JPS59188780A - Four quadrant analog signal multiplication circuit - Google Patents

Four quadrant analog signal multiplication circuit

Info

Publication number
JPS59188780A
JPS59188780A JP6319783A JP6319783A JPS59188780A JP S59188780 A JPS59188780 A JP S59188780A JP 6319783 A JP6319783 A JP 6319783A JP 6319783 A JP6319783 A JP 6319783A JP S59188780 A JPS59188780 A JP S59188780A
Authority
JP
Japan
Prior art keywords
conversion circuit
mo8t
circuit
drain
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6319783A
Other languages
Japanese (ja)
Other versions
JPH0450633B2 (en
Inventor
Tadayoshi Enomoto
榎本 忠儀
Masaaki Yasumoto
安本 雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6319783A priority Critical patent/JPS59188780A/en
Publication of JPS59188780A publication Critical patent/JPS59188780A/en
Publication of JPH0450633B2 publication Critical patent/JPH0450633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/16Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To decrease harmonic distortion and to widen dynamic range by providing the 1st and 2nd D type MOSFETs, the 1st and 2nd current/voltage (I/V) converting circuit and a subtraction circuit. CONSTITUTION:An analog signal vg changed around a grounding level is impressed to a gate of an MOST70 from a terminal 3 and an analog signal vd changed around the grounding level is impressed to a drain of MOSTs 70 and 80 from a terminal 1 respectively. When the vd is positive, a current IP flowing to the MOST70 and a current IN flowing to the MOST80 are given respectively by IP=B(vg-VT-vd/2).vd and IN=B(-VT-vd/2).vd independently of the polarity of the vg, and when the vd is negative, the currents are given as IP=B(- vg-vd-VT+vd/2).(-vd) and IN=B(-vd-VT+vd/2).(-vd). Since the IP flows via a resistive element 32, the current is converted into a voltage by the I/V converting circuit 30 and outputted 35 as a voltage signal proportional to the IP. Similarly, the IN is outputted 45 as a signal proportional to the IN.

Description

【発明の詳細な説明】 本発明は2個のアナログ電気信号を互いに乗算する集積
化4象限アナログ信号乗算回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated four-quadrant analog signal multiplier circuit for multiplying two analog electrical signals together.

アナログ乗算回路は、遅延線、減算回路あるいは加算回
路と同様に、アナログシグナルプロセッサなどのアナロ
グ集積回路を構成する重要な基本回路である。アナログ
集積回路は、デジタル集積回路と比べ、回路規模や消費
電力が極めて小さい、演算処理速度が極めて速いといっ
た特長があや、高速・広帯域、小形の集積回路を実現す
る上で極めて有利である。ところがアナログ集積回路は
アナログ方式特有の高調波歪を発生するために、集積回
路の特性を劣化させる欠点がある。
Analog multiplication circuits, like delay lines, subtraction circuits, or addition circuits, are important basic circuits constituting analog integrated circuits such as analog signal processors. Compared to digital integrated circuits, analog integrated circuits have features such as extremely small circuit scale, extremely small power consumption, and extremely high processing speed, and are extremely advantageous in realizing high-speed, wide-bandwidth, and small-sized integrated circuits. However, analog integrated circuits have the disadvantage of deteriorating the characteristics of the integrated circuit because they generate harmonic distortion that is unique to analog systems.

本発明の目的は従来の乗算回路に比べ、回路規模をさら
に小形化したことを特徴とする4象限アナログ信号乗算
回路を提供することにある。本発明の他の目的はアナロ
グ方式の欠点である高調波歪を極めて改善できる乗算回
路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a four-quadrant analog signal multiplication circuit characterized by a smaller circuit scale than conventional multiplication circuits. Another object of the present invention is to provide a multiplication circuit that can significantly improve harmonic distortion, which is a drawback of analog systems.

本発明によれば、該第1のMO8T、電気的特性が該第
1のHO8Tと等しいかあるいは極めて近い第2のMO
8’ll”、少なくとも演算増幅器を含み、該第1のH
O8Tに流れるドレイン電流を電圧に変換する第1の工
/■変換回路、該第1のI/V変換回路と同一構成で、
かつ第2のMO8Tに流れるドレイン電流を電圧に変換
する第2のI/V変換回路、該第1のI/V変換回路の
出力信号と該第2のI/V変換回路の出力信号との差を
得る減算回路を備え、該第1の八10sTのドレイン(
またはソース)と該第2のMO8Tのドレイン(まだは
ソース)が第1の端子に、該第1のI/V変換回路の非
反転入力と該第2のI/V変換回路の非反転入力が第2
の端子に、該第1のMO8Tのソース(またはドレイン
)が第1のI/V変換回路の反転入力に、該第2のMO
8’l’のソース(またはドレイン)が第2のI/V変
換回路の反転入力に、該第1のI/V変換回路の出力が
該減算回路の一方の入力に、該第2の工/V変換回路の
出力が該減算回路の他方の入力に、それぞれ接続され、
該第1のMO8’l’と該第2のMO8Tがデプリーシ
ョン形である4象限アナログ乗算回路を提供することを
目的とする。本発明の他の目的は該第1のMO8’l’
、電気的特性が該第1のMO8Tと等しいかあるいは極
めて近い第2のMO8T、少なくとも演算増幅器を含み
、該第1のMO8Tに流れるドレイン電流を電圧に変換
する第1のI/V変換回路、該第1のI/V変換回路と
同一構成で、かつ第2のMO8Tに流れるドレイン電流
を電圧に変換する第2のI/V変換回路、該第1のI/
V変換回路の出力信号と該第2のI/V変換回路の出力
信号との差を得る減算回路を備え、該第1のMO8’l
l’のドレイン(またはソース)と該第2のHO8Tの
ドレイン(またはソース)が第1の端子に、該第1のI
/V変換回路の非反転入力と該第2のI/V変換回路の
非反転入力が第2の端子に、該第1のMO8’l’のソ
ース(またはドレイン)が第1の工/V変換回路の反転
入力に、該第2のMO8Tのソース(またはドレイン)
が第2のI/V変換回路の反転入力に、該第1の工/V
変換回路の出力が該減算回路の一方の入力に、該第2の
I/’V変換回路の出力が該減算回路の他方の入力に、
それぞれ接続され、該第1のMO8’l’と該第2のH
O8Tがデプリーション形である4象限アナログ信号乗
算回路において、第1のHO8Tのゲートへ第1のアナ
ログ入力信号vgを、該第1の端子へ第2のアナログ入
力信号vdを、それぞれ供給し、第2のMO8Tのゲー
トと該第2の端子をそれぞれ接地する入力方式を提供す
る。さらに本発明によれば、該第1のMO8T、″電気
的特性が該第1のMO8Tと等しいかあるいは極めて近
い第2のHO8T、少なくとも演算増幅器を含み、該第
1のNo S Tに流れるドレイン電流を電圧に変換す
る第1のI/V変換回路、該第1の工/V変換回路と同
一構成で、かつ第2のMO8Tに流れるドレイン電流を
電圧に変換する第2のIA’変換回路、該第1のI/V
変換回路の出力信号と該第2のI/V変換回路の出力信
号との差を得る減算回路を備え、該第1のMO8’[’
のドレイン(ま1、 たけソース)と該第2のMO8Tのドレイン(またはソ
ース)が第1の端子に、該第1のI/V変換回路の非反
転入力と該第2のI/V変換回路の非反転入力が第2の
端子に、該第1のMO8Tのソース(!たはドレイン)
が第1のI/V変換回路の反転入力に、該第2のMO8
Tのソース(またはドレイン)が第2のI/V変換回路
の反転入力に、該第1のI/V変換回路の出力が該減算
回路の一方の入力に、該第2のI/V変換回路の出力が
該減算回路の他方の入力に、それぞれ接続され、該第1
のMO8Tと該第2のMO8Tがデプリーション形であ
る4象限アナログ信号乗算回路において該第1のMO8
’l”のゲートおよび第2のMO8Tのゲートへそれぞ
れ第1のアナログ入力信号vgおよびvgと相補の信号
−vgを供給し、該第1の端子へ第2のアナログ入力信
号vdを供給し、該第2の端子を接地する入力方式を提
供する。さらに本発明は該第1のHO8T、電気的特性
が該第1のMO8Tと等しいかあるいは極めて近い第2
のMO8T、少なくとも演算増幅器を含み、該第1のM
O8Tに流れるドレイン電流を電圧に変換する第]のI
/V変換回路、該第1のI/V変換回路と同一構成で、
かつ第2のMO8Tに流れるドレイン電流を電圧に変換
する第2のI/V変換回路、該第1のI/V変換回路の
出力信号と該第2のI/V変換回路の出力信号との差を
得る減算回路を備え、該第1のMO8Tのドレイン(ま
たはソース)と該第2のMO8Tのドレイン(またはソ
ース)が第1の端子に、該第1のI/V変換回路の非反
転入力と該第2のI/V変換回路の非反転入力が第2の
端子に、該第1のMO8Tのソース(またはドレイン)
が第1の工/V変換回路の反転入力に、該第2のΔ10
sTのソース(またはドレイン)が第2のI/V変換回
路の反転入力に、該第1のI/V変換回路の出力が該減
算回路の一方の入力に、該第2のI/V変換回路の出力
が該減算回路の他方の入力に、それぞれ接続され、該第
1のMO8Tと該第2のMO8’[’がデプリーション
形である4象限アナログ信号乗算回路において、該第1
のHO8Tのゲートへ第1のアナログ入力信号vgを、
該第1の端子および該第2の端子へそれぞれ第2のアナ
ログ入力信号vdおよびvdと相補の信号−vclを供
給し、該第2のMO8Tのゲートを接地する入力方式を
提供する。
According to the present invention, the first MO8T and the second MO8T have electrical characteristics that are equal to or very similar to the first MO8T.
8'll'', including at least an operational amplifier, the first H
A first I/V conversion circuit that converts the drain current flowing through the O8T into voltage, having the same configuration as the first I/V conversion circuit,
and a second I/V conversion circuit that converts the drain current flowing through the second MO8T into a voltage, and an output signal between the output signal of the first I/V conversion circuit and the output signal of the second I/V conversion circuit. The drain of the first 810sT (
or source) and the drain (still source) of the second MO8T are connected to the first terminal, and the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit is the second
The source (or drain) of the first MO8T is connected to the inverting input of the first I/V conversion circuit, and the source (or drain) of the first MO8T is connected to the terminal of the second MO8T.
The source (or drain) of 8'l' is the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is one input of the subtraction circuit, and the second /V conversion circuit outputs are respectively connected to the other input of the subtraction circuit,
It is an object of the present invention to provide a four-quadrant analog multiplication circuit in which the first MO8'l' and the second MO8T are depletion type. Another object of the present invention is that the first MO8'l'
, a second MO8T whose electrical characteristics are equal to or very similar to the first MO8T; a first I/V conversion circuit that includes at least an operational amplifier and converts a drain current flowing through the first MO8T into a voltage; a second I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MO8T into a voltage;
a subtraction circuit for obtaining a difference between the output signal of the V conversion circuit and the output signal of the second I/V conversion circuit;
The drain (or source) of l' and the drain (or source) of the second HO8T are connected to the first terminal, and the drain (or source) of the second HO8T is connected to the first terminal.
The non-inverting input of the /V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to the second terminal, and the source (or drain) of the first MO8'l' is connected to the first terminal /V. The source (or drain) of the second MO8T is connected to the inverting input of the conversion circuit.
is connected to the inverting input of the second I/V conversion circuit, and the first input/V
The output of the conversion circuit is connected to one input of the subtraction circuit, and the output of the second I/'V conversion circuit is connected to the other input of the subtraction circuit.
The first MO8'l' and the second H
In a four-quadrant analog signal multiplication circuit in which the O8T is a depletion type, a first analog input signal vg is supplied to the gate of the first HO8T, a second analog input signal vd is supplied to the first terminal, and An input method is provided in which the gate of the second MO8T and the second terminal are respectively grounded. Further, according to the invention, the first MO8T, a second HO8T whose electrical characteristics are equal to or very similar to the first MO8T, includes at least an operational amplifier, and has a drain flowing into the first NO ST. a first I/V conversion circuit that converts current into voltage; a second IA' conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MO8T into voltage; , the first I/V
a subtraction circuit that obtains a difference between the output signal of the conversion circuit and the output signal of the second I/V conversion circuit, and the first MO8'['
The drain (or source) of the second MO8T is connected to the first terminal, and the non-inverting input of the first I/V conversion circuit and the second I/V conversion circuit are connected to each other. The non-inverting input of the circuit is connected to the second terminal, the source (! or drain) of the first MO8T.
is the inverting input of the first I/V conversion circuit, and the second MO8
The source (or drain) of T is the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is one input of the subtraction circuit, and the second I/V conversion The outputs of the circuits are respectively connected to the other input of the subtraction circuit;
In a four-quadrant analog signal multiplier circuit in which the first MO8T and the second MO8T are depletion type, the first MO8T
supplying a first analog input signal vg and a signal -vg complementary to vg to the gate of 'l' and the gate of the second MO8T, respectively; supplying a second analog input signal vd to the first terminal; The present invention provides an input method for grounding the second terminal.Furthermore, the present invention provides an input method for grounding the second terminal.
of the first M08T, including at least an operational amplifier;
The second I converts the drain current flowing through O8T into voltage.
/V conversion circuit, having the same configuration as the first I/V conversion circuit,
and a second I/V conversion circuit that converts the drain current flowing through the second MO8T into a voltage, and an output signal between the output signal of the first I/V conversion circuit and the output signal of the second I/V conversion circuit. a subtraction circuit for obtaining a difference, the drain (or source) of the first MO8T and the drain (or source) of the second MO8T are connected to a first terminal, and a non-inverting circuit of the first I/V conversion circuit is provided. The input and the non-inverting input of the second I/V conversion circuit are connected to the second terminal, and the source (or drain) of the first MO8T
is applied to the inverting input of the first power/V conversion circuit, and the second Δ10
The source (or drain) of sT is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second I/V conversion In a four-quadrant analog signal multiplication circuit, the outputs of the circuits are respectively connected to the other inputs of the subtraction circuit, and the first MO8T and the second MO8'[' are depletion type;
the first analog input signal vg to the gate of HO8T,
An input method is provided in which a second analog input signal vd and a signal -vcl complementary to vd are supplied to the first terminal and the second terminal, respectively, and the gate of the second MO8T is grounded.

さらに本発明によれば該第1のHOS T 、電気的特
性が該第1のMO8Tと等しいかあるいは極めて近い第
2のMO8T、少なくとも演算増幅器を含み、該第1の
?1i:O8Tに流れるドレイン電流を電圧に変換する
第1のI/V変換回路、該第1のI/V変換回路と同一
構成で、かつ第2のMO8Tに流れるドレイン電流を電
圧に変換する第2のI/V変換回路、該第1のI/V変
換回路の出力信号と該第2のI/V変換回路の出力信号
との差を得る減算回路を備え、該第1のMO8Tのドレ
イン(またはソース)と該第2のMO8Tのドレイン(
またはソース)が第1の端子に、該第1のI/V変換回
路の非反転入力と該第2のI/V変換回路の非反転入力
が第2の端子に、該第1のHO8Tのソース(またはド
レイン)が第1のI/V変換回路の反転入力に、該第2
のMO8Tのソース(またはドレイン)が第2のI/V
変換回路の反転入力に、該第1のI/V変換回路の出力
が該減算回路の一方の入力に、該第2のI/V変換回路
の出力が該減算回路の他方の入力に、それぞれ接続され
、該第1のMO8’l’と該第2のMO8’I’がデプ
リーション形である4象限アナログ信号乗算回路におい
て、該第1のMO8Tのゲートおよび該第2のMO8T
のゲートへそれぞれ第1のアナログ入力信号ygおよび
vgと相補の信号−vgを供給し、該第1の端子および
該第2の端子へそれぞれ第2のアナログ信号vdおよび
vdと相補の信号−ydを供給する入力方式が得られる
Further, according to the present invention, the first HOST includes a second MO8T whose electrical characteristics are equal to or very similar to those of the first MO8T, and includes at least an operational amplifier; 1i: A first I/V conversion circuit that converts the drain current flowing through the O8T into a voltage, and a first I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MO8T into a voltage. a second I/V conversion circuit, a subtraction circuit that obtains the difference between the output signal of the first I/V conversion circuit and the output signal of the second I/V conversion circuit, and the drain of the first MO8T. (or source) and the drain (or source) of the second MO8T (
or source) to the first terminal, the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit to the second terminal, and the non-inverting input of the first I/V conversion circuit to the second terminal. The source (or drain) is connected to the inverting input of the first I/V conversion circuit, and the second
The source (or drain) of MO8T is connected to the second I/V
The output of the first I/V conversion circuit is connected to an inverting input of the conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the output of the second I/V conversion circuit is connected to the other input of the subtraction circuit. in a four-quadrant analog signal multiplier circuit in which the first MO8'l' and the second MO8'I' are depletion type, the gate of the first MO8T and the second MO8T
A signal -vg complementary to the first analog input signals yg and vg is supplied to the gates of the gates, respectively, and a signal -yd complementary to the second analog input signals vd and vd is supplied to the first terminal and the second terminal, respectively. An input method that supplies

以下図面を用いて詳細に説明する。第1図に一例として
従来の4象限アナログ信号乗算回路(以後乗算回路と呼
ぶ)の構成を示す。
This will be explained in detail below using the drawings. FIG. 1 shows, as an example, the configuration of a conventional four-quadrant analog signal multiplication circuit (hereinafter referred to as a multiplication circuit).

101aJ:1のMO8S造のエンハンスメント形電界
効果トランジスタ(以後筒1のMO8’ll’と呼ぶ)
101aJ:1 MO8S enhancement type field effect transistor (hereinafter referred to as tube 1 MO8'll')
.

20は第1のMO8TIOと電気的特性が全く等しいか
、極めて近い第2のMO8Tである。30および40は
それぞれ第1のHO8TIOおよび第2のMO8T20
を流れるドレイン電流IPおよび第2のMO8T20を
流れるドレイン電流INを電圧に変換するために設けら
れた第1の電流/電圧変換回路(以後I/V変換回路と
呼ぶ)および第2のI/V変換回路である。ここでは−
例として演算増幅器31(41)と抵抗素子32(42
)より構成される第1(第2)のI/V変換回路30(
40)が示されている。50は第1のI/V変換回路3
0の出力信号と第2のI/V変換回路40の出力信号の
差を得るだめに設けた減算回路である。ここでは−例と
して演算増幅器51、抵抗素子52,53,54,55
より構成されている減算回路が示されている。300は
乗算すべき第1のアナログ信号vgの信号源、301は
該vgに直流電圧VG盆重畳させるために設けた第1の
レベルシフタ、即ち、接地レベルを中心に振動する該v
g17)レベルヲ該V Gのレベルへ移ス* メ(7)
l/ ヘルシフト用の回路である。同様に100は乗算
すべき第2のアナログ信号vdの信号源、101は該v
dに直流電圧VDを重畳させるために設けられた第2の
レベルシフタである。102および302はそれぞれ電
圧値VDおよびVGの直流電圧源である。従って、端子
1へはVD+vdが、端子2へはVDが、端子3へはV
G+vgが、端子4へはVGがそれぞれ印加される。な
おこれらの電圧値は該第1および第2のMO8Tが3極
管領域で動作する範囲内とする。以下では該第1および
第2のエンハンスメント形MO8Tがnチャネルのデノ
ぐイスであり、該VDとVGが正の直流電圧と仮定して
説明する。なお該vgおよびvd  は正および負のい
ずれの符号でもかまわない。今vdが正の時、第1のM
O8’J’IOに流れるドレイン電流IPおよび第2の
HO8T20に流れるドレイン電流INはそれぞれ IP=B(VG+vg−VD−vd/2−VT) ・v
d  (1)IN=B (VG=VD−v d/ 2−
VT ) ・v d     (2)で与えられる。こ
こでBおよびVT、はそれぞれ両MO8Tの個有な特性
定数および閾値電圧である。
20 is a second MO8T whose electrical characteristics are exactly the same as or very similar to those of the first MO8TIO. 30 and 40 are the first HO8TIO and the second MO8T20, respectively
A first current/voltage conversion circuit (hereinafter referred to as an I/V conversion circuit) and a second I/V provided to convert the drain current IP flowing through the MO8T20 and the drain current IN flowing through the second MO8T20 into voltages. It is a conversion circuit. Here -
As an example, the operational amplifier 31 (41) and the resistor element 32 (42
) The first (second) I/V conversion circuit 30 (
40) is shown. 50 is the first I/V conversion circuit 3
This is a subtraction circuit provided to obtain the difference between the output signal of 0 and the output signal of the second I/V conversion circuit 40. Here - as an example, an operational amplifier 51, resistive elements 52, 53, 54, 55
A subtractor circuit is shown that is constructed from the following. 300 is a signal source of the first analog signal vg to be multiplied; 301 is a first level shifter provided to superimpose the DC voltage VG on the vg;
g17) Move the level to the level of the corresponding V G * Me (7)
This is a circuit for l/hell shift. Similarly, 100 is the signal source of the second analog signal vd to be multiplied, and 101 is the signal source of the second analog signal vd to be multiplied.
This is a second level shifter provided to superimpose DC voltage VD on voltage VD. 102 and 302 are DC voltage sources with voltage values VD and VG, respectively. Therefore, VD+vd is applied to terminal 1, VD is applied to terminal 2, and VD is applied to terminal 3.
G+vg and VG are applied to terminal 4, respectively. Note that these voltage values are within a range in which the first and second MO8Ts operate in the triode region. The following description will be made assuming that the first and second enhancement type MO8T are n-channel denoisseurs, and that VD and VG are positive DC voltages. Note that vg and vd may have either positive or negative signs. Now when vd is positive, the first M
The drain current IP flowing in O8'J'IO and the drain current IN flowing in second HO8T20 are respectively IP=B(VG+vg-VD-vd/2-VT) ・v
d (1) IN=B (VG=VD-v d/2-
VT ) ·v d (2). Here B and VT are the characteristic constants and threshold voltages of both MO8Ts, respectively.

なおりdが正の場合、IPおよびINはそれぞれ矢印1
1および21の方向に流れる。一方、vdが負の時IP
およびINは矢印11および21と反対の方向に流れ、
それぞれ IP=B(VG+vg−VD−vd+vd/2−VT)
 ・(−vd)                  
(3)IN=El(VG−VD−vd+vd/2−VT
) ・(−vd)(4)で与えられる。IPおよびIN
はそれぞれ該抵抗素子32および42に流れ、それぞれ
端子33と35および43と45の間に電圧降下を発生
する。
If Naori d is positive, IP and IN are each arrow 1
1 and 21. On the other hand, when vd is negative, IP
and IN flow in the direction opposite to arrows 11 and 21;
Each IP=B(VG+vg-VD-vd+vd/2-VT)
・(-vd)
(3) IN=El(VG-VD-vd+vd/2-VT
) ・(-vd) (4) is given. IP and IN
flows through the resistive elements 32 and 42, respectively, producing voltage drops between terminals 33 and 35 and 43 and 45, respectively.

従って、第1のI/V変換回路30の出力端子35に現
われる電圧は端子34から印加された直流電圧VDよシ
抵抗素子32に生ずる電圧降下(IPに比例する)分を
差し引いた値となる。同様に端子45に現われる電圧は
端子44から印加された直流電圧VDから抵抗素子42
に生ずる電圧降下(INに比例する)分を差し引いた値
となる。従って、端子35および45の信号電圧即ち端
子56゜57の信号電圧を該減算回路50によシ減算す
れば、第1のアナログ信号vgと第2のアナログ信号v
dの積に比例した結果が端子58よシ得られる。比例定
数は前記B、VTおよび抵抗素子32゜42.52,5
3,54.55の抵抗値で与えられる。
Therefore, the voltage appearing at the output terminal 35 of the first I/V conversion circuit 30 is the DC voltage VD applied from the terminal 34 minus the voltage drop (proportional to IP) occurring across the resistance element 32. . Similarly, the voltage appearing at the terminal 45 is derived from the DC voltage VD applied from the terminal 44 to the resistance element 42.
This is the value obtained by subtracting the voltage drop (proportional to IN) that occurs in . Therefore, if the signal voltages at terminals 35 and 45, that is, the signal voltages at terminals 56 and 57, are subtracted by the subtraction circuit 50, the first analog signal vg and the second analog signal v
A result proportional to the product of d is obtained at terminal 58. The proportionality constant is the above B, VT and resistance element 32°42.52,5
It is given by a resistance value of 3,54.55.

以上従来の乗算回路の動作を詳細に述べた。従来の乗算
回路の欠点は、レベルシフタ301や直流電源302が
必ず必要なため、回路規模や構成が複雑となることであ
る。これは第1および第2のMO8TI 0.20がエ
ンハンスメント形であるため、これらのMO8Tがター
ンオンするためにはゲートとソース間にバイアス電圧が
必ず必要であることに起因する。さらに、VTが正であ
るから、与えられたゲート電圧内でMO8Tが3極管領
域で動作する条件を満足するドレイン電圧の範囲が限ら
れた狭い範囲になってしまう。従って、大きなダイナミ
ックレンジが得られないという欠点がある0 本発明の目的は以上述べた従来の乗算回路の欠点を除去
し、回路基膜を小形化し、かつ高調波歪を極めて減少さ
せダイナミックレンジの広い4象限アナログ信号乗稗回
路を提供するものである。
The operation of the conventional multiplication circuit has been described above in detail. A drawback of the conventional multiplication circuit is that the level shifter 301 and the DC power supply 302 are always required, which makes the circuit scale and configuration complicated. This is because the first and second MO8TI 0.20 are of the enhancement type, and therefore a bias voltage is necessarily required between the gate and source in order for these MO8Ts to turn on. Furthermore, since VT is positive, the range of drain voltage that satisfies the conditions for MO8T to operate in the triode region within a given gate voltage is limited and narrow. Therefore, there is a drawback that a large dynamic range cannot be obtained.The object of the present invention is to eliminate the drawbacks of the conventional multiplier circuit described above, to miniaturize the circuit board, and to greatly reduce harmonic distortion, thereby increasing the dynamic range. This provides a wide four-quadrant analog signal multiplication circuit.

第2図は本発明の4象限アナログ信号乗算回路の具体的
な回路構成の一例である。70はデプリーション形の第
1のMos’r 、 80は第1のMO8Tと電気的特
性が全く等しいか、あるいは極めて近い第2のMO8T
である。30は第1のI/V変換(またはソース)が接
続された第1の端子、2は第2の端子である。33(4
3)および34 (44)はそれぞれ第1(第2)のi
/V変換回路の反転入力および非反転入力である。58
は乗算結果を得る出力端子である。なお第2図において
、第1図の構成要素と同一の機能を有する構成要素は同
一番号を用いて示されている。以下では該MO8Tがn
チャネルデバイスであると仮定して説明する。
FIG. 2 is an example of a specific circuit configuration of a four-quadrant analog signal multiplication circuit according to the present invention. 70 is a depletion type first Mos'r, 80 is a second MO8T whose electrical characteristics are exactly the same as or very similar to those of the first MO8T.
It is. 30 is a first terminal connected to the first I/V conversion (or source), and 2 is a second terminal. 33 (4
3) and 34 (44) are the first (second) i
These are the inverting input and non-inverting input of the /V conversion circuit. 58
is the output terminal that obtains the multiplication result. In FIG. 2, components having the same functions as those in FIG. 1 are indicated using the same numbers. In the following, the MO8T is n
The following explanation assumes that it is a channel device.

合端子3よりMO8T70のゲートに接地レベルを中心
として変化する第1のアナログ信号vgが印加され、第
1の端子1よシMO8T70およびMO8T80のドレ
イン(またはソース)へ接地レベルを中心として変化す
る第2のアナログ信号vdが印加されているとする。ま
た第2のMO8T80のゲートは端子4を接地すること
により零Vとなっている。さらに第1のMO8T70と
第2のMO8T80の他方のソース(またはドレイン)
は第2の端子2を接地することによυ、それぞれ第1の
I/V変換回路および第2のI/V変換回路を介して零
■に設定されている。なおりdおよびvgの極性は正、
負いずれの符号をも取ることができる。今これらの値を
該MO8T70.80が3極領域で動作する範囲内に設
定しておく。今vdが正の時、vgの極性に無関係に第
1のMO8Tに流れる電流IPおよび第2のMO8T8
0に流れるドレイン電流INはそれぞれ IP=B(vg−VT−vd/2) −vd     
 (5)IN=B(−VT−vd/2)・vd    
   (6)で与えられ、それぞれ矢印11および12
の方向に流れる。一方vdが負の場合、vgの極性にか
かわらず、IPおよびINは IP=B(vg−vd−VT十vd/2)・(−vd)
(7)IN=B(−yd−VT+vd/2)・(−vd
)   (8)で与えられる。この場合IPおよびIN
は矢印11および12と反対の方向に流れる。該IPは
抵抗素子32を介して流れるから、第1のI/V変換回
路30によシミ圧に変換され、IPに比例した電圧番号
として端子35に出力される。同様に該INも、INに
比例した電圧信号として端子45に出力される。これら
の電圧信号は減算回路50により互いに差し引かれる結
果、第1のアナログ信号vgと第2のアナログ信号vd
の積に比例する電圧信号が端子58に出力される。この
場合も比例定数はB、抵抗素子32,42,52,53
゜54.55の抵抗値で与えられる。以上の結果から明
きらかなように本発明の乗算回路は従来の乗算回路が必
要とした入力信号のレベルシフタや直流電源を必要とし
ないから回路構成が非常に簡単になる上、消費電力も小
さい。また閾値電圧VTが負であるから、与えられた第
1のアナログ信号vgの範囲内および3極管領域での動
作という条件のもとで、第2のアナログ信号vdの領域
を広くとれる。この結果ダイナミックレンジが拡大する
特徴を有する。なお以上述べたアナログ信1v g 。
A first analog signal vg that changes around the ground level is applied from the coupling terminal 3 to the gate of the MO8T70, and a first analog signal vg that changes around the ground level is applied from the first terminal 1 to the drains (or sources) of the MO8T70 and MO8T80. It is assumed that the analog signal vd of 2 is applied. Further, the gate of the second MO8T80 is set to zero V by grounding the terminal 4. Furthermore, the other source (or drain) of the first MO8T70 and the second MO8T80
By grounding the second terminal 2, υ is set to zero through the first I/V conversion circuit and the second I/V conversion circuit, respectively. The polarity of naori d and vg is positive,
It can take either negative sign. These values are now set within a range in which the MO8T70.80 operates in the three-pole region. Now when vd is positive, the current IP flowing through the first MO8T and the second MO8T8 regardless of the polarity of vg.
The drain current IN flowing to 0 is IP=B(vg-VT-vd/2)-vd
(5) IN=B(-VT-vd/2)・vd
(6), given by arrows 11 and 12, respectively.
flows in the direction of On the other hand, if vd is negative, regardless of the polarity of vg, IP and IN are IP = B (vg - vd - VT + vd/2) · (-vd)
(7) IN=B(-yd-VT+vd/2)・(-vd
) is given by (8). In this case IP and IN
flows in the direction opposite to arrows 11 and 12. Since the IP flows through the resistance element 32, it is converted into a stain pressure by the first I/V conversion circuit 30, and outputted to the terminal 35 as a voltage number proportional to the IP. Similarly, IN is also output to the terminal 45 as a voltage signal proportional to IN. These voltage signals are subtracted from each other by a subtraction circuit 50, resulting in a first analog signal vg and a second analog signal vd.
A voltage signal proportional to the product of is output to terminal 58. In this case as well, the proportionality constant is B, and the resistance elements 32, 42, 52, 53
It is given by a resistance value of 54.55°. As is clear from the above results, the multiplication circuit of the present invention does not require an input signal level shifter or a DC power supply, which are required by conventional multiplication circuits, so the circuit configuration is extremely simple and the power consumption is low. Further, since the threshold voltage VT is negative, the range of the second analog signal vd can be widened under the conditions of operating within the range of the given first analog signal vg and in the triode region. As a result, the dynamic range is expanded. Furthermore, the analog signal 1v g mentioned above.

vdの入力方式を以下では第1の入力方式と呼ぶ。The input method of vd is hereinafter referred to as the first input method.

次に他の入力方式、即ち、第2の入力方法を説明する。Next, another input method, that is, a second input method will be explained.

本方式も前記の第1の入力方式と同様に端子3へは第1
のアナログ信号vgを、端子1へは第2のアナログ信号
vdをそれぞれ印加し、端子2は接地する。ところが端
子4を接地する第1の入力方式と異なり、本方式では端
子4へは第1のアナログ信号vgの相補信号、即ち、−
vgを印加する。なおここでは詳細な説明は省くが、こ
の結果、端子58より得られる出力電圧はvgとvdの
積に比例する出力が得られる。但し、その値は第1の入
力方式の2倍となる。さらに本第2の人力方式によれば
、乗算結果に含まれるvgの第2高調波成分、をほとん
ど除去することが可能である。これは今まで一定である
と仮屋してきたが、実は入力信号vgの非線形関数であ
る特性定数Bの影響を、第1のMO8T70と第2のI
〜(O8T80のゲートにそれぞれ相補信号およoi’
 −y gを印加することによシ、互いにキャンセルさ
せることが可能となるからである。
In this method, as well as the above-mentioned first input method, the first
A second analog signal vg is applied to terminal 1, and a second analog signal vd is applied to terminal 1, and terminal 2 is grounded. However, unlike the first input method in which the terminal 4 is grounded, in this method, a complementary signal of the first analog signal vg, that is, −
Apply vg. Although a detailed explanation will be omitted here, as a result, the output voltage obtained from the terminal 58 is proportional to the product of vg and vd. However, the value is twice that of the first input method. Furthermore, according to the second manual method, it is possible to almost eliminate the second harmonic component of vg included in the multiplication result. Until now, we have assumed that this is constant, but in reality, the influence of the characteristic constant B, which is a nonlinear function of the input signal vg, is
~(Complementary signals and oi' to the gates of O8T80, respectively)
This is because by applying -yg, it becomes possible to cancel each other out.

次にその他の入力方式、即ち、第3の入力方式を説明す
る。本方式も前記の第1の入力方式と同様に、端子3に
第1のアナログ信号vgを、第1の端子1に第2のアナ
ログ信号vdを印加し、端子4は接地する。但し、第2
の端子2を接地する第1の入力方式と異なL本第3の方
式では該第2の端子2へは第2のアナログ信号vdの相
補信号、即ち、−vdを印加するものである。なおここ
では動作方式の詳細な説明は省略するが、この場合もv
gとvdの乗算結果に比例したアナログ信号が端子58
よシ得られることは明らかである。
Next, another input method, ie, a third input method, will be explained. Similarly to the first input method, this method also applies the first analog signal vg to the terminal 3, the second analog signal vd to the first terminal 1, and the terminal 4 is grounded. However, the second
In the third input method, which is different from the first input method in which the terminal 2 of the terminal 2 is grounded, a complementary signal of the second analog signal vd, that is, -vd is applied to the second terminal 2. Although a detailed explanation of the operation method is omitted here, in this case also v
An analog signal proportional to the multiplication result of g and vd is sent to terminal 58.
The benefits are obvious.

この場合も乗算結果の大きさは第1の方式のそれに比べ
2倍となっている。本方式も第1の人力方式と比べ、高
調波成分を極めて減少させることに特長がある。即ち、
前記第1の入力方式ではvdが正の場合、該第1および
第2のMO8Tのバックゲート効果は最大でかつ一定で
あるから、VTの絶対値は小さく、与えられた条件のも
とで、3極管領域の動作を満足するvgおよびvdの範
囲は小さい。一方vdが負の場合、該バックゲート効果
は小さく、従って、VTの絶対値は大きいので、与えら
れた条件のもとで3極管領域の動作を満足するvgおよ
びvdの範囲は拡大する。ところが第3の入力方式の場
合、vdの極性にかかわらず該バックゲート効果は小さ
いため、VTの絶対値も犬きくなシ、3極管領域の動作
を満足するvgおよびvdの範囲を広くとることができ
る。このため本第3の人力方式は乗算結果に含まれる高
調波成分を極めて制限することができる。
In this case as well, the size of the multiplication result is twice that of the first method. This method also has the advantage of significantly reducing harmonic components compared to the first manual method. That is,
In the first input method, when vd is positive, the back gate effect of the first and second MO8Ts is maximum and constant, so the absolute value of VT is small, and under the given conditions, The range of vg and vd that satisfies operation in the triode region is small. On the other hand, when vd is negative, the backgate effect is small and therefore the absolute value of VT is large, so the range of vg and vd that satisfies the operation of the triode region under given conditions is expanded. However, in the case of the third input method, the back gate effect is small regardless of the polarity of vd, so the absolute value of VT is also small, and the range of vg and vd that satisfies the operation of the triode region is widened. be able to. Therefore, the third manual method can extremely limit the harmonic components included in the multiplication result.

次に他の人力方式、即ち、第4の入力方式を説明する。Next, another manual input method, ie, a fourth input method, will be explained.

本方式では第1のアナログ信号vgとその相補信号−v
gをそれぞれ端子3および端子4へ印加し、第2のアナ
ログ信号vdとその相補信号−vdをそれぞれ第1の端
子1および第2の端子2へ印加する。これらの信号を第
1のMO8T70および第2のMO8T80が3極管領
域で動作する範囲に設定すれば、”gとvdの積に比例
する出力信号が端子58よシ得られる。ただしこの場合
出力信号の値は第1の人力方式のそれの4倍、第2ある
いは第3の入力方式のそれの2倍である。
In this method, the first analog signal vg and its complementary signal -v
g is applied to terminals 3 and 4, respectively, and a second analog signal vd and its complementary signal -vd are applied to first terminal 1 and second terminal 2, respectively. If these signals are set in a range where the first MO8T70 and the second MO8T80 operate in the triode region, an output signal proportional to the product of g and vd can be obtained from the terminal 58. However, in this case, the output The value of the signal is four times that of the first manual input method and twice that of the second or third input method.

本方式の入力方式を用いれば、これまでの説明から明ら
かなように歪成分が極めて少ない、グイナミックレンジ
の極めて大きい4象限のアナログ信号乗算が達成される
If this input method is used, it is possible to achieve four-quadrant analog signal multiplication with extremely small distortion components and an extremely large dynamic range, as is clear from the above description.

第3図は本発明の4象限アナログ信号乗算回路の具体的
な回路構成の他の例である。70.80は、第2図の7
0.80と同様、電気的特性が互いに全く等しいかある
いは該電気的特性が互いに極めて近いデプリーション形
のMO8Tである。1゜2.3.4は入力信号を印加す
る端子で、それぞれ第2図の端子1,2,3.4に対応
する。130は第1のI/V変換回路で、本質的には演
算増幅器131.コンデンサ132.アナログスイッチ
133よす構成される積分回路である。140は成され
る積分回路でちる。150はコンデンサ151、アナロ
グスイッチ152,153,154゜155、演算増幅
器156.コンデンサ157゜アナログスイッチ158
よシ構成される減算回路である。134,144,13
5,145,159゜160.161はそれぞれ端子で
ある。本回路においても前記第1.第2.第3.第4の
人力方式を用いることによシ、端子161よ92個のア
ナログ信号vg、!:vdの積に比例した出力信号が得
られ、4象限のアナ四グ信号乗算が達成される。
FIG. 3 shows another example of the specific circuit configuration of the four-quadrant analog signal multiplier circuit of the present invention. 70.80 is 7 in Figure 2
Like 0.80, these are depletion type MO8Ts whose electrical characteristics are exactly the same or very close to each other. 1.2.3.4 are terminals to which input signals are applied, and correspond to terminals 1, 2, and 3.4 in FIG. 2, respectively. 130 is a first I/V conversion circuit, which is essentially an operational amplifier 131. Capacitor 132. This is an integrating circuit composed of an analog switch 133. 140 is an integral circuit formed. 150 is a capacitor 151, analog switches 152, 153, 154° 155, and an operational amplifier 156. Capacitor 157° Analog switch 158
This is a subtraction circuit that is constructed as follows. 134, 144, 13
5, 145, 159°, 160, and 161 are terminals, respectively. In this circuit as well, the above-mentioned first. Second. Third. By using the fourth manual method, 92 analog signals vg, ! : An output signal proportional to the product of vd is obtained, and four-quadrant analog signal multiplication is achieved.

以下に前記第1の入力方式を用いて本回路の動作を簡単
に説明する。端子3に第1のアナログ信号vgを、第1
の端子1に第2のアナログ信号vdを印加し、第2の端
子2.端子4を接地すると、第1のMO8T70.第2
のMO8T 80にそれぞれドレイン電流IP(第(5
)式、第(7)式)、ドレイン電流IN(第(6)式、
第(8)式)が流れる。該電流IP。
The operation of this circuit will be briefly explained below using the first input method. The first analog signal vg is connected to the terminal 3.
A second analog signal vd is applied to the terminal 1 of the second terminal 2. When terminal 4 is grounded, the first MO8T70. Second
drain current IP (5th
), Equation (7)), drain current IN (Equation (6),
Equation (8)) flows. The current IP.

INは、アナログスイッチ133,143が開いている
期間、それぞれコンデンサ132,142に積分される
。従って、各I/V変換回路130゜140の出力端子
に該IP、INに比例した電圧信号が現われる。次に減
算回路150のアナログスイッチ152,153が閉じ
、次に開くと、端子135,145の電圧信号の差に比
例した信号、即ち、該vgとvdの積に比例した信号が
電荷の形でコンデンサ151に蓄積される。なお該スイ
、チ152.153が閉じている期間アナログスイッチ
158も同時に閉じ、コンデンサ157に蓄積されてい
た前期間の信号電荷は該アナログスイッチ158を介し
て放電する。次にアナログスイッチ154,155が閉
じ、次に開くと、コンデンサ151に蓄積された信号電
荷はコンデンサ157へ移送され、vgとvdの積に比
例した出力信号が端子161から得ることができる。
IN is integrated into capacitors 132 and 142 while analog switches 133 and 143 are open, respectively. Therefore, a voltage signal proportional to IP and IN appears at the output terminal of each I/V conversion circuit 130 and 140. Next, when the analog switches 152 and 153 of the subtraction circuit 150 are closed and then opened, a signal proportional to the difference between the voltage signals at the terminals 135 and 145, that is, a signal proportional to the product of vg and vd is generated in the form of an electric charge. Accumulated in capacitor 151. Note that while the switches 152 and 153 are closed, the analog switch 158 is also closed at the same time, and the signal charge accumulated in the capacitor 157 in the previous period is discharged via the analog switch 158. When analog switches 154 and 155 are then closed and then opened, the signal charge stored in capacitor 151 is transferred to capacitor 157, and an output signal proportional to the product of vg and vd can be obtained from terminal 161.

以上本発明の4象限アナログ乗算回路の構成と入力方式
を説明した。上記では第1のI/V変換回路、第2のI
/V変換回路、減算回路がそれぞれ演算増幅器と抵抗素
子で構成される回路あるいは演算増幅器、コンデンサお
よびアナログスイッチで構成される回路を例に用いて説
明したが、各回路がそれぞれ所望の機能を発揮すれば、
上記回路構成に限定されることはない。
The configuration and input method of the four-quadrant analog multiplier circuit of the present invention have been described above. In the above, the first I/V conversion circuit, the second I/V conversion circuit
/V conversion circuit and subtraction circuit are each composed of an operational amplifier and a resistor element, or a circuit composed of an operational amplifier, a capacitor, and an analog switch. if,
The circuit configuration is not limited to the above circuit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の4象限アナログ信号乗算回路の構成図、
第2図は本発明の4象限アナログ信号乗算回路の具体的
な構成図、第3図は本発明の4象限アナログ信号乗算回
路の他の具体的な構成図である。 第1図において10.20はエンノーンスメント形のM
O8T、30.40は電流/電圧変換回路、50は減算
回路、100,300はアナログ信号源、101,30
1はレベルシフタ、102,302は直流電圧源である
。 第2図において70.80はデプリーション形のMO8
T130.40は電流/電圧変換回路、50は減算回路
である。 第3図において、70.80はデプリーション形のMO
8T、130,140は積分回路を用いた電流/電圧変
換回路、150は減算回路である。 第1図、第2図において、31,41.51は演算増幅
器、32,42,52,53,54.55は抵抗素子で
おる。第3図において、131.141゜156は演算
増幅器、132,142,151゜157はコンデンサ
、133,143,152,153゜154.155,
158はアナログスイッチである。 532
Figure 1 is a configuration diagram of a conventional four-quadrant analog signal multiplication circuit.
FIG. 2 is a specific configuration diagram of the four-quadrant analog signal multiplication circuit of the present invention, and FIG. 3 is another specific configuration diagram of the four-quadrant analog signal multiplication circuit of the present invention. In Figure 1, 10.20 is M of the ennouncment type.
O8T, 30.40 is a current/voltage conversion circuit, 50 is a subtraction circuit, 100, 300 is an analog signal source, 101, 30
1 is a level shifter, and 102 and 302 are DC voltage sources. In Figure 2, 70.80 is the depletion type MO8
T130.40 is a current/voltage conversion circuit, and 50 is a subtraction circuit. In Figure 3, 70.80 is a depletion type MO
8T, 130, and 140 are current/voltage conversion circuits using integration circuits, and 150 is a subtraction circuit. In FIGS. 1 and 2, 31, 41.51 are operational amplifiers, and 32, 42, 52, 53, 54.55 are resistance elements. In Fig. 3, 131.141°156 is an operational amplifier, 132,142,151°157 is a capacitor, 133,143,152,153°154.155,
158 is an analog switch. 532

Claims (1)

【特許請求の範囲】 工、第1のMO8形電界効果トランジスタ(以後MO8
Tと呼ぶ)、電気的特性が該第1のMO8’L”と等し
いかあるいは極めて近い第2のHO8T、少なくとも演
算増幅器を含み、該第1のMO8’I’に流れるドレイ
ン電流を電圧に変換する第1の電流/電圧変換回路(以
後I/V変換回路と呼ぶ)と、該第1のI/V変換回路
と同一構成でかつ第2のMO8’l’に流れるドレイン
電流を電圧に変換する第2のI/V変換回路と、該第1
のI/V変換回路の出力信号と該第2のI/V変換回路
の出力信号との差を得る減算回路とを備え、該第1のM
O8’l’のドレイン(またはソース)と該第2のMO
8’I’のトンイン(またはソース)が第1の端子に接
続され、該第1のI/V変換回路や非反転入力と該第2
のI/V変換回路の非反転入力が第2の端子に接続され
、該第1のMO8Tのソース(またはドレイン)が第1
のI/V変換回路の反転入力に接続され、該第2のMO
8Tのソース(またはドレイン)が第2のI/V変換回
路の反転入力に接続され、該第1のI/V変換回路の出
力が該減算回路の一方の入力に接続され、該第2のI/
V変換回路の出力が該減算回路の他方の入力に接続され
る4象限アナログ信号乗算回路において、該第1のMO
8Tと該第2のMO8Tがデプリーション形であること
を特徴とする4象限アナログ信号乗算回路。 λ 第1のΔ(O8T、電気的特性が該第1のMO8’
[’と等しいかあるいは極めて近い第2のMO8T、少
なくとも演算増幅器を含み、該第1のMO8Tに流れる
ドレイン電流を電圧に変換する第1の工/V変換回路、
該第1のI/V変換回路と同一構成で、かつ第゛2のM
O8’[’に流れるドレイン電流を電圧に変換する第2
のI/V変換回路、該第1のI/V変換回路の出力信号
と該第2のI/?変換回路の出力信号との差を得る減算
回路を備え、該第1のMO8Tのドレイン(またはソー
ス)と該第2のMO8Tのドレイン(またはソース)が
第1の端子に接続され、該第」のI/V変換回路の非反
転入力と該第2のI/V変換回路の非反転入力が第2の
端子に接続され、該第1のMO8Tのソース(まだはド
レイン)が第1のI/V変換回路の反転入力に接続され
、該第2のMO8’I”のソース(またはドレイン)が
第2のI/V変換回路の反転入力に接続され、該第1の
I/V変換回路の出力が該減算回路の一方の入力に接続
され、該第2のI/V変換回路の出力が該減算回路の他
方の入力に接続され、該第1のMO8Tと該第2のMO
8Tがデプリーション形である4象限アナログ信号乗算
回路において、第1のMO8Tのゲートへ第1のアナロ
グ入力信号vgを供給し、該第1の端子へ第2のアナロ
グ入力信号vdを供給し、第2のMO8Tのゲートと該
第2の端子をそれぞれ接地することを特徴とする4象限
アナログ信号乗算回路。 3、第1のMO8T、電気的特性が該第1のMO8’l
l”と等しいかあるいは極めて近い第2のMO8T、少
なくとも演算増幅器を含み、該第1のMO8Tに流れる
ドレイン電流を電圧に変換する第1のI/V変換回路、
該第1のI/V変換回路と同一構成で、かつ第2のMO
8’[’に流れるドレイン電流を電圧に変換する第2の
I/V変換回路、該第1のI/V変換回路の出力信号と
該第2のI/V変換回路の出力信号との差を得る減算回
路を備え、該第1のMO8Tのドレイン(またはソース
)と該第2のMO8’I”のドレイン(またはソース)
が第1の端子に接続され、該第1のI/V変換回路の非
反転入力と該第2のI/V変換回路の非反転入力が第2
の端子に接続され、該第1のMO8Tのソース(または
ドレイン)が第1のI/V変換回路の反転入力に接続さ
れ、該第2のMO8Tのソース(またはドレイン)が第
2のI/V変換回路の反転入力に接続され、該第1のI
/V変換回路の出力が該減算回路の一方の入力に接続さ
れ、該第2のI/V変換回路の出力が該減算回路の他方
の入力に接続され、該第1のMO8Tと該第2のMO8
’l’がデプリーション形である4象限アナログ信号乗
算回路において、該第1のMO8’I’のゲートおよび
第2のMO8Tのゲートへそれぞれ第1のアナログ入力
信号vg+ vgと相補の信号−vgを供給し、該第1
の端子へ第2のτナログ入力信号vdを供給し、該第2
の端子を接地することを特徴とする4象限アナログ信号
乗算回路。 4、第1のHO8T、電気的特性が該第1のMO8’l
’と等しいかあるいは極めて近い第2のMO8T、少な
くとも演算増幅器を含み、該第1のMO8Tに流れるド
レイン電流を電圧に変換する第1のI/V変換回路、該
第1のI/V変換回路と同一構成で、かつ第2のMO8
Tに流れるドレイン電流を電圧に変換する$2のI/V
変換回路、該第1のI/V変換回路の出力信号と該第2
のI/V変換回路の出力信号との差を得る減算回路を備
え、該第1のMO8Tのドレイン(またはソース)と該
第2のHO8Tのドレイン(またはソース)が第1の端
子に接続され、該第1のI/V変換回路の非反転入力と
該第2のI/V変換回路の非反転入力が第2の端子に接
続され、該第1のMO8’[’のソース(!たはドレイ
ン)が第1のI/V変換回路の反転入力に接続され、該
第2のMO8Tのソース(またはドレイン)が第2のI
/V変換回路の反転入力に接続され、該第1のI/V変
換回路の出力が該減算回路の一方の入力に接続され、該
第2のI/V変換回路の出力が該減算回路の他方の入力
に接続され、該第1のMO8Tと該第2のMO8’l”
がデプリーション形である4象限アナログ信号乗算回路
においソ、該第1のMO8’I’のゲートへ第1のアナ
ログ入力信号vgを供給し、該第1の端子および該第2
の端子へそれぞれ第2のアナログ入力信号vdおよびv
dと相補の信号−vdを供給し、該第2のMO8Tのゲ
ートを接地することを特徴とする4象限アナログ信号乗
算回路。 5、第1のMO8T、電気的特性が該第1のMO8’I
’と等しいかあるいは極めて近い第2のMO8’ll’
、少なくとも演算増幅器を含み、該第1のMO8Tに流
れるドレイン電流を電圧に変換する第1の工/V変換回
路、該第10I/V変換回路と同一構成で、かつ第2の
MO8Tに流れるドレイン電流を電圧に変換すA筑2の
工/V変換回路、該第1のI/V変換回路の出力信号と
該第2のI/V変換回路の出力信号との差を得る減算回
路を備え、該第1のMO8’I’のドレイン(またはソ
ース)と該第2のMO8Tのドレイン(またはソース)
が第1の端子に接続され、該第1のI/V変換回路の非
反転入力と該第2のI/V変換回路の非反転入力が第2
の端子に接続され、該第1のMO8Tのソース(または
ドレイン)が第1のI/V変換回路の反転入力に接続さ
れ、該第2のΔfO8Tのソース(またはドレイン)が
第2のI/V変換回路の反転入力に接続され、該第1の
I/V変換回路の出力が該減算回路の一方の入力に接続
され、該第2のI/V変換回路の出力が該減算回路の他
方の入力に接続され、該第1のMO8Tと該第2のMO
8Tがデプリーション形である4象限アナログ信号乗算
回路において、該第1のMO8Tのゲートおよび該第2
のMO8Tのゲートへそれぞれ第1のアナログ入力信号
vg+vgと相補の信号−vgを供給し、該第1の端子
および該第2の端子へそれぞれ第2のアナログ信号vd
、vdと相補の信号−vdを供給するととを特徴とする
4象限アナログ信号乗算回路。
[Claims] First MO8 field effect transistor (hereinafter referred to as MO8)
a second HO8T whose electrical characteristics are equal to or very similar to those of the first MO8'L'', which includes at least an operational amplifier and converts the drain current flowing through the first MO8'I' into a voltage; A first current/voltage conversion circuit (hereinafter referred to as an I/V conversion circuit) that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MO8'l' into a voltage. a second I/V conversion circuit that
a subtraction circuit for obtaining a difference between the output signal of the I/V conversion circuit and the output signal of the second I/V conversion circuit,
The drain (or source) of O8'l' and the second MO
The input (or source) of 8'I' is connected to the first terminal, and the first I/V conversion circuit or non-inverting input and the second
The non-inverting input of the I/V conversion circuit is connected to the second terminal, and the source (or drain) of the first MO8T is connected to the first
connected to the inverting input of the I/V conversion circuit of the second MO
The source (or drain) of 8T is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second I/
In a four-quadrant analog signal multiplication circuit in which the output of the V conversion circuit is connected to the other input of the subtraction circuit, the first MO
A four-quadrant analog signal multiplication circuit characterized in that the 8T and the second MO8T are depletion type. λ The first Δ(O8T, the electrical characteristics are those of the first MO8'
[a second MO8T that is equal to or very close to ', a first voltage/V conversion circuit that includes at least an operational amplifier and converts the drain current flowing through the first MO8T into a voltage;
The second I/V conversion circuit has the same configuration as the first I/V conversion circuit, and
A second circuit that converts the drain current flowing through O8'[' into voltage.
I/V conversion circuit, the output signal of the first I/V conversion circuit and the second I/V conversion circuit. a subtraction circuit for obtaining the difference between the output signal of the conversion circuit, the drain (or source) of the first MO8T and the drain (or source) of the second MO8T are connected to the first terminal, and the drain (or source) of the first MO8T is connected to the first terminal; The non-inverting input of the I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to the second terminal, and the source (still drain) of the first MO8T is connected to the first I/V conversion circuit. /V conversion circuit, the source (or drain) of the second MO8'I'' is connected to the inversion input of the second I/V conversion circuit, and the first I/V conversion circuit The output of the second I/V conversion circuit is connected to one input of the subtraction circuit, the output of the second I/V conversion circuit is connected to the other input of the subtraction circuit, and the first MO8T and the second MO8T
In a four-quadrant analog signal multiplication circuit in which MO8T is a depletion type, a first analog input signal vg is supplied to the gate of the first MO8T, a second analog input signal vd is supplied to the first terminal, and A four-quadrant analog signal multiplication circuit characterized in that the gate of MO8T of No. 2 and the second terminal are respectively grounded. 3. The first MO8T has electrical characteristics similar to that of the first MO8'l.
a second MO8T that is equal to or very close to "l", a first I/V conversion circuit that includes at least an operational amplifier and converts the drain current flowing through the first MO8T into a voltage;
The same configuration as the first I/V conversion circuit, and a second MO
a second I/V conversion circuit that converts the drain current flowing through 8'[' into a voltage; the difference between the output signal of the first I/V conversion circuit and the output signal of the second I/V conversion circuit; The drain (or source) of the first MO8T and the drain (or source) of the second MO8'I'' are provided.
is connected to the first terminal, and the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to the second terminal.
The source (or drain) of the first MO8T is connected to the inverting input of the first I/V conversion circuit, and the source (or drain) of the second MO8T is connected to the second I/V converter. connected to the inverting input of the V conversion circuit, and the first I
The output of the /V conversion circuit is connected to one input of the subtraction circuit, the output of the second I/V conversion circuit is connected to the other input of the subtraction circuit, and the first MO8T and the second MO8 of
In a four-quadrant analog signal multiplication circuit where 'l' is a depletion type, a signal -vg complementary to the first analog input signal vg+vg is applied to the gate of the first MO8'I' and the gate of the second MO8T, respectively. supply the first
A second τ analog input signal vd is supplied to the terminal of the second
A four-quadrant analog signal multiplier circuit characterized in that a terminal of the circuit is grounded. 4. The first HO8T has electrical characteristics similar to that of the first MO8'l.
a second MO8T that is equal to or very close to ', a first I/V conversion circuit that includes at least an operational amplifier and converts the drain current flowing through the first MO8T into a voltage; the first I/V conversion circuit; with the same configuration as, and the second MO8
$2 I/V that converts the drain current flowing through T into voltage
a conversion circuit, the output signal of the first I/V conversion circuit and the second I/V conversion circuit;
A subtraction circuit is provided to obtain a difference between the output signal of the I/V conversion circuit and the drain (or source) of the first MO8T and the drain (or source) of the second HO8T are connected to the first terminal. , the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to a second terminal, and the source (! is connected to the inverting input of the first I/V conversion circuit, and the source (or drain) of the second MO8T is connected to the second I/V conversion circuit.
/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the output of the second I/V conversion circuit is connected to the inverting input of the subtraction circuit. connected to the other input of the first MO8T and the second MO8'l''
In a four-quadrant analog signal multiplier circuit in which is a depletion type, a first analog input signal vg is supplied to the gate of the first MO8'I', and the first terminal and the second
second analog input signals vd and v respectively to the terminals of
A four-quadrant analog signal multiplier circuit characterized in that a signal -vd complementary to d is supplied and a gate of the second MO8T is grounded. 5. The first MO8T has electrical characteristics similar to that of the first MO8'I.
the second MO8'll' that is equal to or very close to '
, a first I/V conversion circuit that includes at least an operational amplifier and converts the drain current flowing through the first MO8T into a voltage; a drain current flowing through the second MO8T that has the same configuration as the tenth I/V conversion circuit; A/V conversion circuit for converting current into voltage, and a subtraction circuit for obtaining the difference between the output signal of the first I/V conversion circuit and the output signal of the second I/V conversion circuit. , the drain (or source) of the first MO8'I' and the drain (or source) of the second MO8T
is connected to the first terminal, and the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to the second terminal.
The source (or drain) of the first MO8T is connected to the inverting input of the first I/V conversion circuit, and the source (or drain) of the second ΔfO8T is connected to the second I/V converter. The output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the output of the second I/V conversion circuit is connected to the other input of the subtraction circuit. connected to the inputs of the first MO8T and the second MO8T.
In a four-quadrant analog signal multiplication circuit in which 8T is a depletion type, the gate of the first MO8T and the second
A signal -vg complementary to the first analog input signal vg+vg is supplied to the gates of MO8T of MO8T, and a second analog signal vd is supplied to the first terminal and the second terminal, respectively.
, vd and a complementary signal -vd.
JP6319783A 1983-04-11 1983-04-11 Four quadrant analog signal multiplication circuit Granted JPS59188780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6319783A JPS59188780A (en) 1983-04-11 1983-04-11 Four quadrant analog signal multiplication circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6319783A JPS59188780A (en) 1983-04-11 1983-04-11 Four quadrant analog signal multiplication circuit

Publications (2)

Publication Number Publication Date
JPS59188780A true JPS59188780A (en) 1984-10-26
JPH0450633B2 JPH0450633B2 (en) 1992-08-14

Family

ID=13222248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6319783A Granted JPS59188780A (en) 1983-04-11 1983-04-11 Four quadrant analog signal multiplication circuit

Country Status (1)

Country Link
JP (1) JPS59188780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327276A (en) * 2005-05-23 2006-12-07 Nissan Motor Co Ltd Reinforcing structure of hood ridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327276A (en) * 2005-05-23 2006-12-07 Nissan Motor Co Ltd Reinforcing structure of hood ridge

Also Published As

Publication number Publication date
JPH0450633B2 (en) 1992-08-14

Similar Documents

Publication Publication Date Title
EP0459513B1 (en) Analog multiplier
US5187682A (en) Four quadrant analog multiplier circuit of floating input type
US4071777A (en) Four-quadrant multiplier
EP0483419B1 (en) Fully differential sample and hold adder circuit
US4864217A (en) Method of and a circuit arrangement for processing sampled analogue electrical signals
US5254889A (en) MOSFET analog multiplier
US5966040A (en) CMOS current-mode four-quadrant analog multiplier
US5043652A (en) Differential voltage to differential current conversion circuit having linear output
US4387439A (en) Semiconductor analog multiplier
US4633192A (en) Integrated circuit operating as a current-mirror type CMOS amplifier
JPS59188780A (en) Four quadrant analog signal multiplication circuit
US4156924A (en) CMOS Analog multiplier for CCD signal processing
EP1460574A1 (en) Multiplier
US5394107A (en) Absolute value circuit
JPS5899033A (en) Integrated circuit device
US5493699A (en) Low noise communication analog compressor and analog expander
US20060001471A1 (en) Linear multiplier circuit
Igarashi et al. Design of very low‐distortion, four‐quadrant analog multiplier‐type CMOS‐OTA considering variation of mobility according to the gate voltage
EP0630107B1 (en) Differential load stage with stepwise variable impedance, and clocked comparator comprising such a load stage
JPS583072A (en) Analog signal multiplying circuit
Suzuki et al. A new CMOS 4Q-multiplier using linear and saturation regions complementally
SU1280401A1 (en) Analog multiplying device
JPS60198915A (en) Voltage comparator
JP2000040118A (en) Cmos multiplication circuit
JPS583071A (en) Analog signal multiplying circuit