JPS5918688A - Gallium phosphide light emitting diode - Google Patents

Gallium phosphide light emitting diode

Info

Publication number
JPS5918688A
JPS5918688A JP57128197A JP12819782A JPS5918688A JP S5918688 A JPS5918688 A JP S5918688A JP 57128197 A JP57128197 A JP 57128197A JP 12819782 A JP12819782 A JP 12819782A JP S5918688 A JPS5918688 A JP S5918688A
Authority
JP
Japan
Prior art keywords
layer
impurity concentration
light emitting
junction
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57128197A
Other languages
Japanese (ja)
Inventor
Kentaro Inoue
健太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57128197A priority Critical patent/JPS5918688A/en
Publication of JPS5918688A publication Critical patent/JPS5918688A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/305Materials of the light emitting region containing only elements of group III and group V of the periodic system characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions

Abstract

PURPOSE:To obtain ohmic contact of an electrode with light absorption being suppressed, by forming a thin P layer, whose impurity concentration is aproximately an order of magnitude higher, on a P layer, which forms a P-N junction, thereby obtaining high light emitting efficiency. CONSTITUTION:N type layers 2-4 are epitaxially grown on an N type GaP substrate 1. In these N type layers, the concentration of the layer 2, which is closest to the substrate 1, is made high, and the impurity concentrations are sequentially decreased. Finally, the layer, whose impurity concentration is 5X 10<16>cm<-3> or less, is grown. Zn doped P type layers 5 and 6 are epitaxially grown on said layer 4, and a P-N junction 7 is formed. In this case, it is convenient to obtain high light emitting efficiency when the impurity concentration difference of an order of magnitude or more is provided in the junction 7. However, the ohmic contact of the electrode cannot be obtained under this state. Therefore, the impurity concentration of the layer 6 is made higher than that of the layer 5 by an order of magnitude. However, since the impurity concentration of the layer 6 is high, light absorption tends to occur. Therefore, it is required that the thickness of the layer 6 is made to be 10mum or less.

Description

【発明の詳細な説明】 本発明は高輝度な緑色発光をするカリウム燐発光咬イオ
ードに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a potassium phosphorus-emitting diode that emits high-intensity green light.

従来ガリウム燐を用いた緑色発光の発光タイオードにお
いては液相エヒタ+シャル成長法において、予じめ不純
物を所定量仕込んだ融液を用いていたため、第1図に示
した濃度分布口の如く、基板直後1a)の不純物濃度が
最も低く、Pn接合Q7)附近のn層(b)では不純物
濃度が高くなっていた。このため発光タイオードとして
の特性は安定してぃたが、pi接合(1ηでの不純物濃
度差が小さくなって発光効率は0.296以下となって
いた。
Conventional green light-emitting diodes using gallium phosphorus use a melt containing a predetermined amount of impurities in the liquid-phase Echter+Shall growth method, so that the concentration distribution opening shown in Figure 1 is The impurity concentration immediately after the substrate 1a) was the lowest, and the impurity concentration was high in the n layer (b) near the Pn junction Q7). Therefore, the characteristics as a light emitting diode were stable, but the difference in impurity concentration at the pi junction (1η) became small and the luminous efficiency was 0.296 or less.

そこでエヒタ士シャル成長に休止時間を設けたり、気相
により融液中の不純物濃度に干渉する事で第2図に示す
如(pn接合(27)に近ずくに従ってn層tC)の不
純物濃度を下げる事ができた。ところが2層1d)はI
 X 10”c!lI−’程度の高不純物濃度のままで
あるためPn接合(5)付近で結晶性が乱れたり、せっ
か(Pn接合(27)で放出された光がP層で吸収され
たり、発光に寄与する亜鉛がn層へ拡散して傾斜接合に
なってしまう。従って光取出し効率が低下し、非発光再
結合中心が発生するので寿命が短かく全体的に暗い。
Therefore, the impurity concentration can be reduced as shown in Fig. 2 (the n-layer tC approaches the p-n junction (27)) by providing a pause time for the physical growth and by interfering with the impurity concentration in the melt using the gas phase. I was able to lower it. However, the second layer 1d) is I
Since the impurity concentration remains high at about Zinc, which contributes to light emission, diffuses into the n-layer, resulting in a tilted junction.Therefore, the light extraction efficiency decreases, and non-radiative recombination centers are generated, resulting in a short lifetime and overall darkness.

本発明は上述の点を考慮してなされたもので、以下本発
明を実施例に基づいて詳細に説明する。
The present invention has been made in consideration of the above points, and will be described in detail below based on examples.

第3図1a)は本発明実施例のカリウム燐発光タイオー
ドの模式図で、同図1b)はその不純物濃度分布図であ
る。図において(1)はチ3コラルス十−法で引上げら
れスライスされたn型のガリウム燐基板で、不純物濃度
は1〜3 X 10 ”a!I−”eアロ。(2)+3
1 +41 ハソノ& 板(11上にエヒタ牛シセル成
長されたn型層で、基板(1)に最も近いn型層(2)
は結晶の整合をとるため高濃度にしてあり、順次不純物
濃度を下げていっC1最後はア:、Jtニアを導入し、
窒素は多いが発光中心をくずす81等の不純物を除去し
た0、 5〜1.2 X I D 16cyt−’(D
不純物濃度(7)n型層(4)を成長させる。C511
61は同じくエピタ士シャル成長させたP型層で、いず
れも発光に寄与する不純物源として亜鉛がドープしであ
る。緑色発光に寄与する不純物は種々の説があり、n側
のシリコンとP側の炭素が好ましいとする説もあるが、
熱的に不安定である。本発明では一般的なテルルや亜鉛
を準位とし窒素で発光を促進させるという説に依ってお
り、この場合Pn接合(7)に1桁以上の不純物濃度差
をもたせると共にn側に窒素、P側に亜鉛をドープして
おくのが最も発光効率がよく安定している事がわかった
。従ってP型層(5)は0.5〜t 4 x 10  
α の不純物濃度がよいがこのままでは電極のオーミッ
クがとれないので、その上に不純物濃度が略々1X10
  cm  のP型層(6)を設ける。但しこのP型層
(61は不純物濃度が高いので光吸収を生じやすく、従
って10μm以下にする必要がある。
FIG. 3 1a) is a schematic diagram of a potassium phosphorous light emitting diode according to an embodiment of the present invention, and FIG. 3 1b) is an impurity concentration distribution diagram thereof. In the figure, (1) is an n-type gallium phosphide substrate pulled and sliced by the Chicorals method, with an impurity concentration of 1 to 3 x 10 ``a!I-''e allo. (2)+3
1 +41 Hasono & Board (N-type layer grown on top of 11, n-type layer (2) closest to the substrate (1)
The impurity concentration is kept high to ensure crystal matching, and the impurity concentration is gradually lowered until C1, where A:, Jtnia is introduced,
0, 5 to 1.2 X I D 16cyt-' (D
Grow an n-type layer (4) with impurity concentration (7). C511
Reference numeral 61 designates a P-type layer also epitaxially grown, and both are doped with zinc as an impurity source contributing to light emission. There are various theories about the impurities that contribute to green light emission, and some say that silicon on the n-side and carbon on the p-side are preferable.
It is thermally unstable. The present invention relies on the theory that general tellurium and zinc are used as levels and nitrogen promotes luminescence. It was found that doping the side with zinc provides the best luminous efficiency and stability. Therefore, the P-type layer (5) has a thickness of 0.5 to t 4 x 10
Although the impurity concentration of α is good, the ohmic of the electrode cannot be maintained as it is, so the impurity concentration is approximately 1X10.
A P-type layer (6) of cm 2 is provided. However, since this P-type layer (61) has a high impurity concentration, it tends to absorb light, so it needs to be 10 μm or less.

以上の様な構造にする事により、Pn接合(7)付近で
は略1桁の不純物71度差があり、しかも高濃度のP層
(6)が離れているので、pn接合(7)での結晶性が
よく、非発光再結合中心が少なく、亜鉛の拡散が少ない
。この為Pn接合(7)は階段接合が保たれ注入効率が
高くなる。その結果発光効率0.4%を得る事が出来た
。しかも薄く高不純物濃度のP型層(61がある為、光
吸収をおさえたまま電極のλ−三ラック得る事が出来た
。尚この様な効果はpn接合付近のn層濃度が低い程効
果が大きいが、nIm濃度が5X10”14以下の時に
効果が大きい。
By creating the structure as described above, there is an impurity difference of approximately one digit of 71 degrees near the Pn junction (7), and since the high concentration P layer (6) is far away, the difference at the pn junction (7) Good crystallinity, fewer non-radiative recombination centers, and less zinc diffusion. For this reason, the Pn junction (7) maintains a stepped junction, increasing the injection efficiency. As a result, a luminous efficiency of 0.4% could be obtained. Moreover, since there is a thin P-type layer (61) with a high impurity concentration, it was possible to obtain an electrode of λ-3 lac while suppressing light absorption.This effect is more effective as the n-layer concentration near the p-n junction is lower. is large, but the effect is great when the nIm concentration is 5×10”14 or less.

以上の如く本発明は、n型ガリウム燐基板と、その上に
積層され表面の不純物濃度が5X1016cm−5以F
のn層と、そのn層表面に積層された亜鉛を含む第1の
P層と、その第1のP層上に積層され第1のP層より略
1桁不純物濃度がiK < 10μm以下の厚みを有す
る第2のP層を具備したカリウム燐発光づイオードであ
るから、特性が安定し高発光効率、高光取出率のため輝
度が高い、。
As described above, the present invention includes an n-type gallium phosphorous substrate and a layered substrate having an impurity concentration of 5X1016 cm-5 or more on the surface.
an n-layer, a first p-layer containing zinc laminated on the surface of the n-layer, and an impurity concentration of approximately one order of magnitude lower than that of the first p-layer laminated on the first p-layer with an impurity concentration of iK < 10 μm or less. Since it is a potassium phosphorus emitting diode with a thick second P layer, its characteristics are stable and its brightness is high due to its high luminous efficiency and high light extraction rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は発光クイオードの特性を説明するため
の不純物濃度分布図、第3図1a)は本発明実施例のガ
リウム燐発光タイオードの模式図、同図+h)はその不
純物濃度分布図である。 図において(1)はカリウム燐基板、+21 +31 
(41はn型層、C51(61はP型層、(7)はPn
接合である。 第1□1          第2図 第8図 (G)           (b)
Figures 1 and 2 are impurity concentration distribution diagrams for explaining the characteristics of a light emitting diode, Figure 3 1a) is a schematic diagram of a gallium phosphorous light emitting diode according to an embodiment of the present invention, and +h) of the same figure is its impurity concentration distribution. It is a diagram. In the figure, (1) is a potassium phosphorus substrate, +21 +31
(41 is an n-type layer, C51 (61 is a p-type layer, (7) is a Pn
It is a joining. 1□1 Figure 2 Figure 8 (G) (b)

Claims (1)

【特許請求の範囲】[Claims] 1)n型カリウム燐基板と、その上に積層され表面の不
純物濃度が5xlOas  以下のn層と、そのn層表
面に積層された亜鉛を含む第1のP層と、その第1の2
層上に積層され第1のP層より略1桁不純物1M度が高
<10μm以下の厚みを有する第2のP層を具備した率
を特徴とするカリウム燐発光ダイオード。
1) An n-type potassium phosphorus substrate, an n layer laminated thereon and having a surface impurity concentration of 5xlOas or less, a first P layer containing zinc laminated on the surface of the n layer, and the first two
A potassium phosphorous light emitting diode comprising a second P layer laminated on top of the first P layer and having a thickness of less than 10 μm and having an impurity concentration of approximately one order of magnitude higher than that of the first P layer.
JP57128197A 1982-07-21 1982-07-21 Gallium phosphide light emitting diode Pending JPS5918688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57128197A JPS5918688A (en) 1982-07-21 1982-07-21 Gallium phosphide light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57128197A JPS5918688A (en) 1982-07-21 1982-07-21 Gallium phosphide light emitting diode

Publications (1)

Publication Number Publication Date
JPS5918688A true JPS5918688A (en) 1984-01-31

Family

ID=14978856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57128197A Pending JPS5918688A (en) 1982-07-21 1982-07-21 Gallium phosphide light emitting diode

Country Status (1)

Country Link
JP (1) JPS5918688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406093A (en) * 1993-05-31 1995-04-11 Shin-Etsu Handotai Co., Ltd. Gap pure green light emitting element substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406093A (en) * 1993-05-31 1995-04-11 Shin-Etsu Handotai Co., Ltd. Gap pure green light emitting element substrate

Similar Documents

Publication Publication Date Title
JP2650730B2 (en) Pn junction type light emitting diode using silicon carbide semiconductor
JP2003309284A (en) P-n junction boron phosphide semiconductor light- emitting element and its manufacturing method and light source for display device
JP2681352B2 (en) Light emitting semiconductor device
JPH04229665A (en) Semiconductor light-emitting device
JP2579326B2 (en) Epitaxial wafer and light emitting diode
JPS5918688A (en) Gallium phosphide light emitting diode
JPH055191B2 (en)
JP3792817B2 (en) GaAsP epitaxial wafer and manufacturing method thereof
JPH0897466A (en) Light emitting device
JPH08139358A (en) Epitaxial wafer
JP2000349334A (en) Light emitting diode and manufacture thereof
JPH10284756A (en) Light-emitting diode
JP2795885B2 (en) Semiconductor light emitting diode
JP2680762B2 (en) Semiconductor light emitting device
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
JP3723314B2 (en) Semiconductor light emitting device
JPS5958878A (en) Semiconductor light emitting device
US20060284192A1 (en) Radiation-emitting semi-conductor component
JPH0547996B2 (en)
JP3326261B2 (en) Gallium phosphide green light emitting diode and method of manufacturing the same
JP2642782B2 (en) Epitaxial wafer
JPS55124280A (en) Method of fabricating light emitting diode
JPS54152485A (en) Electrode forming method for gallium phosphide light- emitting diode
JP3525704B2 (en) Gallium arsenide arsenide epitaxial wafers and light emitting diodes
JPH07131065A (en) Semiconductor light emitting element