JPH0450633B2 - - Google Patents

Info

Publication number
JPH0450633B2
JPH0450633B2 JP6319783A JP6319783A JPH0450633B2 JP H0450633 B2 JPH0450633 B2 JP H0450633B2 JP 6319783 A JP6319783 A JP 6319783A JP 6319783 A JP6319783 A JP 6319783A JP H0450633 B2 JPH0450633 B2 JP H0450633B2
Authority
JP
Japan
Prior art keywords
conversion circuit
circuit
input
signal
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6319783A
Other languages
Japanese (ja)
Other versions
JPS59188780A (en
Inventor
Tadayoshi Enomoto
Masaaki Yasumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6319783A priority Critical patent/JPS59188780A/en
Publication of JPS59188780A publication Critical patent/JPS59188780A/en
Publication of JPH0450633B2 publication Critical patent/JPH0450633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/16Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Description

【発明の詳細な説明】 本発明は2個のアナログ電気信号を互いに乗算
する集積化4象限アナログ信号乗算回路に関す
る。アナログ乗算回路は、遅延線、減算回路ある
いは加算回路と同様に、アナログシグナルプロセ
ツサなどのアナログ集積回路を構成する重要な基
本回路である。アナログ集積回路は、デジタル集
積回路と比べ、回路規模や消費電力が極めて小さ
い、演算処理速度が極めて速いといつた特長があ
り、高速・広帯域、小形の集積回路を実現する上
で極めて有利である。ところがアナログ集積回路
はアナログ方式特有の高調波歪を発生するため
に、集積回路の特性を劣化させる欠点がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated four-quadrant analog signal multiplier circuit for multiplying two analog electrical signals together. Analog multiplication circuits, like delay lines, subtraction circuits, or addition circuits, are important basic circuits that constitute analog integrated circuits such as analog signal processors. Compared to digital integrated circuits, analog integrated circuits have the characteristics of extremely small circuit scale, extremely small power consumption, and extremely high processing speed, making them extremely advantageous in realizing high-speed, wide-bandwidth, and small-sized integrated circuits. . However, analog integrated circuits have the disadvantage of deteriorating the characteristics of the integrated circuit because they generate harmonic distortion that is unique to analog systems.

本発明の目的は従来の乗算回路に比べ、回路規
模をさらに小形化したことを特徴とする4象限ア
ナログ信号乗算回路を提供することにある。本発
明の他の目的はアナログ方式の欠点である高調波
歪を極めて改善できる乗算回路を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a four-quadrant analog signal multiplication circuit characterized by a smaller circuit scale than conventional multiplication circuits. Another object of the present invention is to provide a multiplication circuit that can significantly improve harmonic distortion, which is a drawback of analog systems.

本発明によれば、該第1のMOST、電気的特
性が該第1のMOSTと等しいかあるいは極めて
近い第2のMOST、少なくとも演算増幅器を含
み、該第1のMOSTに流れるドレイン電流を電
圧に変換する第1のI/V変換回路、該第1の
I/V変換回路と同一構成で、かつ第2の
MOSTに流れるドレイン電流を電圧に変換する
第2のI/V変換回路、該第1のI/V変換回路
の出力信号と該第2のI/V変換回路の出力信号
との差を得る減算回路を備え、該第1のMOST
のドレイン(またはソース)と該第2のMOST
のドレイン(またはソース)が第1の端子に、該
第1のI/V変換回路の非反転入力と該第2の
I/V変換回路の非反転入力が第2の端子に、該
第1のMOSTのソース(またはドレイン)が第
1のI/V変換回路の反転入力に、該第2の
MOSTのソース(またはドレイン)が第2の
I/V変換回路の反転入力に、該第1のI/V変
換回路の出力が該減算回路の一方の入力に、該第
2のI/V変換回路の出力が該減算回路の他方の
入力に、それぞれ接続され、該第1のMOSTと
該第2のMOSTがデプリーシヨン形である4象
限アナログ乗算回路を提供することを目的とす
る。本発明の他の目的は該第1のMOST、電気
的特性が該第1のMOSTと等しいかあるいは極
めて近い第2のMOST、少なくとも演算増幅器
を含み、該第1のMOSTに流れるドレイン電流
を電圧に変換する第1のI/V変換回路、該第1
のI/V変換回路と同一構成で、かつ第2の
MOSTに流れるドレイン電流を電圧に変換する
第2のI/V変換回路、該第1のI/V変換回路
の出力信号と該第2のI/V変換回路の出力信号
との差を得る減算回路を備え、該第1のMOST
のドレイン(またはソース)と該第2のMOST
のドレイン(またはソース)が第1の端子に、該
第1のI/V変換回路の非反転入力と該第2の
I/V変換回路の非反転入力が第2の端子に、該
第1のMOSTのソース(またはドレイン)が第
1のI/V変換回路の反転入力に、該第2の
MOSTのソース(またはドレイン)が第2の
I/V変換回路の反転入力に、該第1のI/V変
換回路の出力が該減算回路の一方の入力に、該第
2のI/V変換回路の出力が該減算回路の他方の
入力に、それぞれ接続され、該第1のMOSTと
該第2のMOSTがデプリーシヨン形である4象
限アナログ信号乗算回路において、第1の
MOSTのゲートへ第1のアナログ入力信号vgを、
該第1の端子へ第2のアナログ入力信号vdを、
それぞれ供給し、第2のMOSTのゲートと該第
2の端子をそれぞれ接地する入力方式を提供す
る。さらに本発明によれば、該第1のMOST、
電気的特性が該第1のMOSTと等しいかあるい
は極めて近い第2のMOST、少なくとも演算増
幅器を含み、該第1のMOSTに流れるドレイン
電流を電圧に変換する第1のI/V変換回路、該
第1のI/V変換回路と同一構成で、かつ第2の
MOSTに流れるドレイン電流を電圧に変換する
第2のI/V変換回路、該第1のI/V変換回路
の出力信号と該第2のI/V変換回路の出力信号
との差を得る減算回路を備え、該第1のMOST
のドレイン(またはソース)と該第2のMOST
のドレイン(またはソース)が第1の端子に、該
第1のI/V変換回路の非反転入力と該第2の
I/V変換回路の非反転入力が第2の端子に、該
第1のMOSTのソース(またはドレイン)が第
1のI/V変換回路の反転入力に、該第2の
MOSTのソース(またはドレイン)が第2の
I/V変換回路の反転入力に、該第1のI/V変
換回路の出力が該減算回路の一方の入力に、該第
2のI/V変換回路の出力が該減算回路の他方の
入力に、それぞれ接続され、該第1のMOSTと
該第2のMOSTがデプリーシヨン形である4象
限アナログ信号乗算回路において該第1の
MOSTのゲートおよび第2のMOSTのゲートへ
それぞれ第1のアナログ入力信号vgおよびvgと
相補の信号−vgを供給し、該第1の端子へ第2
のアナログ入力信号vdを供給し、該第2の端子
を接地する入力方式を提供する。さらに本発明は
該第1のMOST、電気的特性が該第1のMOST
と等しいかあるいは極めて近い第2のMOST、
少なくとも演算増幅器を含み、該第1のMOST
に流れるドレイン電流を電圧に変換する第1の
I/V変換回路、該第1のI/V変換回路と同一
構成で、かつ第2のMOSTに流れるドレイン電
流を電圧に変換する第2のI/V変換回路、該第
1のI/V変換回路の出力信号と該第2のI/V
変換回路の出力信号との差を得る減算回路を備
え、該第1のMOSTのドレイン(またはソース)
と該第2のMOSTのドレイン(またはソース)
が第1の端子に、該第1のI/V変換回路の非反
転入力と該第2のI/V変換回路の非反転入力が
第2の端子に、該第1のMOSTのソース(また
はドレイン)が第1のI/V変換回路の反転入力
に、該第2のMOSTのソース(またはドレイン)
が第2のI/V変換回路の反転入力に、該第1の
I/V変換回路の出力が該減算回路の一方の入力
に、該第2のI/V変換回路の出力が該減算回路
の他方の入力に、それぞれ接続され、該第1の
MOSTと該第2のMOSTがデプリーシヨン形で
ある4象限アナログ信号乗算回路において、該第
1のMOSTのゲートへ第1のアナログ入力信号
vgを、該第1の端子および該第2の端子へそれ
ぞれ第2のアナログ入力信号vdおよびvdと相補
の信号−vdを供給し、該第2のMOSTのゲート
を接地する入力方式を提供する。さらに本発明に
よれば第1のMOST、電気的特性が該第1の
MOSTと等しいかあるいは極めて近い第2の
MOST、少なくとも演算増幅器を含み、該第1
のMOSTに流れるドレイン電流を電圧に変換す
る第1のI/V変換回路、該第1のI/V変換回
路と同一構成で、かつ第2のMOSTに流れるド
レイン電流を電圧に変換する第2のI/V変換回
路、該第1のI/V変換回路の出力信号と該第2
のI/V変換回路の出力信号との差を得る減算回
路を備え、該第1のMOSTのドレイン(または
ソース)と該第2のMOSTのドレイン(または
ソース)が第1の端子に、該第1のI/V変換回
路の非反転入力と該第2のI/V変換回路の非反
転入力が第2の端子に、該第1のMOSTのソー
ス(またはドレイン)が第1のI/V変換回路の
反転入力に、該第2のMOSTのソース(または
ドレイン)が第2のI/V変換回路の反転入力
に、該第1のI/V変換回路の出力が該減算回路
の一方の入力に、該第2のI/V変換回路の出力
が該減算回路の他方の入力に、それぞれ接続さ
れ、該第1のMOSTと該第2のMOSTがデプリ
ーシヨ形である4象限アナログ信号乗算回路にお
いて、該第1のMOSTのゲートおよび該第2の
MOSTのゲートへそれぞれ第1のアナログ入力
信号vgおよびvgと相補の信号−vgを供給し、該
第1の端子および該第2の端子へそれぞれ第2の
アナログ信号vdおよびvdと相補の信号−vdを供
給する入力方式が得られる。
According to the present invention, the first MOST, the second MOST whose electrical characteristics are equal to or very similar to the first MOST, include at least an operational amplifier, and convert the drain current flowing through the first MOST into a voltage. A first I/V conversion circuit to be converted, which has the same configuration as the first I/V conversion circuit, and a second I/V conversion circuit.
a second I/V conversion circuit that converts the drain current flowing through the MOST into a voltage; subtraction to obtain the difference between the output signal of the first I/V conversion circuit and the output signal of the second I/V conversion circuit; comprising a circuit, the first MOST
the drain (or source) of the second MOST
The drain (or source) of the first I/V conversion circuit is connected to a first terminal, the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to a second terminal, and the first The source (or drain) of the MOST of the second I/V conversion circuit is connected to the inverting input of the first I/V conversion circuit.
The source (or drain) of MOST is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second I/V conversion circuit is connected to the second I/V conversion circuit. It is an object of the present invention to provide a four-quadrant analog multiplier circuit, in which the outputs of the circuit are respectively connected to the other inputs of the subtractor circuit, and the first MOST and the second MOST are of depletion type. Another object of the present invention is that the first MOST includes a second MOST whose electrical characteristics are equal to or very similar to those of the first MOST, and includes at least an operational amplifier, and the drain current flowing through the first MOST is set to a voltage. a first I/V conversion circuit that converts the first
The same configuration as the I/V conversion circuit, and the second
a second I/V conversion circuit that converts the drain current flowing through the MOST into a voltage; subtraction to obtain the difference between the output signal of the first I/V conversion circuit and the output signal of the second I/V conversion circuit; comprising a circuit, the first MOST
the drain (or source) of the second MOST
The drain (or source) of the first I/V conversion circuit is connected to a first terminal, the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to a second terminal, and the first The source (or drain) of the MOST of the second I/V conversion circuit is connected to the inverting input of the first I/V conversion circuit.
The source (or drain) of MOST is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second I/V conversion circuit is connected to the second I/V conversion circuit. In a four-quadrant analog signal multiplication circuit, the outputs of the circuits are respectively connected to the other inputs of the subtraction circuit, and the first MOST and the second MOST are of depletion type.
The first analog input signal vg to the gate of MOST,
a second analog input signal vd to the first terminal;
and provides an input method for grounding the gate of the second MOST and the second terminal, respectively. Further according to the invention, the first MOST,
a second MOST whose electrical characteristics are equal to or very similar to the first MOST; a first I/V conversion circuit that includes at least an operational amplifier and converts a drain current flowing through the first MOST into a voltage; The same configuration as the first I/V conversion circuit, and the second
a second I/V conversion circuit that converts the drain current flowing through the MOST into a voltage; subtraction to obtain the difference between the output signal of the first I/V conversion circuit and the output signal of the second I/V conversion circuit; comprising a circuit, the first MOST
the drain (or source) of the second MOST
The drain (or source) of the first I/V conversion circuit is connected to a first terminal, the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to a second terminal, and the first The source (or drain) of the MOST of the second I/V conversion circuit is connected to the inverting input of the first I/V conversion circuit.
The source (or drain) of MOST is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second I/V conversion circuit is connected to the second I/V conversion circuit. in a four-quadrant analog signal multiplication circuit, the outputs of the circuits are respectively connected to the other inputs of the subtraction circuit, and the first MOST and the second MOST are of depletion type;
A first analog input signal vg and a signal -vg complementary to vg are supplied to the gate of the MOST and the gate of the second MOST, respectively, and a second analog input signal is supplied to the first terminal.
An input method is provided in which an analog input signal vd is supplied and the second terminal is grounded. Further, the present invention provides the first MOST, the electrical characteristics of which are the first MOST.
a second MOST equal to or very close to,
the first MOST including at least an operational amplifier;
a first I/V conversion circuit that converts the drain current flowing through the MOST into a voltage; a second I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MOST into a voltage; /V conversion circuit, the output signal of the first I/V conversion circuit and the second I/V conversion circuit.
The drain (or source) of the first MOST is provided with a subtraction circuit that obtains the difference between the output signal of the conversion circuit and the output signal of the conversion circuit.
and the drain (or source) of the second MOST
is connected to the first terminal, the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to the second terminal, and the source of the first MOST (or the source (or drain) of the second MOST is connected to the inverting input of the first I/V conversion circuit;
is an inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the output of the second I/V conversion circuit is connected to the subtraction circuit. are respectively connected to the other input of the first
In a four-quadrant analog signal multiplier circuit in which a MOST and the second MOST are depletion type, a first analog input signal is input to the gate of the first MOST.
vg, a second analog input signal vd and a signal -vd complementary to vd are supplied to the first terminal and the second terminal, respectively, and a gate of the second MOST is grounded. . Furthermore, according to the present invention, the electrical characteristics of the first MOST are the same as those of the first MOST.
a second equal to or very close to MOST
MOST, including at least an operational amplifier, the first
a first I/V conversion circuit that converts the drain current flowing through the MOST into a voltage, and a second I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MOST into voltage. I/V conversion circuit, the output signal of the first I/V conversion circuit and the second I/V conversion circuit
a subtraction circuit for obtaining a difference between the output signal of the I/V conversion circuit of the first MOST and the drain (or source) of the second MOST to the first terminal; The non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to the second terminal, and the source (or drain) of the first MOST is connected to the first I/V conversion circuit. The source (or drain) of the second MOST is connected to the inverting input of the V conversion circuit, and the output of the first I/V conversion circuit is connected to one side of the subtraction circuit. and the output of the second I/V conversion circuit is connected to the other input of the subtraction circuit, respectively, and the first MOST and the second MOST are depletion type. In the circuit, the gate of the first MOST and the gate of the second MOST
A first analog input signal vg and a signal -vg complementary to vg are supplied to the gate of the MOST, respectively, and a signal -vg complementary to the second analog input signal vd and vd is supplied to the first terminal and the second terminal, respectively. An input method is obtained that supplies vd.

以下図面を用いて詳細に説明する。第1図に一
例として従来の4象限アナログ信号乗算回路(以
後乗算回路と呼ぶ)の構成を示す。
This will be explained in detail below using the drawings. FIG. 1 shows, as an example, the configuration of a conventional four-quadrant analog signal multiplication circuit (hereinafter referred to as a multiplication circuit).

10は第1のMOS構造のエンハンスメント形
電界効果トランジスタ(以後第1のMOSTと呼
ぶ)。20は第1のMOST10の電気的特性が全
く等しいか、極めて近い第2のMOSTである。
30および40はそれぞれ第1のMOST10お
よび第2のMOST20を流れるドレイン電流IP
および第2のMOST20を流れるドレイ電流IN
を電圧に変換するために設けられた第1の電流/
電圧変換回路(以後I/V変換回路と呼ぶ)およ
び第2のI/V変換回路である。ここでは一例と
して演算増幅器31,41と抵抗素子32,42
より構成される第1(第2)のI/V変換回路3
0,40が示されている。50は第1のI/V変
換回路30の出力信号と第2のI/V変換回路4
0の出力信号の差を得るために設けた減算回路で
ある。ここでは一例として演算増幅器51、抵抗
素子52,53,54,55より構成されている
減算回路が示されている。300は乗算すべき第
1のアナログ信号vgの信号源、301は該vgに
直流電圧VGを重畳させるための設けた第1のレ
ベルシフタ、即ち、接地レベルの中心に振動する
該vgのレベルを該VGのレベルへ移すためのレベ
ルシフト用の回路である。同様に100は乗算す
べき第2のアナログ信号vdの信号源、101は
該vdに直流電圧VDを重畳させるために設けられ
た第2のレベルシフトである。102および30
2はそれぞれ電圧値VDおよびVGの直流電圧源
である。従つて、端子1へはVD+vdが、端子2
へはVDが、端子3へはVG+vgが、端子4へは
VGがそれぞれ印加される。なおこれらの電圧値
は該第1および第2のMOSTが3極管領域で動
作する範囲内とする。以下では該第1および第2
のエンハンスメント形MOSTがnチヤンネルの
デバイスであり、該VDとVGが正の直流電圧と
仮定して説明する。なお該vgおよびvdは正およ
び負のいずれの符号でもかまわない。今vdが正
の時、第1のMOST10に流れるドレイン電流
IPおよび第2のMOST20に流れるドレイン電
流INはそれぞれ IP=B(VG+vg−VD−vd/2−VT)・vd (1) IN=B(VG−VD−vd/2−VT)・vd (2) で与えられる。ここでBおよびVTはそれぞれ両
MOSTの固有な特性定数および閾値電圧である。
なおvdが正の場合、IPおよびINはそれぞれ矢印
11および21の方向に流れる。一方、vdが負
の時IPおよびINは矢印11および21と反対の
方向に流れ、それぞれ IP=B(VG+vg−VD−vd +vd/2−VT)・(−vd) (3) IN=B(VG−VD−vd +vd/2−VT)・(−vd) (4) で与えられる。IPおよびINはそれぞれ該抵抗素
子32および42に流れ、それぞれ端子33と3
5および43と45の間の電圧降下を発生する。
従つて、第1のI/V変換回路30の出力端子3
5に現われる電圧は端子34から印加されら直流
電圧VDより抵抗素子32に生ずる電圧降下(IP
に比例する)分を差し引いた値となる。同様に端
子45に現われる電圧は端子44から印加された
直流電圧VDから抵抗素子42に生ずる電圧降下
(INに比例する)分を差し引いた値となる。従つ
て、端子35および45の信号電圧即ち端子5
6,57の信号電圧を該減算回路50により減算
すれば、第1のアナログ信号vgと第2のアナロ
グ信号vdの積に比例した結果が端子58より得
られる。比例定数は前記B,VTおよび抵抗素子
32,42,52,53,54,55の抵抗値で
与えられる。
Reference numeral 10 denotes an enhancement type field effect transistor having a first MOS structure (hereinafter referred to as the first MOST). 20 is a second MOST whose electrical characteristics are exactly the same as or very similar to those of the first MOST 10.
30 and 40 are drain currents IP flowing through the first MOST 10 and the second MOST 20, respectively.
and the drain current IN flowing through the second MOST20
A first current provided for converting into voltage /
They are a voltage conversion circuit (hereinafter referred to as an I/V conversion circuit) and a second I/V conversion circuit. Here, as an example, operational amplifiers 31, 41 and resistance elements 32, 42
A first (second) I/V conversion circuit 3 consisting of
0,40 are shown. 50 is the output signal of the first I/V conversion circuit 30 and the second I/V conversion circuit 4
This is a subtraction circuit provided to obtain the difference between 0 output signals. Here, as an example, a subtracting circuit is shown that includes an operational amplifier 51 and resistive elements 52, 53, 54, and 55. 300 is a signal source of the first analog signal vg to be multiplied; 301 is a first level shifter provided for superimposing the DC voltage VG on the vg; This is a level shift circuit for shifting to VG level. Similarly, 100 is a signal source of the second analog signal vd to be multiplied, and 101 is a second level shifter provided to superimpose the DC voltage VD on the second analog signal vd. 102 and 30
2 are DC voltage sources with voltage values VD and VG, respectively. Therefore, VD+vd goes to terminal 1, and VD+vd goes to terminal 2.
VD to terminal 3, VG+vg to terminal 4, terminal 4 to terminal 4
VG is applied respectively. Note that these voltage values are within a range in which the first and second MOSTs operate in the triode region. Below, the first and second
The description will be made assuming that the enhancement type MOST is an n-channel device and that VD and VG are positive DC voltages. Note that vg and vd may have either positive or negative signs. Now when vd is positive, the drain current flowing to the first MOST10
The drain current IN flowing through IP and the second MOST 20 is IP=B(VG+vg-VD-vd/2-VT)・vd (1) IN=B(VG-VD-vd/2-VT)・vd (2 ) is given by Here, B and VT are both
are the unique characteristic constants and threshold voltage of MOST.
Note that when vd is positive, IP and IN flow in the directions of arrows 11 and 21, respectively. On the other hand, when vd is negative, IP and IN flow in the direction opposite to arrows 11 and 21, respectively, IP=B(VG+vg−VD−vd +vd/2−VT)・(−vd) (3) IN=B( It is given by VG−VD−vd +vd/2−VT)・(−vd) (4). IP and IN flow through the resistive elements 32 and 42, respectively, to terminals 33 and 3, respectively.
5 and generates a voltage drop between 43 and 45.
Therefore, the output terminal 3 of the first I/V conversion circuit 30
The voltage appearing at terminal 5 is the voltage drop (IP
It is the value obtained by subtracting the amount (proportional to). Similarly, the voltage appearing at the terminal 45 is the value obtained by subtracting the voltage drop (proportional to IN) occurring across the resistive element 42 from the DC voltage VD applied from the terminal 44. Therefore, the signal voltage at terminals 35 and 45, i.e., terminal 5
When the signal voltages 6 and 57 are subtracted by the subtraction circuit 50, a result proportional to the product of the first analog signal vg and the second analog signal vd is obtained from the terminal 58. The proportionality constant is given by the resistance values of B, VT, and resistance elements 32, 42, 52, 53, 54, and 55.

以上従来の減算回路の動作の詳細に述べた。従
来の乗算回路の欠点は、レベルシフタ301や直
流電源302が必ず必要なため、回路規模や構成
が複雑となることである。これは第1および第2
のMOST10,20がエンハンスメント形であ
るため、これらのMOSTがターンオンするため
にはゲートとソース間にバイアス電圧が必ず必要
であることに起因する。さらに、VTが正である
から、与えられたゲート電圧内でMOSTが3極
管領域で動作する条件を満足するドレイン電圧の
範囲が限られた狭い範囲になつてしまう。従つ
て、大きなダイナミツクレンジが得られないとい
う欠点がある。
The operation of the conventional subtraction circuit has been described in detail above. A drawback of the conventional multiplication circuit is that the level shifter 301 and the DC power supply 302 are always required, which makes the circuit scale and configuration complicated. This is the first and second
This is due to the fact that since the MOSTs 10 and 20 are of the enhancement type, a bias voltage is necessarily required between the gate and source in order for these MOSTs to turn on. Furthermore, since VT is positive, the range of drain voltages that satisfy the conditions for MOST to operate in the triode region within a given gate voltage is limited and narrow. Therefore, there is a drawback that a large dynamic range cannot be obtained.

本発明の目的は以上述べた従来の乗算回路の欠
点を除去し、回路基模を小形化し、かつ高調波歪
を極めて減少させダイナミツクレンジの広い4象
限アナログ信号乗算回路を提供するものである。
An object of the present invention is to eliminate the drawbacks of the conventional multiplier circuits described above, reduce the size of the circuit board, extremely reduce harmonic distortion, and provide a four-quadrant analog signal multiplier circuit with a wide dynamic range. .

第2図は本発明の4象限アナログ信号乗算回路
の具体的な回路構成の一例である。70はデプリ
ーシヨン形の第1のMOST、80は第1の
MOSTの電気的特性が全く等しいか、あるいは
極めて近い第2のMOSTである。30は第1の
I/V変換回路、40は第2のI/V変換回路、
50は減算回路である。1は第1のMOST70
および第2MOST80のドレイン(またはソー
ス)が接続された第1の端子、2は第2の端子で
ある。33,43および34,44はそれぞれ第
1(第2)のI/V変換回路の反転入力および非
反転入力である。58は乗算結果を得る出力端子
である。なお第2図において、第1図の構成要素
と同一の機能を有する構成要素は同一番号を用い
て示されている。以下では該MOSTがnチヤネ
ルデバイスであると仮定して説明する。今端子3
よりMOST70のゲートに接地レベルを中心と
して変化する第1のアナログ信号vgが印加され、
第1の端子1よりMOST70およびMOST80
のドレイン(またはソース)へ接地レベルを中心
として変化する第2のアナログ信号vdが印加さ
れているとする。また第2のMOST80のゲー
トは端子4を接地することにより零Vとなつてい
る。さらに第1のMOST70と第2のMOST8
0の他方のソース(またはドレイン)は第2の端
子2を接地することにより、それぞれ第1のI/
V変換回路および第2のI/V変換回路を介して
零Vに設定されてる。なおvdおよびvgの極性は
正、負いずれの符号をも取ることができる。今こ
れらの値を該MOST70,80が3極領域で動
作する範囲内に設定しておく。今vdが正の時、
vgの極性に無関係に第1のMOSTに流れる電流
IPおよび第2のMOST80に流れるドレイン電
流INはそれぞれ IP=B(vg−VT−vd/2)・vd (5) IN=B(−VT−vd/2)・vd (6) で与えられ、それぞれ矢印11および12の方向に
流れる。一方vdが負の場合、vgの極性にかかわ
らず、IPおよびINは IP=B(vg+vd−VT+vd/2−)・(−vd) (7) IN=B(−vd−VT+vd/2)・(−vd) (8) で与えられる。この場合IPおよびINは矢印11
および12と反対の方向に流れる。該IPは抵抗
素子32を介して流れるから、第1のI/V変換
回路30により電圧に変換され、IPに比例した
電圧番号として端子35に出力される。同様に該
INも、INに比例した電圧信号とし端子45に出
力される。これらの電圧信号は減算回路50によ
り互いに差し引かれる結果、第1のアナログ信号
vgと第2のアナログ信号vdの積に比例する電圧
信号が端子58に出力される。この場合も比例定
数はB、抵抗素子32,42,52,53,5
4,55の抵抗値で与えられる。以上の結果から
明きらかなように本発明の乗算回路は従来の乗算
回路が必要とした入力信号のレベルシフタや直流
電源を必要としないから回路構成が非常に簡単に
なる上、消費電力も小さい。また閾値電圧もVT
が負であるから、与えられら第1のアナログ信号
vgの範囲内および3極管領域での動作という条
件のもとで、第2のアナログ信号vdの領域を広
くとれる。この結果ダイナミツクレンジが拡大す
る特徴を有する。なお以上述べたアナログ信号
vg、vdの入力方式を以下では第1の入力方式と
呼ぶ。
FIG. 2 is an example of a specific circuit configuration of a four-quadrant analog signal multiplication circuit according to the present invention. 70 is the first MOST of depletion type, 80 is the first MOST
A second MOST whose electrical characteristics are exactly the same or very similar to the MOST. 30 is a first I/V conversion circuit, 40 is a second I/V conversion circuit,
50 is a subtraction circuit. 1 is the first MOST70
and a first terminal to which the drain (or source) of the second MOST 80 is connected, and 2 is a second terminal. 33, 43 and 34, 44 are an inverting input and a non-inverting input of the first (second) I/V conversion circuit, respectively. 58 is an output terminal for obtaining the multiplication result. In FIG. 2, components having the same functions as those in FIG. 1 are indicated using the same numbers. The following description assumes that the MOST is an n-channel device. Now terminal 3
A first analog signal vg that changes around the ground level is applied to the gate of MOST70,
MOST70 and MOST80 from the first terminal 1
Assume that a second analog signal vd, which changes around the ground level, is applied to the drain (or source) of . Further, the gate of the second MOST 80 is set to zero V by grounding the terminal 4. Furthermore, the first MOST70 and the second MOST8
The other source (or drain) of 0 is connected to the respective first I/I by grounding the second terminal 2.
It is set to zero V via a V conversion circuit and a second I/V conversion circuit. Note that the polarities of vd and vg can take either positive or negative sign. These values are now set within the range in which the MOSTs 70 and 80 operate in the three-pole region. Now when vd is positive,
Current flowing through the first MOST regardless of the polarity of vg
The drain current IN flowing through IP and the second MOST 80 is given by IP=B(vg-VT-vd/2)・vd (5) IN=B(-VT-vd/2)・vd (6), respectively. Flows in the directions of arrows 11 and 12, respectively. On the other hand, when vd is negative, regardless of the polarity of vg, IP and IN are IP=B(vg+vd-VT+vd/2-)・(-vd) (7) IN=B(-vd-VT+vd/2)・( −vd) is given by (8). In this case IP and IN are arrow 11
and 12 flow in the opposite direction. Since the IP flows through the resistive element 32, it is converted into a voltage by the first I/V conversion circuit 30 and outputted to the terminal 35 as a voltage number proportional to IP. Similarly applicable
IN is also output to the terminal 45 as a voltage signal proportional to IN. These voltage signals are subtracted from each other by a subtraction circuit 50, resulting in a first analog signal.
A voltage signal proportional to the product of vg and the second analog signal vd is output to terminal 58. In this case as well, the proportionality constant is B, and the resistance elements 32, 42, 52, 53, 5
It is given by a resistance value of 4.55. As is clear from the above results, the multiplication circuit of the present invention does not require an input signal level shifter or a DC power supply, which are required by conventional multiplication circuits, so the circuit configuration is extremely simple and the power consumption is low. Also, the threshold voltage is VT
is negative, so the given first analog signal
Under the condition of operating within the range of vg and in the triode region, the range of the second analog signal vd can be widened. As a result, the dynamic range is expanded. Furthermore, the analog signal mentioned above
The input method for vg and vd is hereinafter referred to as a first input method.

次に他の入力方式、即ち、第2の入力方法を説
明する。本方式も前記の第1の入力方式と同様に
端子3へは第1のアナログ信号vgを、端子1へ
は第2のアナログ信号vdをそれぞれ印加し、端
子2は接地する。ところが端子4を接地する第1
の入力方式と異なり、本方式では端子4へは第1
のアナログ信号vgの相補信号、即ち、−vgを印加
する。なおここでは詳細な説明は省くが、この結
果、端子58より得られる出力電圧はvgとvdの
積に比例する出力が得られる。但し、その値は第
1の入力方式の2倍となる。さらに本第2の入力
方式によれば、乗算結果に含まれるvgの第2高
調波成分、をほとんど除去することが可能であ
る。これは今まで一定であると仮定してきたが、
実は入力信号vgの非線形関数である特性定数B
の影響を、第1のMOST70と第2のMOST8
0のゲートにそれぞれ相補信号および−vgを印
加することにより、互いにキヤンセルさせること
が可能となるからである。
Next, another input method, that is, a second input method will be explained. In this method, as in the first input method, the first analog signal vg is applied to terminal 3, the second analog signal vd is applied to terminal 1, and terminal 2 is grounded. However, the first terminal to ground terminal 4
Unlike the input method, in this method, the first
A complementary signal of the analog signal vg, that is, -vg is applied. Although a detailed explanation will be omitted here, as a result, the output voltage obtained from the terminal 58 is proportional to the product of vg and vd. However, the value is twice that of the first input method. Furthermore, according to the second input method, it is possible to almost eliminate the second harmonic component of vg included in the multiplication result. Until now, we have assumed that this is constant, but
The characteristic constant B is actually a nonlinear function of the input signal vg
The influence of the first MOST70 and the second MOST8
This is because by applying complementary signals and -vg to the gates of 0, it is possible to cancel each other.

次にその他の入力方式、即ち、第3の入力方式
を説明する。本方式も前記の第1の入力方式と同
様に、端子3に第1のアナログ信号vgを、第1
の端子1に第2のアナログ信号vdを印加し、端
子4は接地する。但し、第2の端子2を接地する
第1の入力方式と異なり、本第3の方式では該第
2の端子2へは第2のアナログ信号vdの相補信
号、即ち、−vdを印加するものである。なおここ
では動作方式の詳細な説明は省略するが、この場
合もvgとvdの乗算結果に比例したアナログ信号
が端子58により得られることは明らかである。
この場合も乗算結果の大きさは第1の方式のそれ
に比べ2倍となつている。本方式も第1の入力方
式と比べ、高調波成分を極めて減少させることに
特長がある。即ち、前記第1の入力方式ではvd
が正の場合、該第1および第2のMOSTのバツ
クゲート効果は最大でかつ一定であるから、VT
の絶対値は小さく、与えられた条件のもとで、3
極管領域の動作を満足するvgおよびvdの範囲は
小さい。一方vdが負の場合、該バツクゲート効
果は小さく、従つて、VTの絶対値は大きいの
で、与えられた条件のもとで3極管領域の動作を
満足するvgおよびvdの範囲は拡大する。ところ
が第3の入力方式の場合、vdの極性にかかわら
ず該バツクゲート効果は小さいため、VTの絶対
値も大きくなり、3極管領域の動作を満足する
vgおよびvdの範囲を広くとることができる。こ
のため本第3の入力方式は乗算結果に含まれる高
調波成分を極めて制限することができる。
Next, another input method, ie, a third input method, will be explained. Similar to the first input method, this method also applies the first analog signal vg to the terminal 3, and
A second analog signal vd is applied to terminal 1 of , and terminal 4 is grounded. However, unlike the first input method in which the second terminal 2 is grounded, in the third method, a complementary signal of the second analog signal vd, that is, -vd is applied to the second terminal 2. It is. Although a detailed explanation of the operating system will be omitted here, it is clear that in this case as well, an analog signal proportional to the multiplication result of vg and vd can be obtained from the terminal 58.
In this case as well, the size of the multiplication result is twice that of the first method. This method also has the advantage of significantly reducing harmonic components compared to the first input method. That is, in the first input method, vd
When is positive, the backgate effect of the first and second MOST is maximum and constant, so VT
The absolute value of is small, and under the given conditions, 3
The range of vg and vd that satisfies the operation in the polar region is small. On the other hand, when vd is negative, the backgate effect is small, and therefore the absolute value of VT is large, so that the range of vg and vd that satisfies the operation of the triode region under given conditions is expanded. However, in the case of the third input method, the backgate effect is small regardless of the polarity of vd, so the absolute value of VT also becomes large, satisfying the operation in the triode region.
A wide range of VG and VD is available. Therefore, the third input method can extremely limit the harmonic components included in the multiplication result.

次に他の入力方式、即ち、第4の入力方式を説
明する。本方式では第1のアナログ信号vgとそ
の相補信号−vgをそれぞれ端子3および端子4
へ印加し、第2のアナログ信号vdとその相補信
号−vdをそれぞれ第1の端子1および第2の端
子2へ印加する。これらの信号を第1のMOST
70および第2のMOST80が3極管領域で動
作する範囲に制定すれば、vgとvdの積に比例す
る出力信号が端子58より得られる。ただしこの
場合出力信号の値は第1の入力方式のそれの4
倍、第2あるいは第3の入力方式のそれの2倍で
ある。本方式の入力方式を用いれば、これまでの
説明から明らかなように歪成分が極めて少ない、
ダイナミツクレンジの極めて大きい4象限のアナ
ログ信号乗算が達成される。
Next, another input method, ie, a fourth input method, will be explained. In this method, the first analog signal vg and its complementary signal -vg are sent to terminals 3 and 4, respectively.
and a second analog signal vd and its complementary signal -vd are applied to the first terminal 1 and the second terminal 2, respectively. These signals are the first MOST
If MOST 70 and second MOST 80 are set to operate in the triode region, an output signal proportional to the product of vg and vd will be obtained from terminal 58. However, in this case, the value of the output signal is 4 times that of the first input method.
twice that of the second or third input method. As is clear from the previous explanation, if this input method is used, distortion components are extremely small.
A four-quadrant analog signal multiplication with an extremely large dynamic range is achieved.

第3図は本発明の4象限アナログ信号乗算回路
の具体的な回路構成を他の例である。70,80
は、第2図の70,80と同様、電気的特性が互
いに全く等しいかあるいは該電気的特性が互いに
極めて近いデプリーシヨン形のMOSTである。
1,2,3,4は入力信号を印加する端子で、そ
れぞれ第2図の端子1,2,3,4に対応する。
130は第1のI/V変換回路で、本質的には演
算増幅器131、コンデンサ132、アナログス
イツチ133より構成される積分回路である。1
40は第2のI/V変換回路で、本質的には演算
増幅器141,コンデンサ142、アナログスイ
ツチ143より構成される積分回路である。15
0はコンデンサ151,アナログスイツチ15
2,153,154,155、演算増幅器15
6、コンデンサ157、アナログスイツチ158
より構成される減算回路である。134,14
4,135,145,159,160,161は
それぞれ端子である。本回路においても前記第
1、第2、第3、第4の入力方式を用いることに
より、端子161より2個のアナログ信号vgと
vdの積に比例した出力信号が得られ、4象限の
アナログ信号乗算が達成される。以下に前記第1
の入力方式を用いて本回路の動作を簡単に説明す
る。端子3に第1のアナログ信号vgを、第1の
端子1に第2のアナログ信号vdを印加し、第2
の端子2、端子4を接地すると、第1のMOST
70,第2のMOST80にそれぞれドレイン電
流IP(第(5)式、第(7)式)、ドレイン電流IN(第(6)
式、第(8)式)が流れる。該電流IP、INは、アナ
ログスイツチ133,143が開いている期間、
それぞれコンデンサ132,142に積分され
る。従つて、各I/V変換回路130,140の
出力端子に該IP,INに比例した電圧信号が現わ
れる。次に減算回路150のアナログスイツチ1
52,153が閉じ、次に開くと、端子135,
145の電圧信号の差に比例した信号、即ち、該
vgとvdの積に比例した信号が電荷の形でコンデ
ンサ151に蓄積される。なお該スイツチ15
2,153が閉じている期間アナログスイツチ1
58も同時に閉じ、コンデンサ157に蓄積され
ていた前期間の信号電荷は該アナログスイツチ1
58を介して放電する。次にアナログスイツチ1
54,155が閉じ、次に開くと、コンデンサ1
51に蓄積された信号電荷はコンデンサ157へ
移送され、vgとvdの積に比例した出力信号が端
子161から得ることができる。
FIG. 3 shows another example of the specific circuit configuration of the four-quadrant analog signal multiplication circuit of the present invention. 70,80
, like 70 and 80 in FIG. 2, are depletion type MOSTs whose electrical characteristics are exactly equal to each other or whose electrical characteristics are very close to each other.
1, 2, 3, and 4 are terminals to which input signals are applied, and correspond to terminals 1, 2, 3, and 4 in FIG. 2, respectively.
Reference numeral 130 denotes a first I/V conversion circuit, which is essentially an integrating circuit composed of an operational amplifier 131, a capacitor 132, and an analog switch 133. 1
Reference numeral 40 denotes a second I/V conversion circuit, which is essentially an integrating circuit composed of an operational amplifier 141, a capacitor 142, and an analog switch 143. 15
0 is capacitor 151, analog switch 15
2,153,154,155, operational amplifier 15
6, capacitor 157, analog switch 158
This is a subtraction circuit consisting of. 134,14
4, 135, 145, 159, 160, and 161 are terminals, respectively. Also in this circuit, by using the first, second, third, and fourth input methods, two analog signals vg and
An output signal proportional to the product of vd is obtained, achieving four-quadrant analog signal multiplication. Below, the first
The operation of this circuit will be briefly explained using the following input method. A first analog signal vg is applied to terminal 3, a second analog signal vd is applied to first terminal 1, and the second
When terminals 2 and 4 are grounded, the first MOST
70, the drain current IP (Equation (5), Equation (7)) and drain current IN (Equation (6)) are applied to the second MOST 80, respectively.
Equation (8)) flows. The currents IP and IN are during the period when the analog switches 133 and 143 are open,
The signals are integrated into capacitors 132 and 142, respectively. Therefore, a voltage signal proportional to IP and IN appears at the output terminal of each I/V conversion circuit 130 and 140. Next, analog switch 1 of subtraction circuit 150
52, 153 close and then open, terminals 135,
145 voltage signals, i.e.
A signal proportional to the product of vg and vd is stored in the capacitor 151 in the form of electric charge. In addition, the switch 15
2,153 is closed analog switch 1
58 is also closed at the same time, and the signal charge accumulated in the capacitor 157 from the previous period is transferred to the analog switch 1.
58. Next, analog switch 1
54, 155 close and then open, capacitor 1
The signal charge accumulated in capacitor 51 is transferred to capacitor 157, and an output signal proportional to the product of vg and vd can be obtained from terminal 161.

以上本発明の4象限アナログ乗算回路の構成と
入力方式を説明した。上記では第1のI/V変換
回路、第2のI/V変換回路、減算回路がそれぞ
れ演算増幅器と抵抗素子で構成される回路あるい
は演算増幅器、コンデンサおよびアナログスイツ
チで構成される回路を例に用いて説明したが、各
回路がそれぞれ所望の機能を発揮すれば、上記回
路構成に限定されることはない。
The configuration and input method of the four-quadrant analog multiplier circuit of the present invention have been described above. In the above example, the first I/V conversion circuit, the second I/V conversion circuit, and the subtraction circuit each consist of an operational amplifier and a resistor element, or a circuit that consists of an operational amplifier, a capacitor, and an analog switch. However, the circuit configuration is not limited to the above circuit configuration as long as each circuit exhibits a desired function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の4象限アナログ信号乗算回路の
構成図、第2図は本発明の4象限アナログ信号乗
算回路の具体的な構成図、第3図は本発明の4象
限アナログ信号乗算回路の他の具体的な構成図で
ある。 第1図において10,20はエンハンスメント
形のMOST、30,40は電流/電圧変換回路、
50は減算回路、100,300はアナログ信号
源、101,301はレベルシフタ、102,3
02は直流電圧源である。第2図において70,
80はデプリーシヨン形のMOST、30,40
は電流/電圧変換回路、50は減算回路である。
第3図において、70,80はデプリーシヨン形
のMOST、130,140は積分回路を用いた
電流/電圧変換回路、150は減算回路である。
第1図、第2図において、31,41,51は演
算増幅器、32,42,52,53,54,55
は抵抗素子である。第3図において、131,1
41,156は演算増幅器、132,142,1
51,157はコンデンサ、133,143,1
52,153,154,155,158はアナロ
グスイツチである。
FIG. 1 is a configuration diagram of a conventional four-quadrant analog signal multiplication circuit, FIG. 2 is a specific configuration diagram of a four-quadrant analog signal multiplication circuit of the present invention, and FIG. 3 is a configuration diagram of a four-quadrant analog signal multiplication circuit of the present invention. It is another specific block diagram. In FIG. 1, 10 and 20 are enhancement type MOSTs, 30 and 40 are current/voltage conversion circuits,
50 is a subtraction circuit, 100, 300 is an analog signal source, 101, 301 is a level shifter, 102, 3
02 is a DC voltage source. In Figure 2, 70,
80 is depletion type MOST, 30, 40
5 is a current/voltage conversion circuit, and 50 is a subtraction circuit.
In FIG. 3, 70 and 80 are depletion type MOSTs, 130 and 140 are current/voltage conversion circuits using an integrating circuit, and 150 is a subtraction circuit.
1 and 2, 31, 41, 51 are operational amplifiers, 32, 42, 52, 53, 54, 55
is a resistive element. In Figure 3, 131,1
41, 156 is an operational amplifier, 132, 142, 1
51,157 is a capacitor, 133,143,1
52, 153, 154, 155, and 158 are analog switches.

Claims (1)

【特許請求の範囲】 1 第1のMOS形電解効果トランジスタ(以後
MOSTと呼ぶ)、電気的特性が該第1のMOSTと
等しいかあるいは極めて近い第2のMOST、少
なくとも演算増幅器を含み、該第1のMOSTに
流れるドレイン電流を電圧に変換する第1の電
流/電圧変換回路(以後I/V変換回路と呼ぶ)
と、該第1のI/V変換回路と同一構成でかつ第
2のMOSTに流れるドレイン電流を電圧に変換
する第2のI/V変換回路と、該第1のI/V変
換回路の出力信号と該第2のI/V変換回路の出
力信号との差を得る減算回路とを備え、該第1の
MOSTのドレイン(またはソース)と該第2の
MOSTのドレイン(またはソース)が第1の端
子に接続され、該第1のI/V変換回路の非反転
入力と該第2のI/V変換回路の非反転入力が第
2の端子に接続され、該第1のMOSTのソース
(またはドレイン)が第1のI/V変換回路の反
転入力に接続され、該第2のMOSTのソース
(またはドレイン)が第2のI/V変換回路の反
転入力に接続され、該第1のI/V変換回路の出
力が該減算回路の一方の入力に接続され、該第2
のI/V変換回路の出力が該減算回路の他方の入
力に接続される4象限アナログ信号乗算回路にお
いて、該第1のMOSTと該第2のMOSTがデプ
リーシヨン形であることを特徴とする4象限アナ
ログ信号乗算回路。 2 第1のMOST、電気的特性が該第1の
MOSTと等しいかあるは極めて近い第2の
MOST、少なくとも演算増幅器を含み、該第1
のMOSTに流れるドレイン電流を電圧に変換す
る第1のI/V変換回路、該第1のI/V変換回
路と同一構成で、かつ第2のMOSTに流れるド
レイン電流を電圧に変換する第2のI/V変換回
路、該第1のI/V変換回路の出力信号と該第2
のI/V変換回路の出力信号との差を得る減算回
路を備え、該第1のMOSTのドレイン(または
ソース)と該第2のMOSTのドレイン(または
ソース)が第1の端子に接続され、該第1のI/
V変換回路の非反転入力と該第2のI/V変換回
路の非反転入力が第2の端子に接続され、該第1
のMOSTのソース(またはドレイン)が第1の
I/V変換回路の反転入力に接続され、該第2の
MOSTのソース(またはドレイン)が第2の
I/V変換回路の反転入力に接続され、該第1の
I/V変換回路の出力が該減算回路の一方の入力
に接続され、該第2のI/V変換回路の出力が該
減算回路の他方の入力に接続され、該第1の
MOSTと該第2のMOSTがデプリーシヨン形で
ある4象限アナログ信号乗算回路において、第1
のMOSTのゲートへ第1のアナログ入力信号vg
を供給し、該第1の端子へ第2のアナログ入力信
号vdを供給し、第2のMOSTのゲートと該第2
の端子をそれぞれ接地することを特徴とする4像
限アナログ信号乗算回路。 3 第1のMOST、電気的特性が該第1の
MOSTと等しいかあるいは極めて近い第2の
MOST、少なくとも演算増幅器を含み、該第1
のMOSTに流れるドレイン電流を電圧に変換す
る第1のI/V変換回路、該第1のI/V変換回
路と同一構成で、かつ第2のMOSTに流れるド
レイン電流を電圧に変換する第2のI/V変換回
路、該第1のI/V変換回路の出力信号と該第2
のI/V変換回路の出力信号との差を得る減算回
路を備え、該第1のMOSTのドレイン(または
ソース)と該第2のMOSTのドレイン(または
ソース)が第1の端子に接続され、該第1のI/
V変換回路の非反転入力と該第2のI/V変換回
路の非反転入力が第2の端子に接続され、該第1
のMOSTのソース(またはドレイン)が第1の
I/V変換回路の反転入力に接続され、該第2の
MOSTのソース(またはドレイン)が第2の
I/V変換回路の反転入力に接続され、該第1の
I/V変換回路の出力が該減算回路の一方の入力
に接続され、該第2のI/V変換回路の出力が該
減算回路の他方の入力に接続され、該第1の
MOSTと該第2のMOSがデプリーシヨン形であ
る4象限アナログ信号乗算回路において、該第1
のMOSTのゲートおよび第2のMOSTのゲート
へそれぞれ第1のアナログ入力信号vg,vgと相
補の信号−vgを供給し、該第1の端子へ第2の
アナログ入力信号vdを供給し、該第2の端子を
接地することを特徴とする4像限アナログ信号乗
算回路。 4 第1のMOST、電気的特性が該第1の
MOSTと等しいかあるいは極めて近い第2の
MOST、少なくとも演算増幅器を含み、該第1
のMOSTに流れるドレイン電流を電圧に変換す
る第1のI/V変換回路、該第1のI/V変換回
路と同一構成で、かつ第2のMOSTに流れるド
レイン電流を電圧に変換する第2のI/V変換回
路、該第1のI/V変換回路の出力信号と該第2
のI/V変換回路の出力信号との差を得る減算回
路を備え、該第1のMOSTのドレイン(または
ソース)と該第2のMOSTのドレイン(または
ソース)が第1の端子に接続され、該第1のI/
V変換回路の非反転入力と該第2のI/V変換回
路の非反転入力が第2の端子に接続され、該第1
のMOSTのソース(またはドレイン)が第1の
I/V変換回路の反転入力に接続され、該第2の
MOSTのソース(またはドレイン)が第2の
I/V変換回路の反転入力に接続され、該第1の
I/V変換回路の出力が該減算回路の一方の入力
に接続され、該第2のI/V変換回路の出力が該
減算回路の他方の入力に接続され、該第1の
MOSTと該第2のMOSTがデプリーシヨン形で
ある4象限アナログ信号乗算回路において、該第
1のMOSTのゲートへ第1のアナログ入力信号
vgを供給し、該第1の端子および該第2の端子
へそれぞれ第2のアナログ入力信号vdおよびvd
と相補の信号−vdを供給し、該第2のMOSTの
ゲートを接地すること特徴とする4像限アナログ
信号乗算回路。 5 第1のMOST、電気的特性が該第1の
MOSTと等しいかあるは極めて近い第2の
MOST、少なくとも演算増幅器を含み、該第1
のMOSTに流れるドレイン電流を電圧に変換す
る第1のI/V変換回路、該第1のI/V変換回
路と同一構成で、かつ第2のMOSTに流れるド
レイン電流を電圧に変換する第2のI/V変換回
路、該第1のI/V変換回路の出力信号と該第2
のI/V変換回路の出力信号との差を得る減算回
路を備え、該第1のMOSTのドレイン(または
ソース)と該第2のMOSTのドレイン(または
ソース)が第1の端子に接続され、該第1のI/
V変換回路の非反転入力と該第2のI/V変換回
路の非反転入力が第2の端子に接続され、該第1
のMOSTのソース(またはドレイン)が第1の
I/V変換回路の反転入力に接続され、該第2の
MOSTのソース(またはドレイン)が第2の
I/V変換回路の反転入力に接続され、該第1の
I/V変換回路の出力が該減算回路の一方の入力
に接続され、該第2のI/V変換回路の出力が該
減算回路の他方の入力に接続され、該第1の
MOSTと該第2のMOSTがデプリーシヨン形で
ある4象限アナログ信号乗算回路において、第1
のMOSTのゲートおよび第2のMOSTのゲート
へそれぞれ第1のアナログ入力信号vg、vgと相
補の信号−vgを供給し、該第1の端子および該
第2の端子へそれぞれ第2のアナログ入力信号
vd、vdと相補の信号−vdを供給することを特徴
とする4像限アナログ信号乗算回路。
[Claims] 1. A first MOS type field effect transistor (hereinafter referred to as
a second MOST whose electrical characteristics are equal to or very similar to those of the first MOST; a second MOST that includes at least an operational amplifier; Voltage conversion circuit (hereinafter referred to as I/V conversion circuit)
and a second I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MOST into a voltage, and an output of the first I/V conversion circuit. a subtraction circuit for obtaining a difference between the signal and the output signal of the second I/V conversion circuit;
the drain (or source) of MOST and the second
The drain (or source) of the MOST is connected to a first terminal, and the non-inverting input of the first I/V conversion circuit and the non-inverting input of the second I/V conversion circuit are connected to the second terminal. The source (or drain) of the first MOST is connected to the inverting input of the first I/V conversion circuit, and the source (or drain) of the second MOST is connected to the inverting input of the second I/V conversion circuit. the output of the first I/V conversion circuit is connected to one input of the subtraction circuit;
A four-quadrant analog signal multiplication circuit in which an output of an I/V conversion circuit is connected to the other input of the subtraction circuit, wherein the first MOST and the second MOST are of a depletion type. Quadrant analog signal multiplier circuit. 2 The first MOST, the electrical characteristics of which are the same as those of the first MOST.
A second value that is equal to or very close to MOST.
MOST, including at least an operational amplifier, the first
a first I/V conversion circuit that converts the drain current flowing through the MOST into a voltage, and a second I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MOST into voltage. I/V conversion circuit, the output signal of the first I/V conversion circuit and the second I/V conversion circuit
A subtraction circuit is provided to obtain a difference between the output signal of the I/V conversion circuit and the drain (or source) of the first MOST and the drain (or source) of the second MOST are connected to the first terminal. , the first I/
A non-inverting input of the V conversion circuit and a non-inverting input of the second I/V conversion circuit are connected to a second terminal, and the first
The source (or drain) of MOST of is connected to the inverting input of the first I/V conversion circuit, and
The source (or drain) of MOST is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second The output of the I/V conversion circuit is connected to the other input of the subtraction circuit, and the output of the I/V conversion circuit is connected to the other input of the subtraction circuit.
In a four-quadrant analog signal multiplier circuit in which the MOST and the second MOST are depletion type, the first
The first analog input signal vg to the gate of MOST of
a second analog input signal vd to the first terminal, and a second analog input signal vd to the gate of the second MOST and the second
A four-image range analog signal multiplication circuit characterized in that each terminal of the circuit is grounded. 3. The first MOST, the electrical characteristics of which are the same as the first MOST.
a second equal to or very close to MOST
MOST, including at least an operational amplifier, the first
a first I/V conversion circuit that converts the drain current flowing through the MOST into a voltage, and a second I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MOST into voltage. I/V conversion circuit, the output signal of the first I/V conversion circuit and the second I/V conversion circuit
A subtraction circuit is provided to obtain a difference between the output signal of the I/V conversion circuit and the drain (or source) of the first MOST and the drain (or source) of the second MOST are connected to the first terminal. , the first I/
A non-inverting input of the V conversion circuit and a non-inverting input of the second I/V conversion circuit are connected to a second terminal, and the first
The source (or drain) of MOST of is connected to the inverting input of the first I/V conversion circuit, and
The source (or drain) of MOST is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second The output of the I/V conversion circuit is connected to the other input of the subtraction circuit, and the output of the I/V conversion circuit is connected to the other input of the subtraction circuit.
In a four-quadrant analog signal multiplier circuit in which the MOST and the second MOS are depletion type, the first
A signal -vg complementary to the first analog input signal vg and vg is supplied to the gate of the MOST and the gate of the second MOST, respectively, a second analog input signal vd is supplied to the first terminal, and the second analog input signal vd is supplied to the gate of the second MOST. A four-image range analog signal multiplication circuit characterized in that a second terminal is grounded. 4 the first MOST, the electrical characteristics of which are
A second value that is equal to or very close to MOST.
MOST, including at least an operational amplifier, the first
a first I/V conversion circuit that converts the drain current flowing through the MOST into a voltage, and a second I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MOST into voltage. I/V conversion circuit, the output signal of the first I/V conversion circuit and the second I/V conversion circuit
A subtraction circuit is provided to obtain a difference between the output signal of the I/V conversion circuit and the drain (or source) of the first MOST and the drain (or source) of the second MOST are connected to the first terminal. , the first I/
A non-inverting input of the V conversion circuit and a non-inverting input of the second I/V conversion circuit are connected to a second terminal, and the first
The source (or drain) of MOST of is connected to the inverting input of the first I/V conversion circuit, and
The source (or drain) of MOST is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second The output of the I/V conversion circuit is connected to the other input of the subtraction circuit, and the output of the I/V conversion circuit is connected to the other input of the subtraction circuit.
In a four-quadrant analog signal multiplier circuit in which a MOST and the second MOST are depletion type, a first analog input signal is input to the gate of the first MOST.
vg and second analog input signals vd and vd to the first terminal and the second terminal, respectively.
A four-image range analog signal multiplier circuit, characterized in that it supplies a signal -vd complementary to the second MOST, and grounds the gate of the second MOST. 5 The first MOST, the electrical characteristics of which are
A second value that is equal to or very close to MOST.
MOST, including at least an operational amplifier, the first
a first I/V conversion circuit that converts the drain current flowing through the MOST into a voltage, and a second I/V conversion circuit that has the same configuration as the first I/V conversion circuit and converts the drain current flowing through the second MOST into voltage. I/V conversion circuit, the output signal of the first I/V conversion circuit and the second I/V conversion circuit
A subtraction circuit is provided to obtain a difference between the output signal of the I/V conversion circuit and the drain (or source) of the first MOST and the drain (or source) of the second MOST are connected to the first terminal. , the first I/
A non-inverting input of the V conversion circuit and a non-inverting input of the second I/V conversion circuit are connected to a second terminal, and the first
The source (or drain) of MOST of is connected to the inverting input of the first I/V conversion circuit, and
The source (or drain) of MOST is connected to the inverting input of the second I/V conversion circuit, the output of the first I/V conversion circuit is connected to one input of the subtraction circuit, and the second The output of the I/V conversion circuit is connected to the other input of the subtraction circuit, and the output of the I/V conversion circuit is connected to the other input of the subtraction circuit.
In a four-quadrant analog signal multiplier circuit in which the MOST and the second MOST are depletion type, the first
A first analog input signal vg, a signal -vg complementary to vg is supplied to the gate of the MOST and a gate of the second MOST, respectively, and a second analog input signal is supplied to the first terminal and the second terminal, respectively. signal
A four-image range analog signal multiplier circuit characterized in that it supplies a signal -vd complementary to vd and vd.
JP6319783A 1983-04-11 1983-04-11 Four quadrant analog signal multiplication circuit Granted JPS59188780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6319783A JPS59188780A (en) 1983-04-11 1983-04-11 Four quadrant analog signal multiplication circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6319783A JPS59188780A (en) 1983-04-11 1983-04-11 Four quadrant analog signal multiplication circuit

Publications (2)

Publication Number Publication Date
JPS59188780A JPS59188780A (en) 1984-10-26
JPH0450633B2 true JPH0450633B2 (en) 1992-08-14

Family

ID=13222248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6319783A Granted JPS59188780A (en) 1983-04-11 1983-04-11 Four quadrant analog signal multiplication circuit

Country Status (1)

Country Link
JP (1) JPS59188780A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735050B2 (en) * 2005-05-23 2011-07-27 日産自動車株式会社 Reinforcement structure of food ridge

Also Published As

Publication number Publication date
JPS59188780A (en) 1984-10-26

Similar Documents

Publication Publication Date Title
EP0459513B1 (en) Analog multiplier
US5563598A (en) Differential comparator cirucit
EP0508736B1 (en) Four quadrant analog multiplier circuit of floating input type
US4581545A (en) Schmitt trigger circuit
US4071777A (en) Four-quadrant multiplier
JPS6349271B2 (en)
EP0158646B1 (en) Switched capacitor circuits
EP0483419A1 (en) Fully differential sample and hold adder circuit
KR0161512B1 (en) Integrator circuit
KR950014094B1 (en) A method of and a circuit arrangement for processing sampled analogue electrical signals
US5254889A (en) MOSFET analog multiplier
US3696305A (en) High speed high accuracy sample and hold circuit
US5966040A (en) CMOS current-mode four-quadrant analog multiplier
US4387439A (en) Semiconductor analog multiplier
US4101966A (en) 4-quadrant multiplier
JPH0450633B2 (en)
US4156924A (en) CMOS Analog multiplier for CCD signal processing
US5805007A (en) Low-power, low-voltage four-quadrant analog multiplier, particularly for neural applications
GB2140639A (en) An integrated circuit
Langlois Comments on'A CMOS four-quadrant multiplier': effects of threshold voltage
Igarashi et al. Design of very low‐distortion, four‐quadrant analog multiplier‐type CMOS‐OTA considering variation of mobility according to the gate voltage
Maundy et al. Useful multipliers for low-voltage applications
JP3522457B2 (en) Vector absolute value calculation circuit
JPS60198915A (en) Voltage comparator
EP0630107A1 (en) Differential load stage with stepwise variable impedance, and clocked comparator comprising such a load stage