JPS59188519A - Magnetism developing body - Google Patents

Magnetism developing body

Info

Publication number
JPS59188519A
JPS59188519A JP6386783A JP6386783A JPS59188519A JP S59188519 A JPS59188519 A JP S59188519A JP 6386783 A JP6386783 A JP 6386783A JP 6386783 A JP6386783 A JP 6386783A JP S59188519 A JPS59188519 A JP S59188519A
Authority
JP
Japan
Prior art keywords
magnetic
medium
scale
magnetization
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6386783A
Other languages
Japanese (ja)
Inventor
Eigo Kawakami
英悟 川上
Hiroshi Yoneda
弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6386783A priority Critical patent/JPS59188519A/en
Publication of JPS59188519A publication Critical patent/JPS59188519A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • G01D5/2497Absolute encoders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To confirm by eye the magnetized state by magnetizing by patterning a magnetic medium by the prescribed pattern. CONSTITUTION:A magnetic scale is obtained by spreading or painting the magnetic medium 1 on a nonmagnetic material 2, etching the medium to the necessary pattern, and then magnetizing it. The magnetization effected by passing the scale after the etching through a uniform magnetic field. The confirmation is possible by eye in the inspection of the magnetization inversion length and the mutual relation among the tracks, and the titled body is suitable for mass production. The medium 1 is provided in the material 2 as shown in the figures, and dot and X marks indicate the magnetizing direction.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、新規な発磁体、殊に磁気センサと組合せて
用いられる発磁体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a novel magnetic generating body, particularly to a magnetic generating body used in combination with a magnetic sensor.

〔従来技術〕[Prior art]

従来、磁気センサと組合せて用いられる発磁体のひとつ
の応用例としては、位置や角度を検出する磁気エンコー
ダがある。この場合、発磁体は、位置や角度の信号に応
じて着磁されたいわゆる磁気スケールとしての役目を持
つ。
Conventionally, one application example of a magnet generating body used in combination with a magnetic sensor is a magnetic encoder that detects position or angle. In this case, the magnetizing body functions as a so-called magnetic scale that is magnetized according to position and angle signals.

以下、磁気スケールを例にとり説明するが、本発明は、
これに限定されることなく磁気を利用する種々の装置に
適用される。第1図および第2図に従来の磁気スケール
を示す。それぞれ、第1図が面内磁化、第2図が垂直磁
化を用いた場合で、いずれもlが磁性媒体、2が非磁性
材料である。
The present invention will be explained below using a magnetic scale as an example.
The present invention is not limited to this, but can be applied to various devices that utilize magnetism. FIGS. 1 and 2 show conventional magnetic scales. In each case, FIG. 1 shows the case where in-plane magnetization is used, and FIG. 2 shows the case where perpendicular magnetization is used, and in both cases, l is a magnetic medium and 2 is a non-magnetic material.

また、矢印および■、■は磁化の方向を示す(以下同様
)。これらの磁気スケールでは、非磁性材料上に磁性媒
体を被着ないしは塗布した後、隣接部分が逆向きになる
ように着磁するのが一般的である。したがって、従来の
場合、着磁のための複雑な装置が必要となる上、磁化反
転長やトラック相互の関係が正しく着磁されたかどうか
の確認も容易ではないため、量産には向かない面があっ
た。更に、面内磁化の場合、磁化反転長が大きくなる」
二位トラックでは、その特性上、各着磁領域の中央部で
、磁界が非常に小さくなり、垂直磁化の場合も上位トラ
ックはど自己減磁作用が顕著になるため、各着磁領域の
中央部では磁界が小さくなる傾向がある。ゆえに、従来
の磁気スケールでは、特に上位トラックで一様な強さの
磁界が得られないために、磁気センサが検出エラーを引
起す恐れがあった。
Further, arrows, ■, and ■ indicate the direction of magnetization (the same applies below). In these magnetic scales, a magnetic medium is generally deposited or applied onto a non-magnetic material and then magnetized so that adjacent portions are oriented in opposite directions. Therefore, in the conventional case, a complicated device is required for magnetization, and it is not easy to confirm whether the magnetization reversal length and the relationship between tracks are correctly magnetized, which makes it unsuitable for mass production. there were. Furthermore, in the case of in-plane magnetization, the magnetization reversal length becomes large.
Due to its characteristics, in the second-place track, the magnetic field becomes very small at the center of each magnetized region, and even in the case of perpendicular magnetization, the self-demagnetization effect becomes more pronounced in the upper track. The magnetic field tends to be smaller in the Therefore, in the conventional magnetic scale, since a magnetic field of uniform strength cannot be obtained particularly in the upper track, there is a risk that the magnetic sensor may cause a detection error.

また、磁気スケールに限らず、着磁部の面積が大きな発
磁体においても同様の間顕点があった。
In addition, not only magnetic scales but also magnetized bodies with large areas of magnetized portions had similar conspicuous points.

〔目   的〕〔the purpose〕

この発明の目的は、磁気スケールにおいては、」−述従
来例の欠点を除去すると同時に、縦横比が1に近く、比
較的大きな面積の着磁部を有する発磁体においては、磁
気センサに対して一様な強さの磁界を与えることのでき
る発磁体を提供することにある。
The purpose of the present invention is to eliminate the disadvantages of the conventional example in a magnetic scale, and at the same time, to solve the problem in a magnetic sensor in a magnet generating body having an aspect ratio close to 1 and a relatively large area of magnetized portion. The object of the present invention is to provide a magnet generating body capable of applying a magnetic field of uniform strength.

〔実施例1,2〕 第3図および第4図に、この発明の実施例として、それ
ぞれ磁気スケールにこの発明を適用した場合を示し、第
3図は第1図に、第4図は第2図に夫々相当する。これ
らの磁気スケールは、非磁性材料上に磁性媒体を被着な
いしは塗布し、必要とするパターンにエツチングした後
、着磁することによって得られる。着磁に際しては、エ
ツチング後のスケールを一様磁界中に通してやればよく
、着磁装置は簡単なものでよい。また、磁化反転長やト
ラック相互の関係を検査するには、従来は特殊なビュワ
ーや装置が必要であったが、この発明によれば目視によ
る確認で十分である。したがって、量産に向いていると
いえる。なお、エツチングにより、磁性媒体の抜けた部
分は、そのままでもよいが、第3図および第4図の如く
、非磁性材料で埋めてやると、スケール表面を滑らかに
できるので、磁気センサを該スケールに対して接触摺動
させる場合には有効である。
[Example 1, 2] Figures 3 and 4 show cases in which the present invention is applied to a magnetic scale as examples of the present invention, respectively. Figure 3 is similar to Figure 1, and Figure 4 is similar to Figure 4. They correspond to Figure 2. These magnetic scales are obtained by depositing or coating a magnetic medium on a non-magnetic material, etching it into a desired pattern, and then magnetizing it. For magnetization, the scale after etching may be passed through a uniform magnetic field, and a simple magnetization device may be used. Further, in order to inspect the magnetization reversal length and the relationship between tracks, conventionally a special viewer or device was required, but according to the present invention, visual confirmation is sufficient. Therefore, it can be said that it is suitable for mass production. Note that the part where the magnetic medium has come out due to etching may be left as is, but if it is filled with non-magnetic material as shown in Figures 3 and 4, the surface of the scale can be made smooth, so the magnetic sensor can be attached to the scale. This is effective when sliding in contact with the object.

〔実施例3〕 次に着磁領域の中央部での磁界の減少による磁気センサ
の検出エラーを防ぐ方法を説明する。第5図に、この発
明の第3の実施例を示す。ストライブのピッチSが最小
磁化パターン見より小さくなるように(S<l 、着磁
領域をスケール幅方向に分割し、面内磁化の方向を変え
てやることによって、幅方向の分割前着磁領域の中央部
での磁界の減少がなくなり、磁気センサにとって一様な
強さの磁界(スケール主表面に垂直な方向)を得ること
ができる。
[Embodiment 3] Next, a method for preventing detection errors of the magnetic sensor due to a decrease in the magnetic field at the center of the magnetized region will be described. FIG. 5 shows a third embodiment of the invention. By dividing the magnetized region in the scale width direction and changing the direction of in-plane magnetization so that the pitch S of the stripes is smaller than the minimum magnetization pattern (S < l), the magnetization before division in the width direction is There is no decrease in the magnetic field at the center of the area, and a magnetic field of uniform strength (in the direction perpendicular to the scale main surface) can be obtained for the magnetic sensor.

〔実施例4〕 第6図に、この発明の別の実施例として、第4図のスケ
ールにこの発明を適用した場合を示す。
[Embodiment 4] FIG. 6 shows another embodiment of the present invention in which the present invention is applied to the scale shown in FIG. 4.

この場合も第5図と同様に、着磁領域をスケール幅方向
に分割し、当該領域の縁磁界を利用することにより、各
着磁領域の全域にわたって、磁気センサに対してほぼ一
様な強さの磁界が得られる。
In this case, as in Fig. 5, by dividing the magnetized region in the scale width direction and using the edge magnetic field of the region, a nearly uniform strength is applied to the magnetic sensor over the entire region of each magnetized region. A magnetic field of 300 mm can be obtained.

なお、第5図は第7図のように分割しても同様の効果が
得られる。第8図に、Go−Orに垂直磁化媒体の場合
に、数値解析により計算したこの発明の効果を示す。同
図(a)は、スケールの該スケール主表面に垂直で、分
割方向にも垂直な方向の断面図を示し、同図(b)は同
図(a)のように座標軸をとった場合のyの方向の磁界
強度HYのX方向分布であり、値は相対的なものである
。磁線に比べて、媒体を115に分割することによって
、磁界強度の凹形の分布がなくなり、より強い磁界が得
られる(実線)ことがわかる。この着磁領域の分割は、
一様な強さの磁界が得られない領域に対してのみ行なえ
ばよく、全ての領域にわたって分割する必要はない。そ
して、分割には前述の実施例のように非磁性材料を用い
るほか、空隙を設けてもよい。なお、分割の幅やピッチ
の最適値は、磁性媒体、その厚さ、磁化方向などが異な
ると変わってくるが、公知の計算機による数値解析法で
求めることができるので、詳細は省略する。
Note that even if FIG. 5 is divided as shown in FIG. 7, the same effect can be obtained. FIG. 8 shows the effect of the present invention calculated by numerical analysis in the case of a Go-Or perpendicular magnetization medium. Figure (a) shows a cross-sectional view of the scale in a direction perpendicular to the scale main surface and perpendicular to the division direction, and figure (b) shows a cross-sectional view of the scale when the coordinate axes are taken as in figure (a). This is the X-direction distribution of the magnetic field strength HY in the y-direction, and the values are relative. It can be seen that by dividing the medium into 115 parts, the concave distribution of the magnetic field strength is eliminated and a stronger magnetic field is obtained (solid line) compared to the magnetic wire. The division of this magnetized region is
It is only necessary to perform this for regions where a magnetic field of uniform strength cannot be obtained, and there is no need to divide the entire region. In addition to using a non-magnetic material as in the above-mentioned embodiment for division, a gap may be provided. Note that the optimal values for the width and pitch of the divisions vary depending on the magnetic medium, its thickness, magnetization direction, etc., but since they can be determined by a known numerical analysis method using a computer, the details will be omitted.

前述の実施例における磁性媒体の内、面内磁化媒体(例
えば、塗布タイプとしてγ−F e 203.Cr 0
2 。
Among the magnetic media in the above embodiments, in-plane magnetized media (for example, γ-Fe 203.Cr 0 as a coating type)
2.

メタルテープ川Fe合金、蒸着タイプとしてGo−Ni
なと)は、従来より用いられているもので、安定性があ
り、その信頼性が確認されているものである。そして、
垂直磁化媒体(例えば、Go−〇rなど)は、縁部分で
の磁化の反転が急峻であるので、磁気スケールに用いる
場合には、位置誤差を小さくすることができる。また、
面内磁化媒体の内の蒸着タイプのものや垂直磁化媒体は
膜厚を薄くできるので、微細パターンの形成を可能にす
る効果を有する。
Metal tape River Fe alloy, Go-Ni as vapor deposition type
) has been used for a long time, is stable, and its reliability has been confirmed. and,
Perpendicularly magnetized media (for example, Go-R, etc.) have steep magnetization reversals at the edges, so when used in magnetic scales, position errors can be reduced. Also,
Among in-plane magnetization media, vapor deposition type media and perpendicular magnetization media can be made thinner, so they have the effect of making it possible to form fine patterns.

なお、磁性媒体は、パーマロイのような軟磁性体であっ
てもよい。この場合、例えば、ゴム磁石を磁気センサに
取付けるなどして、バイアス磁界を与えてやれば、軟磁
性体は、該センサが接近する度に着磁されるので、前も
って着磁する必要がなくなると同時に、着磁装置も不要
となる。
Note that the magnetic medium may be a soft magnetic material such as permalloy. In this case, if a bias magnetic field is applied, for example by attaching a rubber magnet to a magnetic sensor, the soft magnetic material will be magnetized each time the sensor approaches, eliminating the need to magnetize it in advance. At the same time, a magnetizing device is also not required.

一方、ベース材として、ポリエステル、ポリイミドのよ
うなフレキシブル材を用いると、円筒形の物体に貼付す
ることにより、磁気センサと組合わせて回転型磁気エン
コーダを構成することができる。
On the other hand, if a flexible material such as polyester or polyimide is used as the base material, a rotary magnetic encoder can be constructed by attaching it to a cylindrical object and combining it with a magnetic sensor.

更に、磁気センサとして、磁気抵抗効果型マルチヘッド
(MRヘッド)を用いて、この発明と組合せて磁気エン
コーダを構成してもよい。ホール素子やリング型磁気ヘ
ッドと異なり、MRヘッドは静磁界や磁界の正負に関係
なく出力が得られるので、この発明による着磁領域の分
割により、磁界が小さなピッチで正負に分布している場
合には、出力が零とならず特に有効である(第8図参照
)。
Furthermore, a magnetic encoder may be constructed by using a magnetoresistive multi-head (MR head) as a magnetic sensor and combining it with the present invention. Unlike Hall elements and ring-type magnetic heads, MR heads can obtain output regardless of whether the static magnetic field or the magnetic field is positive or negative. This is particularly effective when the output does not become zero (see Figure 8).

以上の説明は、磁気エンコーダの磁気スケールについて
行なったが、この発明はこれに限るものではなく、磁気
センサと組合せて使用される前記特許請求の範囲の全て
の発磁体に適用できるものである。
Although the above description has been made regarding the magnetic scale of a magnetic encoder, the present invention is not limited thereto, and can be applied to all magnetizing bodies according to the claims that are used in combination with a magnetic sensor.

〔効  果〕〔effect〕

以上説明したように、この発明によれば、次のような効
果がある。
As explained above, the present invention has the following effects.

(1)着磁装置が簡単もしくは不要となり、着磁状態を
目視で確認できる。
(1) A magnetizing device is simple or unnecessary, and the state of magnetization can be visually confirmed.

(2)磁気センサに一様な強さの磁界を与えることがで
き、検出エラーを防止できる。
(2) A magnetic field of uniform strength can be applied to the magnetic sensor, and detection errors can be prevented.

(3)磁性媒体に軟磁性体を用いると、発磁体としての
経時変化を無視できる。
(3) When a soft magnetic material is used as the magnetic medium, changes over time as a magnetizing material can be ignored.

(4)ベース材としてフレキシブル材を用いて、例えば
、磁気センサとともにカメラのレンズ鏡筒に取付ければ
、レンズの位置や絞りの状態を検知できる。
(4) By using a flexible material as the base material and attaching it together with a magnetic sensor to the lens barrel of a camera, the position of the lens and the state of the aperture can be detected.

(5)磁気センサとして、磁気抵抗型マルチへ、ンドを
用いて、磁気エンコーダを構成すれば、長い距離を高精
度に位置検出できる。
(5) If a magnetic encoder is constructed using a magnetoresistive multi-sensor as a magnetic sensor, the position can be detected over a long distance with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、夫々従来の磁気エンコーダの磁
気スケールを示す説明図、第3図ないし第7図は、夫々
この発明を磁気スケールに適用した実施例の説明図、第
8図(a) 、 (b)は、夫々この発明の効果を示す
磁界強度の分布説明図である。 1−−−−一磁性媒体(着磁領域) 2−−−−一非磁性材料
FIGS. 1 and 2 are explanatory diagrams showing a magnetic scale of a conventional magnetic encoder, FIGS. 3 to 7 are explanatory diagrams of an embodiment in which the present invention is applied to a magnetic scale, and FIG. a) and (b) are explanatory diagrams of the distribution of magnetic field strength showing the effects of the present invention, respectively. 1-----1 magnetic medium (magnetized region) 2-----1 non-magnetic material

Claims (5)

【特許請求の範囲】[Claims] (1)非磁性材料上に磁性媒体が設けられている発磁体
において、該磁性媒体が所定のパターンにパターニング
されて、着磁されている事を特徴とする発磁体。
(1) A magnet generating body in which a magnetic medium is provided on a non-magnetic material, wherein the magnetic medium is patterned into a predetermined pattern and magnetized.
(2)磁性媒体の少なくとも一部が空隙部または非磁性
材料によって、複数のストライプに分割されている特許
請求の範囲第1項に記載の発磁体。
(2) The magnetic body according to claim 1, wherein at least a portion of the magnetic medium is divided into a plurality of stripes by a gap or a nonmagnetic material.
(3)磁性媒体が面内磁化媒体である特許請求の範囲第
1項に記載の発磁体。
(3) The magnetic generating body according to claim 1, wherein the magnetic medium is an in-plane magnetized medium.
(4)磁性媒体が垂直磁化媒体である特許請求の範囲第
1項に記載の発磁体。
(4) The magnetic generating body according to claim 1, wherein the magnetic medium is a perpendicularly magnetized medium.
(5)磁性媒体が軟磁性体である特許請求の範囲第1項
に記載の発磁体。
(5) The magnetic generating body according to claim 1, wherein the magnetic medium is a soft magnetic material.
JP6386783A 1983-04-12 1983-04-12 Magnetism developing body Pending JPS59188519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6386783A JPS59188519A (en) 1983-04-12 1983-04-12 Magnetism developing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6386783A JPS59188519A (en) 1983-04-12 1983-04-12 Magnetism developing body

Publications (1)

Publication Number Publication Date
JPS59188519A true JPS59188519A (en) 1984-10-25

Family

ID=13241682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6386783A Pending JPS59188519A (en) 1983-04-12 1983-04-12 Magnetism developing body

Country Status (1)

Country Link
JP (1) JPS59188519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138820A (en) * 1988-11-18 1990-05-28 Makome Kenkyusho:Kk Magnetic scale

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663203A (en) * 1979-10-26 1981-05-29 Sharp Corp Magnetic scale

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663203A (en) * 1979-10-26 1981-05-29 Sharp Corp Magnetic scale

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138820A (en) * 1988-11-18 1990-05-28 Makome Kenkyusho:Kk Magnetic scale

Similar Documents

Publication Publication Date Title
US5018037A (en) Magnetoresistive read transducer having hard magnetic bias
US5079035A (en) Method of making a magnetoresistive read transducer having hard magnetic bias
US5768066A (en) Magnetoresistive head having an antiferromagnetic layer interposed between first and second magnetoresistive elements
EP0628835A2 (en) Magnetoresistive sensor
US20070268617A1 (en) Magnetic media having a servo track written with a patterned magnetic recording head
JPH10221114A (en) Detecting device
KR950004109A (en) Magnetoresistive read transducer, manufacturing method of magnetoresistive read transducer and magnetic storage system
JP2007508652A (en) Patterned magnetic recording head with termination pattern having a curved portion
JP2790811B2 (en) Thin film magnetic head
US4547824A (en) Dual biasing for integrated inductive MR head
JPH08122095A (en) Position detector
JPH04110610A (en) Magnetic encoder
US7504167B2 (en) Contact magnetic transfer template having magnetic islands of antiferromagnetically-coupled ferromagnetic films
JPS59188519A (en) Magnetism developing body
JP2960570B2 (en) Magnetic encoder
US20040017188A1 (en) Magnetic detection apparatus
JPH0845030A (en) Magneto-resistive magnetic head
KR100196654B1 (en) Magnetoresistive sensor having a bias field applied at approximately 56 deg
JP2746226B2 (en) Magnetic field detection method using magnetoresistive element
JPH03282368A (en) Magnetic sensor
EP0430672A2 (en) Magnetoresistive transducer
JP2929714B2 (en) Angle detector
JPH048852B2 (en)
JPS599987A (en) Magnetoresistance effect element
JPH0710243Y2 (en) Magnetic linear scale