JPS59188983A - Piezoelectric displacement device - Google Patents

Piezoelectric displacement device

Info

Publication number
JPS59188983A
JPS59188983A JP58064351A JP6435183A JPS59188983A JP S59188983 A JPS59188983 A JP S59188983A JP 58064351 A JP58064351 A JP 58064351A JP 6435183 A JP6435183 A JP 6435183A JP S59188983 A JPS59188983 A JP S59188983A
Authority
JP
Japan
Prior art keywords
polarization
displacement
voltage
bimorph
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58064351A
Other languages
Japanese (ja)
Other versions
JPH0322713B2 (en
Inventor
Masashi Takeuchi
正志 竹内
Junichi Kawamura
河村 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58064351A priority Critical patent/JPS59188983A/en
Publication of JPS59188983A publication Critical patent/JPS59188983A/en
Publication of JPH0322713B2 publication Critical patent/JPH0322713B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enable various kind of deformations by reducing the influence by the displacement due to the time delay of polarization or residual polarization by a method wherein a part of a bimorph is provided with the part displacing to the reverse direction to the main body, and the displacement is controlled by forward-reverse driving part. CONSTITUTION:Piezoelectric sheets 2 and 3 adhered on both surfaces of a metallic plate 1 so that the direction (p) of polarization becomes the same direction. The sheets 2 and 3 have the forward directional driving parts 2a and 3a and the reverse directional driving parts 2b and 3b (the direction of polarization is p'). The forward directional driving parts are provided with outside electrodes 4a and 5a, and the outside surface of the reverse directional ones with auxiliary electrodes 4b and 5b. Further, inside electrodes are formed in common to both the driving parts and earthed to the metallic plate 1. The electrode 4a and 5a are connected by means of a lead 7' and then connected to the positive terminal of a power source 9 by means of a lead wire 7. The metallic plate is connected to the movable contact of a variable resistor connected to the power source 9 by means of a lead wire 8, and the electrodes 4b and 5b to the negative terminal of the power source 9. Thus, the influence by the displacement due to the time delay of polarization or residual polarization can be reduced.

Description

【発明の詳細な説明】 本発明は精密な位置の制御に適した圧電体変位装置に関
づるもので、圧電体やその装置の構造に起因するヒステ
リシスの影響を除き、信頼性の高い圧電体変位装置を得
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piezoelectric displacement device suitable for precise position control. A displacement device is obtained.

圧電体は電圧を加えると機械的歪を生じ、また\ 力を加えると電圧を発生する性質があり、機械的エネル
ギーと電気的エネルギーの変′換器として、あるいはセ
ンサーやアクチュエータとして有用なものである。特に
入力または出力が電気信号であるので、信号の処理が容
易であるばかりでなく精密で高速度な制御が可能である
Piezoelectric materials have the property of causing mechanical strain when a voltage is applied to them, and generating voltage when a force is applied to them, making them useful as converters between mechanical and electrical energy, or as sensors and actuators. be. In particular, since the input or output is an electrical signal, it is not only easy to process the signal, but also precise and high-speed control is possible.

しかしながら、圧電体にはヒステリシス現象があり、電
圧を印加したときの歪はそれ以前に加えられていた電圧
の方向や大きさによって異なり、さらには圧電体の分極
の時間的理れのために電圧の印加時間と共に歪が徐々に
変化するため、ある電圧を印加したときに一定の歪が1
qられないという大きな火照があり、一定の歪を長時間
維持したい場合や精密な位置の制御を必要とする場合に
問題がある。
However, piezoelectric materials have a hysteresis phenomenon, and the strain when a voltage is applied varies depending on the direction and magnitude of the previously applied voltage.Furthermore, due to the temporal principle of polarization of piezoelectric materials, Since the strain gradually changes with the application time of
There is a large amount of heat that cannot be adjusted, which is a problem when it is desired to maintain a constant strain for a long time or when precise position control is required.

第1図は従来のバイモルフ型圧電体変位装置の駆動状況
を説明する図である。図において1は金属板、2.3は
チタン酸−ジルコン酸鉛などからなる圧電体シートで、
分極方向pが同一となるように金属板1の両面に接着さ
れている。4.5は圧電体シートの外側表面に設けられ
た銀などよりなる外側電極であり、前記圧電体シートの
金属板1と接する内側表面にも同様の電極が設けられて
いる。6はバイモルフの支持部である。圧電体シート2
.3の外側電極4.5は同電位になる様にリード7′で
接続され、リード線7によって電源9の負極端子に接続
されている。8は金属板1、即ち圧電体シート2,3の
内側電極を電源9の正負極間に接続された可変抵抗の可
動接点に接続づるリード線である。
FIG. 1 is a diagram illustrating a driving situation of a conventional bimorph type piezoelectric displacement device. In the figure, 1 is a metal plate, 2.3 is a piezoelectric sheet made of lead titanate-zirconate, etc.
It is bonded to both sides of the metal plate 1 so that the polarization direction p is the same. 4.5 is an outer electrode made of silver or the like provided on the outer surface of the piezoelectric sheet, and a similar electrode is also provided on the inner surface of the piezoelectric sheet in contact with the metal plate 1. 6 is a bimorph support part. Piezoelectric sheet 2
.. The outer electrodes 4.5 of 3 are connected by a lead 7' so as to have the same potential, and are connected to the negative terminal of a power source 9 by the lead wire 7. A lead wire 8 connects the inner electrodes of the metal plate 1, that is, the piezoelectric sheets 2 and 3, to a movable contact of a variable resistance connected between the positive and negative electrodes of a power source 9.

この図において、圧電体シート2にはブ)極方向と反対
の極性の電圧が加わるので、圧電体の長さ方向に矢印a
で示づごとく伸びが生じる。一方圧電体3には分極方向
と同一方向の電圧が加わるので、圧電体の長さ方向に矢
印して示すごとく収縮が生じる。この結果バイモルフの
先端は図の下方向(正方向)に曲りSだけ変位する。
In this figure, since a voltage with a polarity opposite to the polar direction B) is applied to the piezoelectric sheet 2, an arrow a is applied to the piezoelectric sheet 2 in the longitudinal direction of the piezoelectric material.
Elongation occurs as shown in . On the other hand, since a voltage is applied to the piezoelectric body 3 in the same direction as the polarization direction, contraction occurs in the length direction of the piezoelectric body as shown by the arrow. As a result, the tip of the bimorph bends downward (positive direction) in the figure and is displaced by S.

第5図はバイモルフの変位が電圧や電圧の印加時間によ
っ”C1どのように変化するかを示す特性図である。バ
イモルフの印加電圧をOがらVaに増加づると、バイモ
ルフの変位は曲線0−Aに沿って増大し、A点に到りS
Cだけ変位する。ついで電圧をVaから0まで低下させ
ると、変位は曲MA−3aに沿って減少しsaに到り、
直ちには0点に戻らない。また、印加電圧をVaに長時
間維持した場合、分極の時間的羅れやバイモルフ構造の
ため徐々に変位量が増加して13点に到る。この状態か
ら電圧をVaより0点まで低下させると変位は曲線B−
8bに沿って減少してsbに達し、直ちにはSaや0点
には復帰しない。
Figure 5 is a characteristic diagram showing how the displacement of the bimorph changes depending on the voltage and voltage application time.When the applied voltage of the bimorph is increased from O to Va, the displacement of the bimorph changes as shown by the curve 0. - increases along A, reaches point A, and S
Displaced by C. Then, when the voltage is lowered from Va to 0, the displacement decreases along curve MA-3a and reaches sa,
It will not return to 0 points immediately. Further, when the applied voltage is maintained at Va for a long time, the amount of displacement gradually increases and reaches 13 points due to the temporal irregularity of polarization and the bimorph structure. If the voltage is lowered from Va to 0 point from this state, the displacement will be curve B-
It decreases along 8b and reaches sb, and does not immediately return to Sa or 0 point.

即ち、例えばSaとSCの間の変位を0−Va間の電圧
で制御しようとしても、5a−3b間の変位は制御でき
ず、また変位をSCに維持するのに必要な電圧はVaか
らvbに低下する。したがって時間と共に変位がより大
きく変化するバイモルフの場合、変位Scを維持するの
に必要な電圧は更に低くなり、結局は電圧による変位の
制御が不可能になる。
That is, for example, even if you try to control the displacement between Sa and SC with a voltage between 0 and Va, the displacement between 5a and 3b cannot be controlled, and the voltage required to maintain the displacement at SC is from Va to vb. decreases to Therefore, in the case of a bimorph whose displacement changes more greatly over time, the voltage required to maintain the displacement Sc becomes even lower, and eventually it becomes impossible to control the displacement by voltage.

これは主として次のような圧電体のヒステリシスに起因
するものである。即ち第1図において、圧電体シート2
は電圧印加によって矢印aの如く伸び、分極の時間的遅
れなどのため時間と共に更に伸び続けようとし、また印
加電圧を零としても残余の分極が存在りるため、そのま
ま伸びた状態を維持しようとする。一方圧電体シート3
は電圧印加によって矢印すの如く収縮し、時間と共に収
縮し続けようとし、又電圧を零にしても残余の分極が存
在するため、そのまま収縮した状態を維持しようとする
。このために、このバイモルフでは圧電体シート2.3
は何れも電圧印加時にはバイモルフの変位Sをさらに増
加するように作用し、電圧を零にし−Cも、ある一定の
変位(Saまたはsb>を維持するように作用している
This is mainly due to the following hysteresis of the piezoelectric material. That is, in FIG. 1, the piezoelectric sheet 2
expands as shown by arrow a when voltage is applied, and tends to continue to expand over time due to the time delay in polarization, and even if the applied voltage is zero, there is residual polarization, so it tries to maintain its extended state. do. On the other hand, piezoelectric sheet 3
When a voltage is applied, it contracts as shown by the arrow, and tends to continue contracting over time, and even if the voltage is reduced to zero, residual polarization exists, so it tries to maintain its contracted state. For this reason, in this bimorph, the piezoelectric sheet 2.3
Both act to further increase the displacement S of the bimorph when voltage is applied, and -C also acts to maintain a certain displacement (Sa or sb>) when the voltage is zero.

バイモルフのヒステリシス現象は前述したn−重体のヒ
ステリシスに起因するものの他に圧電体の性能のバラツ
キや、接着状態或いはその不均一性など、バイモルフ構
造に起因するものもある。
The hysteresis phenomenon of the bimorph is not only caused by the hysteresis of the n-heavy body mentioned above, but also caused by the bimorph structure, such as variations in the performance of the piezoelectric material, the bonding state, or its non-uniformity.

本発明は圧電体からなる装置本体の一部に本体の変位方
向と逆方向に変位する部分を設けたことを特徴とするも
ので、圧電体が本体と逆方向に変位するように制御する
ことにより、上述の分極の時間遅れや残余変位など、ヒ
ステリシス現象に起因する問題を除去し、信頼性の高い
圧電体変位装置を得るものである。
The present invention is characterized in that a part of the device main body made of a piezoelectric body is provided with a part that is displaced in a direction opposite to the displacement direction of the main body, and the piezoelectric body is controlled so that it is displaced in the opposite direction to the main body. This eliminates problems caused by hysteresis phenomena such as the above-mentioned polarization time delay and residual displacement, and provides a highly reliable piezoelectric displacement device.

以下本発明の実施例を図面について説明づる。Embodiments of the present invention will be described below with reference to the drawings.

第2図においてバイモルフを構成する2枚の圧電体シー
1〜2.3は分極方向pが同一方向となるように金属板
1の両面に貼(=Iけられている。前記圧電体シートは
それぞれ正方向駆動部2a 、 3aからなる本体と逆
方向駆動部2b 、3bを持ち、正方向駆動部と対応す
る部分の外側表面には外側電極4a、5aが、逆方向駆
動部と対応する部分の外側表面辷は補助電極4b、5b
が設けられてお°す、さらに内側電極は両駆動部に共通
に形成されて金属板1に導電的に接続されている。圧電
体シートの正方向駆動部の外側電極4a、5aはリード
7′で接続され、リード線7によって電源9の負極端子
に接続されている。圧電体シートの内側電極、即ち金属
板1は中央リード線8により電源9の正負極間に接続さ
れた可変抵抗の可動接点に接続されている。さらに逆方
向駆動部の外側電極はリード10’によって共通に接続
された後、リード線10によって電源の正極端子に接続
されている。
In FIG. 2, two piezoelectric sheets 1 to 2.3 constituting a bimorph are pasted on both sides of a metal plate 1 so that the polarization direction p is in the same direction. Each has a main body consisting of forward direction drive parts 2a, 3a and reverse direction drive parts 2b, 3b, and outer electrodes 4a, 5a are on the outer surface of the part corresponding to the forward direction drive part, and the part corresponding to the reverse direction drive part. The outer surface of the auxiliary electrodes 4b and 5b
Furthermore, an inner electrode is formed in common to both drive parts and is electrically conductively connected to the metal plate 1. The outer electrodes 4a and 5a of the positive direction drive section of the piezoelectric sheet are connected by a lead 7', and are connected to the negative terminal of a power source 9 by the lead wire 7. The inner electrode of the piezoelectric sheet, ie, the metal plate 1, is connected to a movable contact of a variable resistance connected between the positive and negative electrodes of a power source 9 through a central lead wire 8. Further, the outer electrodes of the reverse direction drive parts are connected in common by a lead 10' and then connected to a positive terminal of a power source by a lead wire 10.

同図において、圧電体シート2.3の正方向駆動部2a
 、3aは第1図と同様に正方向(図で下方向)に変位
するように作用している。同時に圧電体シートの逆方向
駆動部2bには分極方向p′と同一方向の電圧が印加さ
れ、該部分は長さ方向に矢印b′の如く収縮し、一方圧
電体シート3の逆方向駆動部3bには分極方向に逆方向
の電圧が印加されているので矢印a′の如く長さ方向に
伸びる。従って逆方向駆動部は正方向駆動部とは逆方向
(図では上方向)にバイモルフを変位するように作用し
ている。図のような結線によって中央リードls8が可
変抵抗のWの位置(正極端子側)にあるときは全電圧が
圧電体シートの正方向駆動部2a 、3aに加わりバイ
モルフは正方向に最大量変位する。時間と共に変位が第
5図のA点から8点へ移動しようとするときは中央リー
ドllA3を中点v側へ移動させ、印加電圧を低下させ
るが、この操作と同時に逆方向駆動部2b 、3bに電
圧が印加され、バイモルフを逆方向へ変位させようとJ
る作用が加わる。
In the same figure, the forward direction drive section 2a of the piezoelectric sheet 2.3
, 3a act so as to be displaced in the positive direction (downward in the figure) as in FIG. At the same time, a voltage in the same direction as the polarization direction p' is applied to the reverse direction driving section 2b of the piezoelectric sheet 3, and this section contracts in the length direction as shown by arrow b', while the reverse direction driving section 2b of the piezoelectric sheet 3 contracts. Since a voltage in the opposite direction to the polarization direction is applied to 3b, it extends in the length direction as indicated by arrow a'. Therefore, the reverse direction drive section acts to displace the bimorph in the direction opposite to the forward direction drive section (upward in the figure). By connecting the wires as shown in the figure, when the center lead ls8 is at the position W of the variable resistor (positive terminal side), the entire voltage is applied to the positive drive parts 2a and 3a of the piezoelectric sheet, and the bimorph is displaced by the maximum amount in the positive direction. . When the displacement is about to move from point A to point 8 in Fig. 5 over time, the center lead llA3 is moved to the midpoint v side and the applied voltage is lowered, but at the same time as this operation, the reverse direction drive units 2b, 3b A voltage is applied to J to displace the bimorph in the opposite direction.
The effect of

このように逆方向駆動部にも電圧が印加されて−いる場
合には、長時間電圧を印加したときに・生じる分極の時
間的遅れなどによる、好ましくない変位の時間的変化は
正方向駆動部で正方向(図の下方向)に作用するのに対
し、逆方向駆動部では逆方向(図の−L方向)に作用す
るため、互いに打消し合い、その影響が大幅に軽減され
る。特に0点の近傍でその効果が大きい。
In this way, when a voltage is applied to the reverse direction drive section, undesirable temporal changes in displacement due to the time delay of polarization that occur when voltage is applied for a long time will be caused by the forward direction drive section. In contrast, in the reverse direction drive part, they act in the opposite direction (in the -L direction in the figure), so they cancel each other out, and their effects are greatly reduced. The effect is particularly large near the 0 point.

中央リード15i18がUの位置(負極端子側)では全
ての電圧は逆方向駆動部に印加されるから、逆方向駆動
部の駆動力のみによってバイモルフの先端を0点より図
の上方位置に最大量変位させることができる。即ち正方
向駆動部と逆方向駆動部の駆動ツノを適当に選定するこ
とによって、直流電源でも極性を変更することなく、0
点を中心として正逆両方向に変位させることができる。
When the center lead 15i18 is in the U position (negative terminal side), all voltages are applied to the reverse direction drive section, so the tip of the bimorph is moved from the 0 point to the upper position in the figure by the maximum amount only by the drive force of the reverse direction drive section. It can be displaced. In other words, by appropriately selecting the drive horns of the forward direction drive section and the reverse direction drive section, even a DC power source can be used without changing the polarity.
It can be displaced in both forward and reverse directions around the point.

また従来形バイモルフでは電圧を零にしたとき残余の分
極などの影響で変位が元の位置に戻らず、電圧による変
位の制御が不可能であったが、本発明では強制的に逆方
向駆動力により変位を元の位置に戻すことができる。さ
らにこの場合も電圧が零での残余変位は、正方向駆動部
は正方向に、逆方向駆動部は逆方向に作用するから、こ
れらの影響も互いに打消し合う効果を有している。
In addition, in conventional bimorphs, when the voltage is reduced to zero, the displacement does not return to its original position due to the influence of residual polarization, making it impossible to control displacement by voltage, but with the present invention, a reverse driving force is forcibly applied. The displacement can be returned to its original position. Furthermore, in this case as well, the residual displacement when the voltage is zero acts in the forward direction on the forward direction drive section and in the opposite direction on the reverse direction drive section, so these effects also have the effect of canceling each other out.

第3図は本発明の他実施例を示すもので圧電体シート2
,3からなる本体上に圧電体シート12゜13をそれぞ
れ接着して逆方向駆動部を形成したものである。前記圧
電体シート12.13には夫々銀などよりなる外側型8
i14.15が設けられ、これらはリード線10’ に
より共通に接続されリード線10で電源9の負極端子に
接続されている。
FIG. 3 shows another embodiment of the present invention, in which the piezoelectric sheet 2
, 3, and piezoelectric sheets 12 and 13 are adhered to the main body, respectively, to form a reverse direction drive section. The piezoelectric sheets 12 and 13 each have an outer mold 8 made of silver or the like.
i14, 15 are provided, which are connected in common by a lead wire 10', which is connected to the negative terminal of the power supply 9.

また圧電体2,3の外側電極4,5はF〔電1本シート
12.13の内側電極と導電的に接続されCおり、リー
ド8′で共通に接続され、中火リード線8により電源9
の正負極間に接続された可変抵抗の可動接点に接続され
ている。さらに圧電体シート2.3の内側電極はリード
線7によって電源9の正極端子に接続されている。
In addition, the outer electrodes 4 and 5 of the piezoelectric bodies 2 and 3 are conductively connected to the inner electrodes of the F[electronic sheet 12 and 13], and are commonly connected by a lead 8', and are powered by a medium-heat lead wire 8. 9
It is connected to a movable contact of a variable resistor connected between the positive and negative electrodes of. Furthermore, the inner electrode of the piezoelectric sheet 2.3 is connected to the positive terminal of a power source 9 by a lead wire 7.

この実施例では圧電体シー]・2には分極pど逆方向に
電圧が印加され、矢印aの如く長さ方向に伸びる。一方
圧電体シート3は分極pと同一方向に電圧が印加される
ので、矢印すの如く長さ方向に収縮する。これらはいず
れもバイモルフを正方向に変位するように作用するが、
逆方向駆動部では圧電体シート12に分極p′と同一方
向に電圧が印加されるので、圧電体の長さ方向に矢印b
′の如く収縮し、また圧電体シート13には分極方向と
逆方向に電圧が印加されるので長さ方向に伸び、バイモ
ルフが逆方向に変位するように作用する。
In this embodiment, a voltage is applied to the piezoelectric material 2 in the opposite direction to the polarization p, and extends in the length direction as indicated by the arrow a. On the other hand, since a voltage is applied to the piezoelectric sheet 3 in the same direction as the polarization p, the piezoelectric sheet 3 contracts in the length direction as shown by the arrow. All of these act to displace the bimorph in the positive direction, but
In the reverse direction drive section, a voltage is applied to the piezoelectric sheet 12 in the same direction as the polarization p', so that the arrow b
Since a voltage is applied to the piezoelectric sheet 13 in the direction opposite to the polarization direction, the piezoelectric sheet 13 expands in the length direction and acts to displace the bimorph in the opposite direction.

第4図は2枚の圧電体に直列に電圧を印加し、逆方向駆
動部として一枚の圧電体シートを接着した場合の本発明
の他実施例であって、その機能と効果は上述した実施例
と同様である。
FIG. 4 shows another embodiment of the present invention in which a voltage is applied in series to two piezoelectric sheets and one piezoelectric sheet is glued together as a reverse drive section, and its functions and effects are as described above. This is similar to the example.

号なわら、本発明によれば一種類の直流電源でその極性
を変えることなく、0点に関し正逆両方向に制御でき、
従って0点からの変位量が少くてきる。
However, according to the present invention, it is possible to control the zero point in both forward and reverse directions with one type of DC power source without changing its polarity.
Therefore, the amount of displacement from the zero point becomes smaller.

従来のバイモルフ、制御方法では正逆両方向に変位させ
るためには、極性が異なる電源を用いるか、一定のバイ
アス電圧を印加する方法によるが、前者による場合は二
種類の電源が必要な上にヒステリシスが大きくなる欠点
があった。
Conventional bimorph control methods use power supplies with different polarities or apply a constant bias voltage to displace the bimorph in both forward and reverse directions, but the former requires two types of power supplies and has hysteresis. The disadvantage was that it became larger.

バイモルフは1819によっても変位し、昇温時と降温
時では変位の方向は一般に逆である。ある対象物に対し
、バイモルフの位置を一定に維持する場合、従来形バイ
モルフの制御方法ではバイモルフに一定のバイアス電圧
を印加して一定の変位を与えておき、この変位を基準に
とることによって温度による変位を補償する必要があっ
tCoこのような場合、本発明による方法にくらべ、バ
イアス電圧に相当する電圧だけバイモルフは変位した状
態にあって、このような状態では変位の温度による影響
が大きく、また分極の時間遅れによる影響も大きくなる
。さらに大きく変位した状態を基準とするため、クリー
プ現象によってバイモルフの変位の不可逆性が生じるこ
とがあったが、本発明によれば変位が零の0点を基準に
とることができるので、上述の欠点は除去できる。
The bimorph is also displaced by 1819, and the direction of displacement is generally opposite when the temperature is raised and when the temperature is lowered. When maintaining a constant position of a bimorph with respect to a certain object, the conventional bimorph control method applies a constant bias voltage to the bimorph to give it a constant displacement, and then uses this displacement as a reference to adjust the temperature. It is necessary to compensate for the displacement caused by tCo.In such a case, compared to the method according to the present invention, the bimorph is in a state of being displaced by a voltage corresponding to the bias voltage, and in such a state, the influence of the temperature on the displacement is large. In addition, the influence of the time delay in polarization becomes large. Since the reference is set to a state with even greater displacement, the irreversibility of the bimorph's displacement may occur due to the creep phenomenon. However, according to the present invention, the displacement can be set based on the 0 point where the displacement is zero, so the above-mentioned Defects can be removed.

さらにバイモルフの正方向駆動部と逆方向駆動部は分極
遅れによる変位の変化や残余の歪などによる一方向性を
打消し合う効果がある。
Furthermore, the forward drive section and reverse drive section of the bimorph have the effect of canceling out unidirectionality caused by changes in displacement due to polarization delay and residual distortion.

以上説明した如く本発明は圧電体に正方向駆動部と逆方
向駆動部を設け、その両者の力の大小関係により変位を
制御するようにした圧電体変位装置であり、分極の時間
的遅れや残余分極による変位の影響を少なくしたもので
あって、種々の変形が可能である。例えば上述した実施
例では逆方向駆動部をバイモルフの先端部に設けている
が、その他の部分、例えば中央部等に設けてもよく、又
第3図、第4図の実施例で示した如き形態をとる場合に
は、逆方向駆動部を正方向駆動部の外面全体に設けても
よい。
As explained above, the present invention is a piezoelectric body displacement device in which a piezoelectric body is provided with a forward direction drive section and a reverse direction drive section, and displacement is controlled by the magnitude relationship between the two forces, and the time delay of polarization and This reduces the influence of displacement due to residual polarity, and various modifications are possible. For example, in the embodiment described above, the reverse direction driving section is provided at the tip of the bimorph, but it may be provided at other parts, such as the center, or as shown in the embodiments of FIGS. 3 and 4. In this case, the reverse drive may be provided on the entire outer surface of the forward drive.

さらに第2図の実施例では圧電体シート2に対向する櫛
形電極を、また圧電体シー)−3にも同じく櫛形電極を
設けて、圧電体シート2.3間の2対の電極で正方向、
逆方向駆動部を形成し正逆両方向に駆動させることもで
きる。また逆方向駆動部の圧電体シートの厚さを薄くし
て印加電圧による変位の大きさを調整することも可能で
ある。また環状や積層体などの圧電体を用いた微小変位
制御装置などに適用することもできる。
Furthermore, in the embodiment shown in FIG. 2, a comb-shaped electrode facing the piezoelectric sheet 2 is provided, and a comb-shaped electrode is also provided on the piezoelectric sheet 2-3, so that the two pairs of electrodes between the piezoelectric sheets 2 and 3 are connected in the positive direction. ,
It is also possible to form a reverse direction drive section and drive in both forward and reverse directions. It is also possible to adjust the magnitude of displacement due to applied voltage by reducing the thickness of the piezoelectric sheet of the reverse drive section. It can also be applied to minute displacement control devices using piezoelectric bodies such as annular or laminated bodies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来のバイモルフの駆動状況を示
す概略図、第3図は本発明バイモルフ型圧電体変位装置
の駆動状況を示す概略図、第4図は従来のバイモルフの
変位のヒステリシスを示す特性図である。 1・・・・・・金属板 2.3・・・・・・圧電体2a
 、3a・・・・・・正方向駆動部2b 、3b・・・
・・・逆方向駆動部5・・・・・・電源  6・・・・
・・支持部372 傳 4 囚 オ 5 因 念 電  圧 手続ネ11正書(自発) 昭和58年 7月 5日 特許庁長官 殿 1、事イ′1の表示 昭和58年 特 許 願 第64351号2、発明の名
称 圧電体変位装置 3、補正をする者 代表者  那 須 信 雄 6、補正の内容 1)明1書第1頁5行目〜同7行目の特fj’f請求の
範囲の欄を次の通り訂正する。 「バイモルフの一部に本体と逆方向に変位する部分を設
け、正・逆駆動部により変位を制御づるようにしたこと
を特徴とする圧電体変位装置。」2)明細書用2頁12
行目、同第5頁20行目の1分極方向」を「分極の方向
」と訂正する。 3〉明細書節2頁20行目、同第6頁11行目、同第8
頁6行目、同第9頁8行目、の「負極」を「正極」と訂
正する。 4〉明細書筒3頁4行目の「分極方向」をr分極電圧の
方向(以下分極方向と記す)jと訂正する。 5)朗細書第5頁11行目〜同14行目を次の通り訂正
する。 r本発明はバイモルフ本体の一部に本体の変位方向と逆
方向に変位する部分を設けたことを特徴とするもので、
上述の分極の」 6)明Ill書第6頁3行目の「3!)を持ち、」を1
3b (分極の方向はp))を持ち、」と訂正する。 7〉明m書第6頁16行目、同第7頁9行目、同第9頁
15行目の「正極」を「負極」と訂正する。 8)明細書筒7頁1行目、同第10頁2行目の「分極方
向p」を「分極方向」と訂正する。 9)明細書筒9頁15行目、同18行目の1分極p」を
「分極方向よと訂正する。 10)明細書第11頁20行目の「圧電体」を「バイモ
ルフ」と訂正する。 11)添付図面の第1図乃至第4図を別紙の通り訂正す
る。 7、添付書類の目録 訂正図面く第1図乃至第4図〉    1通以上 才 4 菌 8   乙 」−続ネ11正P才(方式) 特許庁長官 殿 1、事件の表示 昭和58年 特許願 第64351号 2、発明の名称 圧電体変位装置 3、補正をづる者 事件との関係    特許出願人 住 所  京都市南区吉祥院西ノ庄猪之馬楊町1番地名
称 (428>日本電池株式会社 代表者  那 須 信 AJl 4、代理人 住 所 〒601  京都市南区吉祥院西)庄猪之馬揚
町1番地7、補正の内容 明細書第13真5行目の1性図である。」を次の通り訂
正゛する。 r作図、第5図はバイモルフの印加電圧と変位の関係を
示づ特性図である。j 以上
1 and 2 are schematic diagrams showing the driving situation of a conventional bimorph, FIG. 3 is a schematic diagram showing the driving situation of the bimorph type piezoelectric displacement device of the present invention, and FIG. 4 is a schematic diagram showing the hysteresis of displacement of the conventional bimorph. FIG. 1...Metal plate 2.3...Piezoelectric body 2a
, 3a... Positive direction drive section 2b, 3b...
... Reverse direction drive section 5 ... Power supply 6 ...
...Supporting part 372 Den 4 Prisoner 5 Iconic voltage Voltage procedure Ne 11 official book (spontaneous) July 5, 1980 Commissioner of the Japan Patent Office Sir 1, Indication of matter A'1 1988 Patent application No. 64351 2. Name of the invention Piezoelectric displacement device 3. Representative Nobuo Nasu 6. Contents of the amendment 1) Scope of claims fj'f of Mei 1, page 1, lines 5 to 7 Correct the column as follows. "A piezoelectric displacement device characterized in that a part of the bimorph is provided with a part that displaces in the opposite direction to the main body, and the displacement is controlled by forward and reverse drive parts." 2) Specification page 2, 12
1st polarization direction" on page 5, line 20, is corrected to "direction of polarization."3> Specification Section, page 2, line 20, page 6, line 11, section 8
Correct "negative pole" in line 6 of the page and line 8 of page 9 to "positive pole". 4>"Polarizationdirection" on page 3, line 4 of the specification tube is corrected to r direction of polarization voltage (hereinafter referred to as polarization direction) j. 5) Correct lines 11 to 14 of page 5 of the Rōseisho as follows. rThe present invention is characterized in that a part of the bimorph body is provided with a part that is displaced in a direction opposite to the displacement direction of the body,
6) "3!)" on page 6, line 3 of the above-mentioned polarization, and "1"
3b (direction of polarization is p)),'' is corrected. 7> Correct "positive electrode" to "negative electrode" on page 6, line 16 of the Meiji M, line 9, page 7, and line 15 of page 9. 8) "Polarization direction p" on page 7, line 1 of the specification tube and page 10, line 2 of the specification tube is corrected to "polarization direction." 9) "1st polarization p" on page 9, line 15 and line 18 of the specification tube is corrected to "polarization direction." 10) "Piezoelectric material" on page 11, line 20 of the specification is corrected as "bimorph." do. 11) Figures 1 to 4 of the attached drawings are corrected as shown in the attached sheet. 7. Corrected catalog of attached documents, Figures 1 to 4> 1 or more copies 4 Bacteria 8 B" - continuation 11 ShoP (method) Commissioner of the Japan Patent Office 1. Indication of the case 1988 Patent application No. 64351 No. 2, Name of the invention Piezoelectric displacement device 3, Relationship to the amendment filer case Patent applicant address 1, Inomayo-cho, Kisshoin Nishinoshōin, Minami-ku, Kyoto Name (428> Nippon Battery Co., Ltd.) Representative: Nobu Nasu, AJl 4, Agent address: 1-7, Shonomaage-cho, Kisshoin-nishi, Minami-ku, Kyoto City, 601 Japan.This is the 1st sex diagram in line 5 of the 13th line of the detailed statement of contents of the amendment. ” is corrected as follows. FIG. 5 is a characteristic diagram showing the relationship between applied voltage and displacement of the bimorph. j or more

Claims (1)

【特許請求の範囲】[Claims] 本体の一部に該本体と逆方向に変位する部分を設け、正
・逆駆動部により変位を制御するようにしたことを特徴
とする圧電体変位装置。
A piezoelectric body displacement device characterized in that a part of a main body is provided with a part that is displaced in a direction opposite to the main body, and the displacement is controlled by a forward/reverse drive section.
JP58064351A 1983-04-11 1983-04-11 Piezoelectric displacement device Granted JPS59188983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064351A JPS59188983A (en) 1983-04-11 1983-04-11 Piezoelectric displacement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064351A JPS59188983A (en) 1983-04-11 1983-04-11 Piezoelectric displacement device

Publications (2)

Publication Number Publication Date
JPS59188983A true JPS59188983A (en) 1984-10-26
JPH0322713B2 JPH0322713B2 (en) 1991-03-27

Family

ID=13255733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064351A Granted JPS59188983A (en) 1983-04-11 1983-04-11 Piezoelectric displacement device

Country Status (1)

Country Link
JP (1) JPS59188983A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760528A (en) * 1980-09-30 1982-04-12 Sony Corp Head supporting in recorder and reproducer
JPS595019U (en) * 1982-06-30 1984-01-13 ソニー株式会社 Head support device in recording/playback equipment
JPS5910127U (en) * 1982-07-09 1984-01-23 ソニー株式会社 Head support device in recording/playback equipment
JPS59124180A (en) * 1982-12-29 1984-07-18 Nec Home Electronics Ltd Control system of piezoelectric vibrator for actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910127B2 (en) * 1974-02-18 1984-03-07 古河電気工業株式会社 Submarine installation method for long bodies
JPS595019B2 (en) * 1979-12-15 1984-02-02 力 広瀬 Centrifugal separator for special article separation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760528A (en) * 1980-09-30 1982-04-12 Sony Corp Head supporting in recorder and reproducer
JPS595019U (en) * 1982-06-30 1984-01-13 ソニー株式会社 Head support device in recording/playback equipment
JPS5910127U (en) * 1982-07-09 1984-01-23 ソニー株式会社 Head support device in recording/playback equipment
JPS59124180A (en) * 1982-12-29 1984-07-18 Nec Home Electronics Ltd Control system of piezoelectric vibrator for actuator

Also Published As

Publication number Publication date
JPH0322713B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
TW444418B (en) Piezoelectric transducer and electrophoretic ink display apparatus using piezoelectric transducer
CN110071658B (en) Piezoelectric transducer
USRE20213E (en) Piezoelectric device
US4419598A (en) Piezoelectrically controlled piezoresistor
CA2069708A1 (en) Probe-driving mechanism, production thereof, and apparatus and piezoelectric actuator employing the same
JPH06216422A (en) Flexible laminated piezoelectric element
JPH0320910B2 (en)
JPS59188983A (en) Piezoelectric displacement device
EP0550552A1 (en) Composite multilayer ceramic structure
JPS6372171A (en) Manufacture of electrostrictive driver
JP2645832B2 (en) Vertical effect type monomorph element and driving method thereof
JPS61150287A (en) Piezoelectric displacement device
JPS6372172A (en) Sheet-like electrostrictive laminated body
JPS6125228B2 (en)
JP3326735B2 (en) Piezo actuator
Wang et al. Characteristics of shear mode piezoelectric actuators
JPH0519994B2 (en)
JPS5919384A (en) Piezoelectric bimorph
JPH06112547A (en) Flexural displacement actuator
JPS61285424A (en) Optical beam deflector
JP3807780B2 (en) Linear drive method for piezoelectric ceramic actuator and linear drive circuit using the same
JP2921310B2 (en) Multilayer piezoelectric actuator
JP3493541B2 (en) Actuator using electromechanical transducer
JP2002058096A (en) Voice generating body
JPH0526780Y2 (en)