JPS59189025A - Superplastic forging method - Google Patents

Superplastic forging method

Info

Publication number
JPS59189025A
JPS59189025A JP58062273A JP6227383A JPS59189025A JP S59189025 A JPS59189025 A JP S59189025A JP 58062273 A JP58062273 A JP 58062273A JP 6227383 A JP6227383 A JP 6227383A JP S59189025 A JPS59189025 A JP S59189025A
Authority
JP
Japan
Prior art keywords
forging
temp
temperature
alloy
superplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58062273A
Other languages
Japanese (ja)
Other versions
JPH0329494B2 (en
Inventor
Yoshio Nishino
西野 良夫
Toshiro Kimura
敏郎 木村
Tsutomu Oka
岡 勉
Yoshinari Ishii
義成 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58062273A priority Critical patent/JPS59189025A/en
Publication of JPS59189025A publication Critical patent/JPS59189025A/en
Publication of JPH0329494B2 publication Critical patent/JPH0329494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor

Abstract

PURPOSE:To obtain a superplastically forged product having a desired shape in a short time with one forging stage and a small scale installation by controlling temp. and straining speed over the entire part of the forging stage in accordance with the information obtd. by measuring continuously the temp., straining speed, forging load, etc. CONSTITUTION:A raw material of preferably <=10mu crystal grain size consisting of a Ti alloy, etc. is set in the die in a pressurizing chamber and the inside of the chamber is maintained in a vacuum or inert atmosphere. The raw material in this state is heated up to a prescribed temp. by an external power source and forging is started at said temp. The temp. for starting the forging is preferably about 700-850 deg.C in the case of a Ti alloy. The end temp. is then increased with respect to the temp. for starting the forging. More specifically, the temp. for starting the forging is kept relatively low in order to obtain a superplastic state in an early time and a specified strain is applied on the raw material to form finer crystal grains at said temp. and to obtain the superplastic state and thereafter the temp. is increased gradually or stepwise. The min. amt. of strain and straining speed required for the formation of the finer crystal grains are required to be controlled respectively to about >=0.1 and about 10<-5>-10<-2>sec<-1> in the case of the Ti alloy.

Description

【発明の詳細な説明】 本発明は、金属材料が特定の条件下で異常な延性を示す
、いわゆる超塑性現象を利用する超塑性鍛造法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superplastic forging method that utilizes the so-called superplastic phenomenon in which a metal material exhibits abnormal ductility under specific conditions.

従来、強度を要する構造部材には鍛造部材が使われてお
り、この鍛造部利は鍛造ブロックや製品形状に比較的近
い鍛造プリフォームからの削り出しにより作られてきた
Conventionally, forged parts have been used for structural members that require strength, and these forged parts have been made by cutting from forged blocks or forged preforms that are relatively close to the product shape.

しかし、近年、航空機機体部材や同エンジン部材、ある
いはその他の耐熱性、高強度などの特性を要する部材に
Ti合金やNi合金などの難加工性の高級合金の型鍛造
部材が多量に使われるようになって、経済性の面から材
料歩留りの向上が必要となってきた。この問題を解決す
るものとして、最近注目され、実用化が進みつつあるの
が超塑性鍛造法で、この方法によれば歪速度は遅いもの
の1、ト低変形抵抗かつ超高延性の状態で加工が行われ
、しため、材料のフローが容易になり、” near 
netshape”の鍛造部材を仕上げることができ、
著しい材料節減をもたらすのである。
However, in recent years, die-forged parts made of difficult-to-work high-grade alloys such as Ti alloys and Ni alloys have been increasingly used for aircraft body parts, engine parts, and other parts that require properties such as heat resistance and high strength. As a result, it has become necessary to improve material yield from an economic standpoint. As a solution to this problem, the superplastic forging method has recently attracted attention and is being put into practical use. Although the strain rate is slow, this method produces low deformation resistance and ultra-high ductility. is carried out, tightened, material flow is facilitated, and "near"
netshape” can be finished forged parts,
This results in significant material savings.

ところで、超塑性鍛造法は、被加工材に熱間加工を施し
、結晶粒を微細化して超塑性を付与する工程(以下、前
工程という)と、該被加工材に熱間鍛造を施し、最終形
状に仕上げる工程(以下、主工程)とからなる。公知の
超塑性鍛造法の一つで前工程に押出し比5〜10の押出
しが使われているがこの場合には、大能力の押出し機が
必要となる5え、工程IF12種類の梨性加工が含まれ
るので作業が煩雑になる。また、従来法では、主工程に
おいて通常恒温鍛造が行われるが、超g2H性状態が超
低変形抵抗、超高延性のような完全状態に常にに、1(
持されているとはいえないので、材料の変形の進行に伴
う材料面積の拡大や材料と金型間の摩擦抵抗の増加の影
響を受ける。さらには、最終段階になると金型の狭い部
分への材料の光消やパリ部分への流動に大きいエネルギ
ーを要する等の理由により、鍛造荷Mは工程の終了が近
づくにしたがい急檄に上昇する。したがって、大型の製
品を超ijQ性鍛造により製造する場合、従来の方法で
は太貴くなり、温度の上昇により小さくなる。特に超塑
性材料では、通常の材料に比較し、変形抵抗の結晶粒径
への依存度が高い。(変形抵抗は、通常の材料では結晶
粒径の1乗位に比例するが、超塑性材料ではその2〜3
乗に比例する。)したがって、結晶粒の成長を抑制しつ
つ温度を上昇でき、かつ歪速度を温度に合せて適切に制
御すれば、超塑性材料の変形抵抗を著しく低下させるこ
とが可能である。
By the way, the superplastic forging method includes a step of subjecting a workpiece to hot working to refine the crystal grains and impart superplasticity (hereinafter referred to as a "pre-process"), and hot forging the workpiece, It consists of a process of finishing the final shape (hereinafter referred to as the main process). One of the known superplastic forging methods uses extrusion at an extrusion ratio of 5 to 10 in the pre-process, but in this case, a high-capacity extruder is required. , which makes the work complicated. In addition, in the conventional method, isothermal forging is usually performed in the main process, but the super g2H state is always in a perfect state such as ultra low deformation resistance and ultra high ductility.
Therefore, it is affected by the expansion of the material area as the material deforms and the increase in frictional resistance between the material and the mold. Furthermore, at the final stage, the forging load M increases rapidly as the end of the process approaches, due to reasons such as large amounts of energy being required for the material to disappear into the narrow part of the mold and to flow into the narrow part of the mold. . Therefore, when a large-sized product is manufactured by super-ijQ forging, it becomes thicker using the conventional method, but becomes smaller due to an increase in temperature. In particular, in superplastic materials, deformation resistance is highly dependent on crystal grain size compared to normal materials. (For normal materials, the deformation resistance is proportional to the first power of the grain size, but for superplastic materials, the deformation resistance is proportional to the first power of the grain size.
Proportional to the power. ) Therefore, if the temperature can be increased while suppressing the growth of crystal grains, and if the strain rate is appropriately controlled in accordance with the temperature, it is possible to significantly reduce the deformation resistance of superplastic materials.

このため、本発明者等(は前述の考えに基づき従来法の
欠点を改良すべく研究を行った結果、以下の知見を得る
に至った。
Therefore, the present inventors conducted research to improve the drawbacks of the conventional method based on the above-mentioned idea, and as a result, they came to the following knowledge.

(1)超塑性材料では、再結晶温度以上の通常の熱間鍛
造温度域(以下、本温度域という)で、一般の材料では
認められないような温度の上昇に伴う変形抵抗の著しい
低下が見られる。この現象はTi合金において特に顕著
である。
(1) In superplastic materials, in the normal hot forging temperature range (hereinafter referred to as this temperature range) above the recrystallization temperature, there is a significant decrease in deformation resistance with temperature rise that is not observed in general materials. Can be seen. This phenomenon is particularly noticeable in Ti alloys.

(2)  金属材料の結晶粒は、通常、本温度域では急
速に成長するが、超塑性材料では本温度域でも結晶粒の
著しい成長は起きない。したがって、本A)J料では、
温度の上昇による変形抵抗の低下が結晶粒の粗大化によ
るその上昇により相殺される割合は比較的少くない。
(2) Crystal grains of metallic materials usually grow rapidly in this temperature range, but in superplastic materials, significant growth of crystal grains does not occur even in this temperature range. Therefore, in this A) J fee,
The rate at which the decrease in deformation resistance due to an increase in temperature is offset by the increase due to coarsening of crystal grains is relatively small.

に3)超塑性材料では、本温度域での昇温による結晶粒
の粗大化が抑制されるばかりでなく、歪速度の選択によ
り結晶粒は初期状態よりさらに微細化し、超塑性がより
顕著になって、粘性流体的な挙動が認められるようにな
る。
3) In superplastic materials, not only is the coarsening of crystal grains due to temperature rise in this temperature range suppressed, but also the selection of strain rate makes the crystal grains even finer than the initial state, making superplasticity more pronounced. As a result, viscous fluid-like behavior is recognized.

(4)粘性流体的な挙動を示すようになった超塑性月別
では、変形抗抗はさらに低下し、より高歪速度で加工で
き、加工時間が長℃・という超塑性鍛造の欠点が回避で
きる。
(4) Superplastic forging, which now exhibits viscous fluid-like behavior, further reduces deformation resistance and can be processed at higher strain rates, avoiding the drawbacks of superplastic forging such as long processing times. .

(5)温度と歪速度の適切な選択(Cより、鍛造j(よ
り金属材料に超塑性を付与することができ、したがって
前工程と主工程を同一の型を用いる連続した工程とする
ことができる。
(5) Appropriate selection of temperature and strain rate (from C, forging can give more superplasticity to the metal material, and therefore the pre-process and main process can be continuous processes using the same die) can.

本発明は、以上のような知見に基づぎ完成されたもので
あって、T1合金等高温で超塑性状態になりイ:する金
Bj3利料を高温の型内で鍛造することによりIDi望
の形状を付与する方法において、まず一定の歪量まで加
工することにより材料の結晶粒を微細化して超塑性を伺
与し、次に結晶粒の粗大化をる超塑性鍛造法を提供する
ものである。本発明の超塑性鍛造法によれば、従来法に
比較し同−設備が使用可能な被加工材の寸法範囲が拡大
し、小規模な設備で比較的大型の部材まで加工が可能と
なり、また比較的短時間で加工が終了する。
The present invention was completed based on the above knowledge, and it is possible to obtain the desired IDi by forging gold Bj3 alloy, which becomes a superplastic state at high temperatures, such as T1 alloy, in a high-temperature die. In the method of imparting the shape, the material is first processed to a certain amount of strain to refine the crystal grains of the material to give it superplasticity, and then the crystal grains are coarsened to provide a superplastic forging method. It is. According to the superplastic forging method of the present invention, the size range of workpieces that can be used with the same equipment is expanded compared to conventional methods, and even relatively large parts can be processed with small-scale equipment. Machining is completed in a relatively short time.

以下、本発明の構成についてさらに詳細に説明する。Hereinafter, the configuration of the present invention will be explained in more detail.

本発明で使用する材料は、大きな変形を行うので、偏析
の少い均質な材料が望ましい。この意味でアトマイズ粉
末等を使用した粉末冶金法による材料が適しているが、
溶製材に本発明を適用しても同様の効果が得られる。加
工に供される材料(以下、原材料という)の結晶粒が細
い方が那工中にその微細化がより大きく進行して超g−
j性状態になり易(、変形抵抗もよりいっそう低くなる
Since the material used in the present invention undergoes large deformation, a homogeneous material with little segregation is desirable. In this sense, materials made by powder metallurgy using atomized powder etc. are suitable, but
Similar effects can be obtained even when the present invention is applied to melted lumber. The thinner the crystal grains of the material used for processing (hereinafter referred to as raw material), the more refined it will be during processing, resulting in ultra-g-
It is easy to enter the j-like state (and the deformation resistance becomes even lower).

コノヨつな」4[1由から原材料の結晶粒径としては、
10μ以下が望ましいが、15μ程度までは同様の効も
正確に該速度を制御できる機構を有するものが”7’:
) IKましい。さら((、プレスのラム間に鍛造用型と圧
室が必要である。材料を加圧室内の型中にセットし、室
内を真空または不活性雰囲気にし、外部電源により所定
の温度まで昇温し、その温度で鍛造を開始する。温度と
歪速度は制御装置により制御するが、予め温度および歪
速度については望ましい値を設定し、プログラム?It
lJ御により鍛造することもイ弓効である。
From the ``Konoyo Tsuna'' 4 [1 reason, the crystal grain size of the raw material is:
10μ or less is desirable, but the same effect can be obtained up to about 15μ, but the one with a mechanism that can accurately control the speed is "7":
) IK-ish. Furthermore, a forging mold and a pressure chamber are required between the rams of the press.The material is set in the mold in the pressurizing chamber, the chamber is made into a vacuum or inert atmosphere, and the temperature is raised to a predetermined temperature using an external power source. Then, forging is started at that temperature.The temperature and strain rate are controlled by the controller, but the desired values for the temperature and strain rate are set in advance, and the program?
It is also effective to forge it under the control of LJ.

鍛造温度の制御は特に重要である。鍛造温度開始温度は
材料の種類と初期結晶粒度により適宜選択し得るが、同
温度が低くずぎると材料の変形抵抗が大きくなり、型の
破損、摩耗等の問題が生じ、ま1こ、材料の変形能が低
いため、材料の割れ等の問題が生じることになる。一方
、鍛造温度開始温度が高すぎると、結晶粒が粗大化し結
晶粒の微細化を達成することが不可能となり、大きな歪
量に至っても超塑性状態が得られない。T1合金の場合
の変形抵抗を著しく低下させることができ、したがって
被加工材の面積増加等に起因する鍛造荷重の上昇を抑え
、さらに場合によっては、歪速度を上ケ1させて鍛造時
間を短縮させることも可能となる。
Control of forging temperature is particularly important. The starting temperature for forging can be selected appropriately depending on the type of material and the initial grain size. However, if the temperature is too low, the deformation resistance of the material will increase, causing problems such as die breakage and wear. Since the deformability is low, problems such as cracking of the material will occur. On the other hand, if the forging temperature starting temperature is too high, the crystal grains become coarse and it becomes impossible to achieve crystal grain refinement, and even if a large amount of strain is reached, a superplastic state cannot be obtained. The deformation resistance in the case of T1 alloy can be significantly lowered, thus suppressing the increase in forging load caused by an increase in the area of the workpiece, etc., and in some cases, increasing the strain rate by 1 to shorten the forging time. It is also possible to do so.

f速度のfti!I御も大切である。結晶粒の微細化に
必要な最低限の歪量と歪速度は、鍛造温度、材料の種類
、はじめの結晶粒度等によって変るが、T1合金の場合
は歪量が約0.1 (高さ10%低減)以上、望しくに
0.15〜045程度であり、歪速度は10 〜10 
sec  程度である。結晶粒の微細化により被加工材
に超苧性が伺与され、また、変形の進行1(伴い結晶粒
は益々微細化し、変形抵抗は一段と低下するが、被加工
拐の面積増加、被加工制と型間における摩擦抵抗の増加
等により全鍛造荷重は必ずしも低下しない。
fti of f speed! I am also important. The minimum strain amount and strain rate required for grain refinement vary depending on the forging temperature, material type, initial grain size, etc., but in the case of T1 alloy, the strain amount is approximately 0.1 (height 10 % reduction) or more, preferably about 0.15 to 045, and the strain rate is 10 to 10
It is about sec. The refinement of crystal grains gives the workpiece material a super-grainy property, and the progress of deformation 1 (accompanying this, the crystal grains become finer and the deformation resistance further decreases, but the area of the workpiece increases and the workpiece The total forging load does not necessarily decrease due to an increase in frictional resistance between the clamp and the die.

従来の方法では鍛造後期に至り鍛造荷重が急激金の場合
2 、l目状態を保てないが、当然相変態温度以下で加
工を終了しなければならない。したがって、Ti合金の
場合は最終鍛造温度は800−+000°Cが望ましく
、例えばT1−6%Al−4%■合金の場合は同温度は
850〜950°Cが良い。
In the conventional method, when the forging load suddenly reaches the late stage of forging, it is not possible to maintain the first state, but of course the processing must be completed below the phase transformation temperature. Therefore, in the case of a Ti alloy, the final forging temperature is preferably 800-+000°C, and for example, in the case of a T1-6%Al-4%■ alloy, the same temperature is preferably 850-950°C.

本発明では温度、歪量、歪速度、鍛造荷重等を連続的に
測定し、これらの情報を基に鍛造工程全体にわたって鍛
造荷重を一定値以下の低い値圧抑えるべく温度と歪速度
を制御することにより、一つの鍛造工程により、しかも
小規模な設備で短時間に所望の形状の製品を得ることが
できるのである。
In the present invention, temperature, strain amount, strain rate, forging load, etc. are continuously measured, and based on this information, temperature and strain rate are controlled to keep the forging load below a certain value throughout the forging process. This makes it possible to obtain a product in a desired shape in a short time using a single forging process and using small-scale equipment.

以下、実施例により本発明の具体例と効果を説明する。Hereinafter, specific examples and effects of the present invention will be explained with reference to Examples.

実施例1 平均粒径100μのTl−6%Al−4%V合金粉末を
ステンレス製の容器に充填し、内部を真空にして封;シ
ソ]・とじた。次に200トン油圧プンスのラム間に8
00℃に加pJ(L 、その献度で高さが50mmにな
る−まで5×1Osec・の定歪速度で据込み加工を行
った。なお、潤滑剤には粉末ガラスを用いた。次いで9
00′Gに昇温しながら歪速度を] X l0secに
上げて定歪速度制御により高さ15mmになるまで据込
加工を継続した。この時全鍛造荷重は終始約251t 
oinであり、鍛造開始時と終了時の鍛造面圧(鍛造荷
重を鍛造面積で除した値)はそれぞれI OK9A+4
と2に9/−であった。
Example 1 A stainless steel container was filled with Tl-6%Al-4%V alloy powder having an average particle size of 100μ, and the inside was evacuated and sealed. Next, 8 between the rams of a 200 ton hydraulic pump
Upsetting was carried out at a constant strain rate of 5 × 1 Osec until the height reached 50 mm with the application of pJ (L) to 00°C. Powdered glass was used as the lubricant.
While increasing the temperature to 00'G, the strain rate was increased to 10 sec, and upsetting was continued under constant strain rate control until the height reached 15 mm. At this time, the total forging load was approximately 251 tons from beginning to end.
oin, and the forging surface pressure at the start and end of forging (the value obtained by dividing the forging load by the forging area) is IOK9A+4, respectively.
It was 9/- for 2 and 2.

また全鍛造工程を800°Cの温度、5XIOs8cm
’の歪速度で実施したところ、最終の鍛造荷重は9Q蝋
であった。全鍛造工程を900℃の温度、5×゛↓Os
、e cで実施したところ最終の鍛造荷重は5 Q i
oaであった。
In addition, the entire forging process is carried out at a temperature of 800°C, 5XIOs8cm
When carried out at a strain rate of ', the final forging load was 9Q wax. The entire forging process is carried out at a temperature of 900℃, 5×゛↓Os
, e c, the final forging load was 5 Q i
It was OA.

また900T、の温度、lX1Osecの歪速度で高さ
50τtm iで鍛造し、次に温度を変えずに5×1O
sec  で15mmまで鍛造したところ、最終鍛造荷
重は45 /ln+て減少し、さらに温度を900℃に
上げたところ鍛造荷重はさらに減少した。そこで歪速度
を5×l0=sec−’へ上げたが鍛造荷重はや\上昇
したに止まり最終で201Dnであった。初期と最終時
の鍛造面圧はそれぞれ8に9/−と4 KI7/mrl
であった。
In addition, forging was performed at a temperature of 900 T, a strain rate of l x 1 Osec, and a height of 50 τtmi, and then 5 x 1 O without changing the temperature.
When forged to 15 mm at sec, the final forging load decreased by 45 /ln+, and when the temperature was further raised to 900°C, the forging load decreased further. Therefore, the strain rate was increased to 5 x l0 = sec-', but the forging load only increased slightly and the final value was 201Dn. The initial and final forging surface pressures are 8 to 9/- and 4 KI7/mrl, respectively.
Met.

実施例3 実施例1と同一材質の粉末を缶体に充填し、800℃、
2000気圧、1時間の条件で実施例1と同様の加圧焼
結を行なった。この時組織は平均してTt] 1μ長さ
7μの針状組織となった。次いでこの缶体を除去して作
ったgloo X 20 I−1のビレットかう961
50肉厚が部分的に5〜15mのジェットエンジンコン
ブレノサーディスクの模型を鍛造した。
Example 3 A can body was filled with powder of the same material as in Example 1, and heated to 800°C.
Pressure sintering was performed in the same manner as in Example 1 under the conditions of 2000 atm and 1 hour. At this time, the tissue became a needle-like structure with an average length of Tt]1μ and 7μ. Next, this can body was removed and a billet of Gloo X 20 I-1 was made.
A model of a jet engine combination servo disc with a wall thickness of 5 to 15 m in parts was forged.

鍛造は実施例1と同様に以下の工程で行なった。Forging was performed in the same manner as in Example 1 using the following steps.

このビレットを真空中で金型とビレットを共に加熱する
炉を有する恒温鍛造プレスにセットして状組織が約15
μの等軸微細粒となったため、この材料の変形抵抗は2
 Kg / mTAi低下した。
This billet was placed in a constant temperature forging press equipped with a furnace that heats both the mold and the billet in a vacuum, and the shape of the billet was approximately 15 mm.
The deformation resistance of this material is 2 because it has become equiaxed fine grains of μ.
Kg/mTAi decreased.

一方、このとき断面積の増加は30%、摩擦によ1キ拘
束の増加は10%であったので、全荷重(・1″44%
−とこの時歪速度は変形抵抗4 Kg/ m++!を示
す値まで増大できる。この場合この値は10 sec 
 である ので、この過程中順次歪速度は増大させた。
On the other hand, at this time, the increase in cross-sectional area was 30%, and the increase in 1-kilometer restraint due to friction was 10%, so the total load (・1″44%)
- At this time, the strain rate is deformation resistance 4 Kg/m++! can be increased to a value that indicates . In this case this value is 10 seconds
Therefore, the strain rate was increased sequentially during this process.

更に鍛造が進行すると接触面積は最終的に23倍になり
、拘束係数(ある瞬間における被加工材の形状に依存す
る加工の難度を示す指数)は16倍に増大する。この時
全荷重を一定とするためには許容される変形抵抗は最終
的に1.6Kg/1llIllどなるのければならなく
なる。しかしこのとき10 sec  でも温度が90
0℃であれば変形抵抗は所期の値を示すので900℃に
昇温することで鍛造荷重の増大をもたらすことを回避で
き、略全鍛造行程を50伽という極めて低い一定荷重で
鍛造することができた。
As forging progresses further, the contact area eventually increases by 23 times, and the constraint coefficient (an index indicating the difficulty of machining depending on the shape of the workpiece at a certain moment) increases by 16 times. In order to keep the total load constant at this time, the allowable deformation resistance must ultimately be 1.6 kg/1llIll. However, at this time, even after 10 seconds, the temperature was 90
Since the deformation resistance shows the expected value at 0℃, it is possible to avoid increasing the forging load by raising the temperature to 900℃, and it is possible to forge almost the entire forging process with an extremely low constant load of 50℃. was completed.

Claims (1)

【特許請求の範囲】[Claims] 金属栃料の超塑性を利用して所望の形状を付与する鍛造
法において、金属材料の結晶粒を微細化して超塑性を付
与する工程と、さらに超塑性を維る一方、歪速度の制御
により結晶粒の成長を防止′−:;
In the forging method, which utilizes the superplasticity of a metal material to give it a desired shape, there is a process of refining the crystal grains of the metal material to give it superplasticity, and a process of maintaining the superplasticity while controlling the strain rate. Prevents grain growth′-:;
JP58062273A 1983-04-11 1983-04-11 Superplastic forging method Granted JPS59189025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062273A JPS59189025A (en) 1983-04-11 1983-04-11 Superplastic forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062273A JPS59189025A (en) 1983-04-11 1983-04-11 Superplastic forging method

Publications (2)

Publication Number Publication Date
JPS59189025A true JPS59189025A (en) 1984-10-26
JPH0329494B2 JPH0329494B2 (en) 1991-04-24

Family

ID=13195366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062273A Granted JPS59189025A (en) 1983-04-11 1983-04-11 Superplastic forging method

Country Status (1)

Country Link
JP (1) JPS59189025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207526A (en) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol Method for superplastic forging with controlled working strain rate
JP2018094571A (en) * 2016-12-09 2018-06-21 大同特殊鋼株式会社 Hot forging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155410A (en) * 1974-05-13 1975-12-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155410A (en) * 1974-05-13 1975-12-15

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207526A (en) * 1986-03-06 1987-09-11 Agency Of Ind Science & Technol Method for superplastic forging with controlled working strain rate
JPH0338934B2 (en) * 1986-03-06 1991-06-12 Kogyo Gijutsuin
JP2018094571A (en) * 2016-12-09 2018-06-21 大同特殊鋼株式会社 Hot forging device

Also Published As

Publication number Publication date
JPH0329494B2 (en) 1991-04-24

Similar Documents

Publication Publication Date Title
US4769087A (en) Nickel base superalloy articles and method for making
CA1231632A (en) Forgeability in nickel base superalloys
US4714587A (en) Method for producing very fine microstructures in titanium alloy powder compacts
JP3944271B2 (en) Grain size control in nickel-base superalloys.
CA1229004A (en) Forging process for superalloys
US6712916B2 (en) Metal superplasticity enhancement and forming process
US5584947A (en) Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
JPH08507968A (en) Method for forming metal material in semi-solid state
JP2976073B2 (en) Method for producing thixotropic material
US5529643A (en) Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy
JPH03140447A (en) Forging of microcrystalline titanium powder and method of its manufacture
US5584948A (en) Method for reducing thermally induced porosity in a polycrystalline nickel-base superalloy article
KR100494514B1 (en) Method for manufacturing of magnesium alloy billets for thixoforming process
US3702791A (en) Method of forming superalloys
JPH05117800A (en) Production of oxide-dispersed and reinforced iron base alloy
JPS59189025A (en) Superplastic forging method
Imayev et al. The principles of producing an ultrafine-grained structure in large-section billets
Bhowal et al. Full scale gatorizing of fine grain inconel 718
US5223053A (en) Warm work processing for iron base alloy
JP2878141B2 (en) Manufacturing method of superplastic molded products
CN114472770B (en) GH141 alloy large round bar forging process
JPH02133133A (en) Hot precision die forging method
Turner et al. Press forging of superalloys
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
JPH0381042A (en) Constant-temperature plastic working method for nial -based intermetallic compound