "Place it on a flat surface without applying force" to "Place it on a flat surface, so that the uneven convexities on the surface of the foam are as much as possible without being crushed." , press down evenly on the foam surface so that it touches a flat surface.''

(23〕  同第44ページ下より5行の「長さ及び巾
」を「もとの長さ及び巾」に訂正し捷す。
(23) Correct the "length and width" in the 5th line from the bottom of page 44 to "original length and width" and edit.

(24〕  同第44ページ末行の1測定し、」の次f
「これを表裏2面について繰り返して、」を加入し壕す
(24) On the last line of page 44, the next f
Add ``Repeat this for the front and back sides,'' and finish.

(25)  同第45ページ第6行の「発泡体断面の長
手方向の側面から観測し、」を削除します。
(25) Delete "Observe from the longitudinal side of the foam cross section" in line 6 of page 45.

(26)  同第49ページ第7行の「番号1〜6」を
「番号1〜9」に訂正します。
(26) “Numbers 1 to 6” in line 7 of page 49 will be corrected to “Numbers 1 to 9.”

(27)  同第50ページ下より6行の「劣る」を「
劣り気泡膜の厚みのばらつきは±30係を超える」に訂
正します。
(27) From the bottom of page 50, change “inferior” in line 6 to “
The variation in the thickness of the inferior bubble film exceeds ±30 factors.''

(28〕  同第51ページ第12行の「ジェタノール
アミン」を「ジー2−ヒドロキシエチルアミン」に訂正
し捷す。
(28) Correct "jetanolamine" in line 12 of page 51 to "di-2-hydroxyethylamine" and omit it.

(29)  同第52ページ第6行の「ジェタノールア
ミン」ヲ「ジー2−ヒドロキシエチルアミン」に訂正し
捷す。
(29) On page 52, line 6, "jetanolamine" is corrected to "di-2-hydroxyethylamine."

(30)  同第53ページ第9行の「比較例8」を「
比較例9」に、同ページ下より4行の「比較例9jを[
比較例10Jにそれぞれ訂正し1す。
(30) “Comparative Example 8” on page 53, line 9 of the same page is changed to “
``Comparative Example 9'', 4 lines from the bottom of the same page, ``Comparative Example 9j'' [
Comparative Example 10J has been corrected.

(31)  同第54ページ第5行の「比較例10Jを
「比較例11」に、同ページ第14行の「比較例11」
を「比較例12」にそitぞれ訂正します。
(31) "Comparative Example 10J" in the 5th line of page 54 is changed to "Comparative Example 11", and "Comparative Example 11" in the 14th line of the same page
I will correct it to "Comparative Example 12".

(32)  同第55ページ第7行の「比較例12」を
「比較例13」に、同ページ下より5行の「比較例13
」を「比較例14」にそれぞノを訂正します。
(32) Change “Comparative Example 12” in the 7th line of page 55 to “Comparative Example 13” and change “Comparative Example 13” in the 5th line from the bottom of the same page to “Comparative Example 13”.
” to “Comparative Example 14”.

(33)  同第55ページ下より3行の「ジェタノー
ルアミンJkrジー2−ヒドロキシエチルアミン」に訂
正し寸す。
(33) On page 55, 3 lines from the bottom, the text has been corrected to read "Jetanolamine Jkr di-2-hydroxyethylamine."

(34)  同第57ベー)第1表の実験番号9の欄の
添力0剤[ポリG200PJを「ポリG 2020PJ
 K訂正し捷す。
(34) Same No. 57 Base) Additive 0 agent in the experiment number 9 column of Table 1 [Poly G200PJ
K Correct and edit.

(35)  同第57ページ第1表の実験番号32の欄
の発泡時間r2.sJをr2.6Jに訂正します。
(35) Foaming time r2 in the experiment number 32 column of Table 1 on page 57. Correct sJ to r2.6J.

(36)同第58ヘージ第2表中、スタポームFの欄の
名称(主成分)の「アミド」の次に「(ジー2−ヒドロ
キシエチルアミンを含む)」を加入します。
(36) In Table 2 of Section 58 Hage, ``(including di-2-hydroxyethylamine)'' will be added next to ``amide'' in the name (main component) in the column for Stapome F.

(379同第58ページ第3表中、商品名の表示の「ポ
リG−200PJを「ポリG 2020PJ [訂正し
ます。
(379, page 58, Table 3, the product name display "Poly G-200PJ" has been changed to "Poly G 2020PJ [Corrected.

(38)  同第61ページ第5表中項目の欄のl’−
HM月を「メルトインデックス」に訂正します。
(38) l'- in the item column of Table 5 on page 61
Correct the HM month to "Melt Index".

(39)  同第63ページ第7表中、実流例2、実験
番号9の欄のアノンBFの添加量「〃」を「1」に訂正
します。
(39) In Table 7 on page 63, the addition amount of Anon BF in the column of actual flow example 2, experiment number 9 will be corrected to ``1''.

(4の 同第63ページ第7表中、比較例8、実験番号
13の欄の気泡径の変動係数の「69」を「79」に訂
正します。
(In Table 7 on page 63 of 4, the coefficient of variation of bubble diameter in the column of Comparative Example 8, Experiment No. 13 is corrected from ``69'' to ``79.''

特許請求の範囲 ] 密度o、q3sy/cJ以上、融点117℃以上の
実質的に無架橋のポリエナレン100重量部((ズ」し
、ガラス管発泡試験法において無添加の場@に比べ発泡
時間を1秒以上延長しつる能力全もつ発泡減速剤0.0
5〜10重量部を配合した組成物を発泡して得られる、
平均気泡径0.05〜3mmの独立気泡から成り、発泡
体密度が0007〜0.10g/cd、気泡膜の厚みの
ばらつきが±30係以内、気泡径の変動係数が70係以
同であるとと金」S徴とする発泡体。
Claims] 100 parts by weight of substantially non-crosslinked polyenalene with a density of o, q3sy/cJ or higher and a melting point of 117°C or higher, which has a foaming time of Foaming moderator 0.0 with full ability to extend for more than 1 second
Obtained by foaming a composition containing 5 to 10 parts by weight,
Consisting of closed cells with an average cell diameter of 0.05 to 3 mm, the foam density is 0007 to 0.10 g/cd, the variation in the thickness of the cell membrane is within ±30 coefficients, and the coefficient of variation of the cell diameter is 70 coefficients or more. Foam material with "Totokin" S character.

2 引張比強度150 K9 / cr4以上、圧縮回
復率80φ以上、7Jl]熱収縮率50係以下の物性値
を示す特許請求の範囲第1項記載の発泡体。
2. The foam according to claim 1, which exhibits physical properties such as tensile specific strength of 150 K9/cr4 or more, compression recovery rate of 80φ or more, 7 Jl] and heat shrinkage rate of 50 coefficients or less.

3 厚みむらが50係未満、コルゲート値が100チ未
満、表面平滑度が2喘未満である特許請求の範囲第1項
記載の発泡体。
3. The foam according to claim 1, which has a thickness unevenness of less than 50 mm, a corrugation value of less than 100 mm, and a surface smoothness of less than 2 mm.

4 ポリx テv ンが190°C,21,6に9にお
けるメルトインデックス0.02〜40g710分、ス
ウェル値20〜50 、!9720 cm以上のもので
ある特許請求の範囲第1項記載の発泡体。
4 Polyx Ten at 190°C, 21,6 to 9, melt index 0.02-40g710 minutes, swell value 20-50,! The foam according to claim 1, which has a diameter of 9720 cm or more.

5 発泡減速剤が、一般式 %式% (式中のRi炭素数1〜5のアルキレン基、Aは水素原
子又はアシル基、nは1〜1oの整数、Xは0又は1〜
2の整数である〕 で示される化合物である特許請求の範囲第1項、第2項
、第3項又は第4項記載の発泡体。
5 The foaming moderator has the general formula % (in the formula, Ri is an alkylene group having 1 to 5 carbon atoms, A is a hydrogen atom or an acyl group, n is an integer from 1 to 1o, and X is 0 or 1 to
is an integer of 2] The foam according to claim 1, 2, 3, or 4, which is a compound represented by the following.

6 発泡減速剤が一般式 %式% (式中のR2は炭素数1〜6の二価炭化水素基でで各R
2は同一でも異なっていてもよく、ml−i1以上の整
数である) で示される化合物である特許請求の範囲第1項、第2項
、第3項又は第4項記載の発泡体。
6 The foaming moderator has the general formula % (in the formula, R2 is a divalent hydrocarbon group having 1 to 6 carbon atoms, and each R
2 may be the same or different and is an integer of ml-i1 or more) The foam according to claim 1, 2, 3, or 4, which is a compound represented by the following formula.

7 発泡減速剤が一般式 HO弐R,O九バR40〒R30柑H (式中のR3とR4はたが論に異なる炭素数1〜6の二
価炭化水素基であり、a、b及びCは1以」二の整数で
ある) 基である特許請求の範囲第7項記載の発泡体。
7 The foaming moderator has the general formula HO2R, O9BAR40〒R30KanH (R3 and R4 in the formula are logically different divalent hydrocarbon groups having 1 to 6 carbon atoms, and a, b and 8. The foam according to claim 7, wherein C is an integer from 1 to 2.

9 密度0.935&/cJ以上、融点117℃以上の
実質的に無架橋のポリエチレン1ooN量部に対し、ガ
ラス管発泡試験法におAて無添刀口の場合にトヒベ発泡
時聞を1秒以上延長しうる能力をもつ発泡減速剤O,O
S〜10重量部と核剤0.001〜5重量部を配合した
組成物を発泡して得も、lする、平均気泡径0.05〜
3−の独立気泡から成り、発泡体密度がユ、007〜0
−10g/cTI、気泡膜の厚みのばらつきが±30%
以円、気泡径の変動係数が70%以内であることを特徴
とする発、泡体。
9 For 10N of substantially non-crosslinked polyethylene with a density of 0.935&/cJ or higher and a melting point of 117°C or higher, the Tohibe foaming time is 1 second or more in the case of a glass tube foaming test method A with no additives. Foaming moderator O, O with ability to extend
The composition obtained by foaming a composition containing ~10 parts by weight of S~10 parts by weight and 0.001~5 parts by weight of a nucleating agent can be obtained by foaming a composition containing ~10 parts by weight of S ~10 parts by weight.
It is composed of 3-closed cells, and the foam density is 007 to 0.
-10g/cTI, bubble membrane thickness variation ±30%
An expanded foam characterized by a coefficient of variation of cell diameter within 70%.

10  引張比強度150 K9 / cr1以上、圧
縮回復率80係以上、加熱収縮率50%以下の物性値を
示す特許請求の範囲第9項記載の発泡体。
10. The foam according to claim 9, which exhibits physical properties such as a tensile specific strength of 150 K9/cr1 or more, a compression recovery rate of 80 factors or more, and a heat shrinkage rate of 50% or less.

U 厚みむらが50%未満、コルゲート値が5゜俤未満
、表面平滑度が2団未満である特許請求の範囲第9項記
載の発泡体。
U The foam according to claim 9, which has a thickness unevenness of less than 50%, a corrugation value of less than 5°, and a surface smoothness of less than 2 groups.

12  ポリエチレンが190℃、21 、6に7 K
おけるノルドインデックス0.02〜40I/10分、
スウェル値20〜50 R720cm以上のものである
特許請求の範囲第9項記載の発泡体。
12 Polyethylene at 190℃, 21, 6 to 7K
Nord index 0.02-40I/10 minutes,
The foam according to claim 9, which has a swell value of 20 to 50 and a radius of 720 cm or more.

13  発泡減速剤が、一般式 %式% (式中のRは炭素数1〜5のアルキレン基、Aは水素原
子又はアシル基、nl’j:1〜10の整数、Xは0又
は1〜2の整数である) で示される化合物である特許請求の範囲第9項、第10
項、第11項又は$12項記載の発泡体。
13 The foaming moderator has the general formula % (in the formula, R is an alkylene group having 1 to 5 carbon atoms, A is a hydrogen atom or an acyl group, nl'j: an integer of 1 to 10, and X is 0 or 1 to Claims 9 and 10 are compounds represented by
The foam according to item 1, item 11 or $12.

14  発泡減速剤が一般式 %式% (式中のR2は炭素数1〜6の二価炭化水素基で各R2
は同一でも異なっていてもよく、mは1以上の整数であ
る) で示さtLる化合物である特許請求の範囲第9項、第1
0項、第1J項又は第12項記載の発泡体。
14 The foaming moderator has the general formula % (in the formula, R2 is a divalent hydrocarbon group having 1 to 6 carbon atoms, and each R2
may be the same or different, and m is an integer of 1 or more.
The foam according to item 0, item 1J or item 12.

15  発泡減速剤が一般式 )IO(−R30片妖R40すR30坩H(式中のR3
とR4はたがいに異なる炭素数1〜6の二価炭化水素基
であり、a、b及びCは1以上の整数である) で示場れる特許請求の範囲第14項記載の発泡側−9H
ろ 16 一般式中ノR3カーCB2 C’2−基、R4カ
ー0H−CH2−基でちる特許請求の範囲第15項記載
の発泡体。
15 The foaming moderator is of the general formula) IO (-R30, R40, R30,
and R4 are different divalent hydrocarbon groups having 1 to 6 carbon atoms, and a, b and C are integers of 1 or more.
16. The foam according to claim 15, which is composed of the following formula: R3 car CB2 C'2- group and R4 car 0H-CH2- group.

17(イ)密度o9359/cA以上、融点11.7 
”C以上の実質的に無架橋のポリエチレン100重量部
に対し、(ロ)ガラス管発泡試1験法において無添加の
場合に比べ発泡時間?:1秒以上延長しつる能力をもつ
発泡減速剤0,05〜10重量部とH核剤o、ooi〜
5重量部を配合した組成物を、揮発性有機発泡剤ととも
に高圧下にポリエチレンの融点以上の温度で加熱混練し
、高温高圧域から低温低圧域に押出しながら連続発泡さ
せることを特徴とする平均気泡径0.05〜3mmの独
立気泡から成り、発泡体密度が0.007〜O−1,0
17c!d、気泡膜の厚みのばらつきが±30%以内、
気泡径の変動係数が70係以内の発泡体の製造方法。
17 (a) Density o9359/cA or higher, melting point 11.7
For 100 parts by weight of substantially non-crosslinked polyethylene of C or higher, (b) A foaming moderator that has the ability to extend the foaming time by 1 second or more compared to the case without additives in the glass tube foaming test 1 test method. 0.05 to 10 parts by weight and H nucleating agent o, ooi~
A composition containing 5 parts by weight of a composition is heated and kneaded together with a volatile organic blowing agent at a temperature above the melting point of polyethylene under high pressure, and is continuously foamed while being extruded from a high temperature and high pressure region to a low temperature and low pressure region. Consists of closed cells with a diameter of 0.05 to 3 mm, and a foam density of 0.007 to O-1.0
17c! d, variation in the thickness of the bubble film is within ±30%,
A method for producing a foam having a cell diameter coefficient of variation of 70 or less.

18  揮発性有機発泡剤をポリエチレン100重量部
に対し10〜140重量部の割合で用いる特許請求の範
囲第17項記載の製造方法。
18. The manufacturing method according to claim 17, wherein the volatile organic blowing agent is used in an amount of 10 to 140 parts by weight based on 100 parts by weight of polyethylene.

19  ポリ:f−チV ンが190°C,21,6に
9VCおけるメルトインデックス0.02〜40.!7
/10分、スウェル値20〜50 l / 20 cm
以上のものである特許請求の範囲第17項記載の製造方
法。
19 Poly: f-chain melt index at 190°C, 21,6 to 9VC 0.02 to 40. ! 7
/10 minutes, swell value 20-50 l/20 cm
The manufacturing method according to claim 17, which is the above.

20  発泡減速剤が、一般式 (H)X−N÷い1−0坩A〕、−エ (式中のRは炭素数1〜5のアルキレン基、Aは水素原
子又はアシル基、nは1〜10の整数、Xは0又は1〜
2の整数である) で示される化合物である植許請求の範囲第17項又は第
18項記載の製造方法。
20 The foaming moderator has the general formula (H) An integer from 1 to 10, X is 0 or 1 to
The manufacturing method according to claim 17 or 18, which is a compound represented by:

21  発泡減速剤が一般式 %式%] (式中のR2は炭素数1〜6の二価炭化水素基で各R2
は同一でも異なっていてもよく、mは1以上の整数であ
る) で示される化合物である特許請求の範囲第17項又は第
18項記載の製造方法。
21 The foaming moderator has the general formula % formula %] (R2 in the formula is a divalent hydrocarbon group having 1 to 6 carbon atoms, and each R2
may be the same or different, and m is an integer of 1 or more.

22  発泡減速剤が一般式 %式% (式中のR5とR4はたがいに異なる炭素数1〜6の二
価炭化水素基であり、a、b及びCば1以上の整数であ
る) で示される特許請求の範囲第21項記載の製造方法・ 
               9Ht23 一般式中
(7)RJ”−CH2CH2−基、R,カ、−cH,−
0H2−である特許請求の範囲第22項記載の製造方法
22 The foaming moderator is represented by the general formula % (in the formula, R5 and R4 are different divalent hydrocarbon groups having 1 to 6 carbon atoms, and a, b and C are integers of 1 or more). The manufacturing method according to claim 21,
9Ht23 In the general formula (7) RJ''-CH2CH2- group, R, Ka, -cH, -
23. The manufacturing method according to claim 22, which is 0H2-.

24  揮発性有機発泡剤がノ・ロゲンit炭化水素の
少なくとも1種から成る特許請求の範囲第17項又は第
18項記載の製造方法。
24. The manufacturing method according to claim 17 or 18, wherein the volatile organic blowing agent comprises at least one hydrocarbon.

25  ハロゲン化炭化水素がジクロロテトラフルオロ
エタンとそれ以外のハロゲン化炭化水素との混合物であ
る特許請求の範囲第24項記載の製造方法。
25. The production method according to claim 24, wherein the halogenated hydrocarbon is a mixture of dichlorotetrafluoroethane and other halogenated hydrocarbons.

26  ジクロロテトラフルオロエタンとそ」を以外の
ハロゲン化炭化水素とのm合割合かモル比で1:4ない
し4:1である特許請求の範囲第25項記載の製造方法
26. The manufacturing method according to claim 25, wherein the molar ratio of dichlorotetrafluoroethane and other halogenated hydrocarbons is 1:4 to 4:1.

27  ジクロロテトラフルオロエタン以外のハロゲン
化炭化水素が、トリクロロモノフルオロメタン、ジクロ
ロモノフルオロメタン、ジクロロジフルオロメタン、ト
リクロロトリフルオロエタン、塩化メチル及び二塩化メ
タンの中から選ばれた少なくとも1種である特許請求の
範囲第25項又は第26項記載の製造方法。
27 A patent in which the halogenated hydrocarbon other than dichlorotetrafluoroethane is at least one selected from trichloromonofluoromethane, dichloromonofluoromethane, dichlorodifluoromethane, trichlorotrifluoroethane, methyl chloride, and dichloridemethane The manufacturing method according to claim 25 or 26.

Claims (1)

【特許請求の範囲】 1 密度0.935 g / at1以上、融点117
℃以上の実質的に無架橋のポリエチレン100重量部に
対し、ガラス管発泡試験法において無添加の場合に比べ
発泡時間を1秒以」二延長し5ろ能力をもつ発泡減速剤
0.05〜10重量部を配合した組成物を発泡して得ら
れろ、平均気泡径005〜3mの独立気泡から成り、発
泡体密度が帆007〜0 、1 oy / ad、気泡
膜の厚みのばらつきが±30係以内、気泡径の変動係数
が70係以内であることを特徴とする発泡体。 2 引張比強度150 K7 / cr4以上、圧縮回
復率80係以上、刀口熱収縮率50係以下の物性値を示
1−特許請求の範囲第1項記載の発泡体。 6 厚みむらが50係未満、コルゲート値が50係未満
、表面平滑度が2咽未満である特許請求の範囲第1項記
載の発泡体。 4 ポリエチレンが190℃、21.6に9におけろメ
ルトインデックス0.02〜40g/10分、スウェル
値20〜50 g 720 cm以上のものである特許
請求の範囲第1項記載の発泡体。 5 発泡減速剤が、一般式 %式% (式中のRは炭素数1〜5のアルキレン基、Aは水素原
子又はアシル基、nは1〜10の整数、Xは0又は1〜
2の整数である) で示されろ化合物ノであろ特許請求の範囲第1項、第2
項、第3項又は第4項記載の発泡体。 6発泡減速剤が一般式 %式% (式中のR2は炭素数1〜6の二価炭化水素基で各R2
は同一でも異なっていてもよく、mは1以上の整数であ
る) で示されろ化合物であろ特許請求の範囲第】項、第2項
、第3項又は第4項記載の発泡体。 7発泡減速剤が一般式 HO(g−R乙〇九〆R40示R30丹J(式中のR3
とR4は1こがいに異なる炭素数1〜6の二価炭化水素
基であり、a、b及びCは1以上の整数である) 基であろ特許請求の範囲第7項記載の発泡体。 9密度0.935.r / crdr上、融点117℃
以上の実質的に無架橋のポリエチレン100重量部に対
し、ガラス管発泡試験法において無添加の場合に比べ発
泡時間”%1秒以上延長しうろ能力をもつ発泡減速剤0
.05〜10]i量部と核剤0.001〜5重量部を配
合した組成物を発泡して得られろ、平均気泡径0.05
〜3岨の独立気泡から成り、発泡膜の厚みのばらつきが
±30係以内、気泡径の変動係数が70係以内であるこ
とを特徴と′fろ発泡体。 10引l脹比強度15oK9 / cribr上、圧縮
回復率80係以上、加熱収縮450%以下の物性値を示
す特許請求の範囲第9項記載の発泡体。 11厚みむらが50%未満、コルゲート値がso%未満
、表面平滑度が2岨未構である特許請求の範囲第9項記
載の発泡体。 12ポリエチレンが190℃、21.6に7におげろメ
ルトインデックス0.02〜40.9710分、スウェ
ル値20〜50 g / 20 cnr以上のものであ
る特許請求の範囲第9項記載の発泡体。 16発泡減速剤が、一般式 %式%) (式中のRは炭素数1〜5のアルキレン基、Aは水素原
子又はアシル基、nは1〜1oの整数、XはO又は1〜
2の整数である) で示されろ化合物である特許請求の範囲第9項、第10
項、第11項又は第12.1J−1記載の発泡体。 14発泡減速剤が一般式 %式% (式中のR2は炭素数1〜6の二価炭化水素基で谷R2
は同一でも異なっていてもよく、mは工具上の整数であ
る〕 で示されろ化合物である特許請求の範囲第9項、第10
項、第11項又は第12項記載の発泡体。 15発泡減速剤が一般式 %式% (式中のR5とR4はたがいに異なる炭素数1〜6の二
価炭化水素基であり、a、b及びCは1以上の整数であ
ろう で示される特許請求の範囲第14項記載の発泡体。 H3 16一般式中0)R=、が−0H2C!H2−基、式が
−CH−CH2−基である特許請求の範囲第15項記載
の発泡体。 17(イ)密度口935 、!7/ c!d以上、融点
117℃以上、の実質的に無架橋のポリエチレン100
重量部に対し、(ロ)ガラス管発泡試験法において無添
加の場合に比べ発泡時間を1秒以上延長し5ろ能力をも
っ発泡減速削口05〜10重量部と(/→核剤o、oo
i〜5重量部を配合した組成物を、揮発性有機発泡剤と
ともに高圧下にポリエチレンの融点以上の温度で加熱混
練し、高温高圧域から低温低圧域に押出しながら連続発
泡させろことを特徴とずろ平均気泡径0.05〜3關の
独立気泡から成り、発泡膜の厚みθりばらつきが±go
%以内、気泡径の変動係数が7096以内の発泡体の製
造方法。 18揮発性有機発泡剤をポリエチレン100重量部に対
し10〜140重量都の割合で用いろ特許請求の範囲第
17項記載の製造方法。 19ポリエチレンが190℃、21.6にりにおけろタ
ルトインデックス0602〜4097.10分、スウェ
ル値20〜50 g / 20 am以上のものである
特許請求の範囲第17項記載の製造方法。 20発泡減速剤が、一般式 %式% (式中0)Rは炭素数1〜5のアルキレン基、Aは水素
原子又はアシル基、n &’11〜100)q数、Xは
O又は1〜20)整数である) で示されろ化合物である特計言青求σ、、)ir厄四囲
第17項は第18項記載の製造方法。 21発泡減速剤が一般式 HO(−R20九H (式中のR2は炭素数1〜6の二価炭化水素基で各R2
は同一でも異なっていてもよく、mば1以上の整数であ
る) で示されろ化合物である特許請求の範囲第17項又は第
18項記載の製造方法。 η発泡減速剤が一般式 %式%) (式中のR6とR4はたがいに異なる炭素数1〜6の二
価炭化水素基であり、a、b及びCは1以上の整数であ
る) で示される特許請求の範囲第21項記載の製造万25一
般式中のR3が−CH20H2−基、R4が一0H−C
H,、−である特許請求の範囲第22項記載の製造方法
。 24揮発性有機発泡剤がハロゲン化炭化−lk鴛の少1
.rくとも1棟から成ろ特許請求の範囲第17項又は第
18項記載の製造方法。 乙ハロゲン化炭化水素がジクロロテトラフルオロエタン
とそれ以外の7・ロゲン化炭化水素との混合物である特
許請求の範囲第24項記載の製造方法。 26ジクロロテトラフルオロエタンとそれ以外のハロゲ
ン化炭化水素との混合割合がモル比で1:4ないし4:
1である特許請求の範囲第25項記載の製造方法。 27ジクロロテトラフルオロエタン以外のハロゲン化炭
化水素が、トリクロロモノフルオロメタン、ジクロロモ
ノフルオロメタン、ジクロロジフルオロメタン、トリク
ロロトリフルオロエタン、塩化メチル及び二塩化メタン
の中から選ばれた少なくとも1種である特許請求の範囲
第25項又は第26項記載の製造方法。
[Claims] 1. Density 0.935 g/at1 or more, melting point 117
For 100 parts by weight of substantially non-crosslinked polyethylene at a temperature of 0.05 to 0.05 °C, a foaming moderator with a foaming capacity of 0.05 to 100% that extends the foaming time by 1 second or more compared to the case without additives in the glass tube foaming test method. The composition obtained by foaming a composition containing 10 parts by weight is composed of closed cells with an average cell diameter of 0.05 to 3 m, a foam density of 0.07 to 0.1 oy/ad, and a variation in the thickness of the cell membrane of ± A foam having a coefficient of variation of 30 or less and a coefficient of variation of bubble diameter of 70 or less. 2. The foam according to claim 1, which exhibits physical properties such as a tensile specific strength of 150 K7/CR4 or more, a compression recovery rate of 80 factors or more, and a sword mouth heat shrinkage rate of 50 factors or less. 6. The foam according to claim 1, which has a thickness unevenness of less than 50 coefficients, a corrugation value of less than 50 coefficients, and a surface smoothness of less than 2 mm. 4. The foam according to claim 1, wherein the polyethylene has a melt index of 0.02 to 40 g/10 min at 190° C. and 21.6 to 9, and a swell value of 20 to 50 g/720 cm or more. 5 The foaming moderator has the general formula % (in the formula, R is an alkylene group having 1 to 5 carbon atoms, A is a hydrogen atom or an acyl group, n is an integer of 1 to 10, and X is 0 or 1 to
2) is an integer of 2). Claims 1 and 2
3. The foam according to item 3, item 4, or item 4. 6 The foaming moderator is expressed by the general formula % (in the formula, R2 is a divalent hydrocarbon group having 1 to 6 carbon atoms, and each R2
may be the same or different, and m is an integer of 1 or more. 7 The foaming moderator has the general formula HO (g-R〇〆〆R40shows R30tanJ (R3 in the formula
and R4 are divalent hydrocarbon groups each having 1 to 6 carbon atoms, and a, b and C are integers of 1 or more. 9 density 0.935. r/crdr, melting point 117°C
For 100 parts by weight of the above-mentioned substantially non-crosslinked polyethylene, the foaming time was extended by 1% or more compared to the case without the additive in the glass tube foaming test method, and no foaming moderator with foaming ability was added.
.. 05-10] obtained by foaming a composition containing i part by weight and 0.001 to 5 parts by weight of a nucleating agent, average cell diameter 0.05
The foam is characterized by consisting of ~3~3 closed cells, the variation in the thickness of the foam membrane is within ±30 coefficients, and the coefficient of variation of the cell diameter is within 70 coefficients. 10. The foam according to claim 9, which exhibits physical properties such as a tensile strength of 15oK9/cribr, a compression recovery rate of 80 or more, and a heat shrinkage of 450% or less. 11. The foam according to claim 9, which has a thickness unevenness of less than 50%, a corrugation value of less than so%, and a surface smoothness of 2 degrees. 12 The foam according to claim 9, wherein the polyethylene has a melt index of 0.02 to 40.9710 minutes at 190°C, a melt index of 21.6 to 7, and a swell value of 20 to 50 g/20 cnr or more. . 16 Foaming moderator has the general formula % formula %) (In the formula, R is an alkylene group having 1 to 5 carbon atoms, A is a hydrogen atom or an acyl group, n is an integer from 1 to 1o, and X is O or 1 to
Claims 9 and 10 are compounds represented by
The foam according to item 1, item 11 or item 12.1J-1. 14 The foaming moderator has the general formula % formula % (R2 in the formula is a divalent hydrocarbon group having 1 to 6 carbon atoms, and the valley R2
may be the same or different, and m is an integer on the tool] Claims 9 and 10 are compounds represented by
The foam according to item 1, item 11 or item 12. 15 The foaming moderator is expressed by the general formula % (in the formula, R5 and R4 are different divalent hydrocarbon groups having 1 to 6 carbon atoms, and a, b and C are integers of 1 or more. The foam according to claim 14. In the general formula H3 16, 0) R= is -0H2C! 16. The foam according to claim 15, wherein the H2- group has the formula -CH-CH2-. 17 (a) Density mouth 935,! 7/ c! Substantially non-crosslinked polyethylene 100 with a melting point of 117° C. or higher and a melting point of 117° C. or higher
(b) In the glass tube foaming test method, compared to the case without additives, the foaming time is extended by 1 second or more compared to the case without additives. oo
A composition containing i to 5 parts by weight is heated and kneaded together with a volatile organic blowing agent at a temperature above the melting point of polyethylene under high pressure, and is continuously foamed while being extruded from a high temperature and high pressure region to a low temperature and low pressure region. Consists of closed cells with an average cell diameter of 0.05 to 3 degrees, and the thickness θ variation of the foam membrane is ±go.
% or less, and a cell diameter variation coefficient of 7096 or less. 18. The manufacturing method according to claim 17, wherein the volatile organic blowing agent is used in a proportion of 10 to 140 parts by weight per 100 parts by weight of polyethylene. 18. The manufacturing method according to claim 17, wherein the polyethylene has a tart index of 0602 to 4097.10 minutes and a swell value of 20 to 50 g/20 am or more at 190°C and 21.6 g/20 am. 20 The foaming moderator has the general formula % formula % (0 in the formula) R is an alkylene group having 1 to 5 carbon atoms, A is a hydrogen atom or an acyl group, n &'11 to 100) q number, X is O or 1 ~20) is an integer) is a compound represented by the special plan expression QQ σ, . 21 foaming moderator has the general formula HO(-R209H (in the formula, R2 is a divalent hydrocarbon group having 1 to 6 carbon atoms, and each R2
may be the same or different, and m is an integer of 1 or more. η The foaming moderator has the general formula % (in the formula, R6 and R4 are different divalent hydrocarbon groups having 1 to 6 carbon atoms, and a, b and C are integers of 1 or more). 25. In the general formula, R3 is -CH20H2- group, R4 is -H-C
23. The manufacturing method according to claim 22, wherein H,,-. 24 Volatile organic blowing agent is halogenated carbonized-lk
.. The manufacturing method according to claim 17 or 18, comprising at least one building. 25. The manufacturing method according to claim 24, wherein the halogenated hydrocarbon (B) is a mixture of dichlorotetrafluoroethane and other halogenated hydrocarbons. The mixing ratio of 26 dichlorotetrafluoroethane and other halogenated hydrocarbons is 1:4 to 4:
26. The manufacturing method according to claim 25, which is No. 1. 27 A patent in which the halogenated hydrocarbon other than dichlorotetrafluoroethane is at least one selected from trichloromonofluoromethane, dichloromonofluoromethane, dichlorodifluoromethane, trichlorotrifluoroethane, methyl chloride, and dichloridemethane The manufacturing method according to claim 25 or 26.
JP6330083A 1983-04-11 1983-04-11 Novel foam and production thereof Granted JPS59189134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6330083A JPS59189134A (en) 1983-04-11 1983-04-11 Novel foam and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6330083A JPS59189134A (en) 1983-04-11 1983-04-11 Novel foam and production thereof

Publications (2)

Publication Number Publication Date
JPS59189134A true JPS59189134A (en) 1984-10-26
JPH0218693B2 JPH0218693B2 (en) 1990-04-26

Family

ID=13225317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6330083A Granted JPS59189134A (en) 1983-04-11 1983-04-11 Novel foam and production thereof

Country Status (1)

Country Link
JP (1) JPS59189134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413791A (en) * 1990-05-08 1992-01-17 Shinfuji Kaseiyaku Kk Safe composition
EP1642926A1 (en) * 2004-09-30 2006-04-05 Tosoh Corporation Non-crosslinked polyethylene foam
WO2022074899A1 (en) * 2020-10-08 2022-04-14 日東電工株式会社 Resin foam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627709A (en) * 1969-05-16 1971-12-14 Basf Ag Production of foam thermoplastics using a blowing agent and a viscosity increasing agent
JPS5616184A (en) * 1979-07-18 1981-02-16 Hitachi Ltd Data indication control system
JPS58208328A (en) * 1982-05-31 1983-12-05 Asahi Chem Ind Co Ltd Novel cellular material
JPS59168038A (en) * 1983-03-16 1984-09-21 Asahi Chem Ind Co Ltd Highly expanded, high-density polyethylene foam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627709A (en) * 1969-05-16 1971-12-14 Basf Ag Production of foam thermoplastics using a blowing agent and a viscosity increasing agent
JPS5616184A (en) * 1979-07-18 1981-02-16 Hitachi Ltd Data indication control system
JPS58208328A (en) * 1982-05-31 1983-12-05 Asahi Chem Ind Co Ltd Novel cellular material
JPS59168038A (en) * 1983-03-16 1984-09-21 Asahi Chem Ind Co Ltd Highly expanded, high-density polyethylene foam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413791A (en) * 1990-05-08 1992-01-17 Shinfuji Kaseiyaku Kk Safe composition
EP1642926A1 (en) * 2004-09-30 2006-04-05 Tosoh Corporation Non-crosslinked polyethylene foam
WO2022074899A1 (en) * 2020-10-08 2022-04-14 日東電工株式会社 Resin foam

Also Published As

Publication number Publication date
JPH0218693B2 (en) 1990-04-26

Similar Documents

Publication Publication Date Title
KR860001034B1 (en) Foamed articles and method of producing for the same
EP0016348B1 (en) Method of making polyethylene blend foams having improved compressive strength and foams prepared by said method
US4387169A (en) Low density, extruded ethylenic polymer foams
US4370378A (en) Low density, extruded ethylenic polymer foams
JP2009235329A (en) Manufacturing method of polypropylene-based resin foam, and polypropylene-based resin foam
JP4157399B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded foam in polypropylene resin mold
JP2002275298A (en) Open-cell foam of polyethylene resin composition
JP2020090609A (en) Polyethylene-based resin foam particle and polyethylene-based resin foam particle molded body
JPS59189134A (en) Novel foam and production thereof
JP2005290329A (en) Ethylene-based resin foamed sheet, formed product and method for producing the ethylene-based resin foamed sheet
RU2238954C2 (en) Porous material
EP0025063B1 (en) Low density, extruded ethylenic polymer foams
JP3813349B2 (en) Propylene resin for foaming
JP4197261B2 (en) POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY, AND METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM PARTICLE
JP4004321B2 (en) Polypropylene resin foam sheet and container
JP4321750B2 (en) Polypropylene resin foam particles
JPS6213981B2 (en)
JP4001669B2 (en) Olefinic resin foamable particles and method for producing the same
JP2799255B2 (en) Extrusion foaming method of polyolefin resin
JP4274463B2 (en) Polypropylene resin foam particles
JPS60187543A (en) Heat-shrinkable composite expanded resin film
JPH03231936A (en) Foamed film
JPH0546851B2 (en)
KR830000060B1 (en) Foamed thermoplastic resin and composition for same
JP7219001B2 (en) cushioning material