JPS5918661B2 - gas analysis method - Google Patents

gas analysis method

Info

Publication number
JPS5918661B2
JPS5918661B2 JP53141475A JP14147578A JPS5918661B2 JP S5918661 B2 JPS5918661 B2 JP S5918661B2 JP 53141475 A JP53141475 A JP 53141475A JP 14147578 A JP14147578 A JP 14147578A JP S5918661 B2 JPS5918661 B2 JP S5918661B2
Authority
JP
Japan
Prior art keywords
electrode
gas
sulfur dioxide
concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53141475A
Other languages
Japanese (ja)
Other versions
JPS5567649A (en
Inventor
修 浜本
実 中山
正温 高畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP53141475A priority Critical patent/JPS5918661B2/en
Publication of JPS5567649A publication Critical patent/JPS5567649A/en
Publication of JPS5918661B2 publication Critical patent/JPS5918661B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は、電解によるガス分析法に関し、さらに詳しく
は、窒素酸化物、二酸化硫黄等を含むガスを電解還元に
より分別定量するガス分析法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas analysis method using electrolysis, and more particularly to a gas analysis method for fractionating and quantifying gases containing nitrogen oxides, sulfur dioxide, etc. by electrolytic reduction.

鉄錯体を用いるガス分析法として、アミノカルボアト第
一鉄錯体(特願昭51−102861号)やオキシカル
ボアト第一鉄錯体(特願昭53一15701号)の溶液
を吸収剤とする方法が知られている。
As a gas analysis method using an iron complex, a method using a solution of ferrous aminocarboate complex (Japanese Patent Application No. 102861/1988) or ferrous oxycarboate complex (Japanese Patent Application No. 15701/1989) as an absorbent. It has been known.

これらの吸収液を用いると、次のようなガス分析上の利
点がある。(1)とくにアミノカルボアト第一鉄錯体を
用いる場合、窒素酸化物、二酸化硫黄ともに完全に吸収
することが可能であり、一般のガス分析計の較正に用い
る標準ガスを不要にすることができる。
Using these absorption liquids has the following advantages in gas analysis. (1) In particular, when using an aminocarboatoferrous complex, it is possible to completely absorb both nitrogen oxides and sulfur dioxide, making it possible to eliminate the need for standard gases used to calibrate general gas analyzers. .

すなわち、標準液を亜硝酸ナトリウム、亜硫酸ナトリウ
ムの添加によつて調整し、これで分析計を較正すること
が容易に行えるようになつた。(2)窒素酸化物に対す
る吸収率にトロシル錯体の生成定数に=〔Fe(No)
L〕/(〔Fe(■)L〕・PNo)、但し、Fe(N
o)Lはニトロシル錯体、F(■)Lは第一鉄錯体、P
NOは一酸化窒素分圧)が大きいため、溶液中の被測定
物質濃度が大きくなつて、ガス分析の高感度化が可能で
ある。
That is, it has become easy to adjust the standard solution by adding sodium nitrite and sodium sulfite to calibrate the analyzer. (2) Absorption rate for nitrogen oxides and formation constant of trosyl complex = [Fe(No)
L]/([Fe(■)L]・PNo), however, Fe(N
o) L is a nitrosyl complex, F(■)L is a ferrous complex, P
Since NO has a high partial pressure of nitrogen monoxide, the concentration of the substance to be measured in the solution increases, making it possible to increase the sensitivity of gas analysis.

この他、従来の定電位電解法によるガス分析(二酸化硫
黄、窒素酸化物共に測定可能)などと比較して、非常に
高い選択性があり、一つの検出器で最高Ξ成分(酸化性
物質、二酸化硫黄および窒素酸化物)の測定が可能であ
るなどの利点を有しているが、一方、欠点としては次の
項目が挙げられる。(1)自動分析計とする場合、溶液
はくわ返して用いることが好ましい。
In addition, compared to gas analysis using conventional potentiostatic electrolysis method (can measure both sulfur dioxide and nitrogen oxides), it has extremely high selectivity, and one detector can measure the highest Ξ components (oxidizing substances, Although it has advantages such as being able to measure sulfur dioxide and nitrogen oxides, it has the following disadvantages. (1) When used as an automatic analyzer, it is preferable to use the solution after rinsing it.

<ク返し使用の場合、二酸化硫黄や窒素酸化物が溶液に
吸収されて生じた物質(二酸化硫黄とニトロシル錯体)
を処理する工程を設けて、液中の生成物の濃度を低下せ
しめる必要があわ、一つの方法として電解処理工程を設
けていた。また各成分の溶解平衡まで時間をかけてサン
プリングを行う方法も考えられるが、これには長時間を
要し好ましくない。また、この電解工程で二酸化硫黄お
よびニトロシル錯体を還元し、消去する場合、還元中に
遊離硫黄が発生するなどの問題が生じる他、電極反応速
度の大きさによつてはこの電解消去に時間がかかるとい
う問題があつた。(2)第一鉄錯体と酸素との反応の場
合、酸素の還元時に中間生成物の一つとして非常に過激
な化学種(0Hラジカルなど)が生じ、これが鉄鎖体の
配位子を攻撃し、該配位子を劣化させるという問題があ
る。
<When using Kugaeshi, substances generated when sulfur dioxide and nitrogen oxides are absorbed into the solution (sulfur dioxide and nitrosyl complex)
It is necessary to reduce the concentration of the product in the liquid by providing a process for treating it, and as one method, an electrolytic treatment process has been provided. Another possible method is to take time to sample until the solubility equilibrium of each component is achieved, but this is not preferable as it requires a long time. In addition, when reducing and eliminating sulfur dioxide and nitrosyl complexes in this electrolytic process, problems such as the generation of free sulfur occur during reduction, and depending on the electrode reaction rate, this electrolytic elimination takes time. I had a problem with it. (2) In the case of the reaction between ferrous iron complexes and oxygen, very radical chemical species (such as 0H radicals) are generated as one of the intermediate products during the reduction of oxygen, which attacks the ligands of the iron chain. , there is a problem of degrading the ligand.

配位子の濃度が減少すれば第一鉄錯体、Fe()L1の
濃度も減少し、ひいては、ガス中の窒素酸化物濃度が一
定でも、溶液中のニトロシル錯体濃度を減少させること
になる。このため安定した測定値を得るためには、劣化
する配位子量に合わせて、新たに配位子を添加していく
必要がある。本発明の目的は、上記(1),(2)の欠
点をなくし、安定した自動分析が可能な電解によるガス
分析法を提供することにある。
If the concentration of the ligand decreases, the concentration of the ferrous complex, Fe()L1, will also decrease, which in turn will reduce the concentration of the nitrosyl complex in the solution, even if the concentration of nitrogen oxides in the gas remains constant. Therefore, in order to obtain stable measured values, it is necessary to add new ligands in accordance with the amount of ligands that are deteriorating. An object of the present invention is to eliminate the drawbacks (1) and (2) above and to provide a gas analysis method using electrolysis that enables stable automatic analysis.

本発明は、第一鉄化合物を含有し、かつ、無機酸を加え
ることにより水素イオン濃度を1以下にした水溶液を、
窒素酸化物、二酸化硫黄および上記溶液中の第一鉄化合
物を酸化し得る酸化性成分のうち、少なくとも一成分を
含むガスと接触せしめ、該接触によつて上記溶液中に生
じた化学種を電解定量し、これにより上記ガス中の三成
分のうち、少なくとも一成分の濃度を計測することを特
徴とする。
The present invention provides an aqueous solution containing a ferrous compound and having a hydrogen ion concentration of 1 or less by adding an inorganic acid.
Contact with a gas containing at least one of nitrogen oxides, sulfur dioxide, and an oxidizing component capable of oxidizing the ferrous compound in the solution, and electrolyze the chemical species generated in the solution by the contact. quantification, thereby measuring the concentration of at least one component among the three components in the gas.

本発明における吸収液としては、無機系の酸による酸性
第一鉄化合物水溶液が用いられる。
As the absorption liquid in the present invention, an aqueous solution of an acidic ferrous compound made of an inorganic acid is used.

第一鉄は一酸化窒素および二酸化窒素からニトロシル錯
体を生成すると共に、酸化性成分と反応して第二鉄とな
る。これらの反応を起こす割合が一定している限b1精
度よく両成分を定量することができる。また二酸化硫黄
は、この酸性溶液とすみやかに溶解平衡を作b1かつ、
この溶存二酸化硫黄を精度よく測定することが可能であ
る。溶液の酸性度が低下すると二酸化硫黄の溶解平衡が
大きくなつてニトロシル錯体に対する溶存二酸化硫黄量
が大過剰になうニトロシル錯体の検出定量が妨害される
。本発明における吸収液では、従来のクエン酸鉄などを
用いる吸収液と比べて窒素酸化物の溶解平衡がきわめて
小さく、したがつて窒素酸化物に関しては本吸収液にと
つて可能な最大量のニトロシル錯体を液中に生じせしめ
、ニトロシル錯体の検出定量を少しでも容易にする必要
がある。また酸濃度が一定している限b1窒素酸化物、
二酸化硫黄の測定は溶解平衡状態で行なう方が精度がよ
くなる。このため、溶解平衡までの時間を少しでも短か
くして、応答速度を上げるように、特に二酸化硫黄に対
しては、溶液の酸性度を上げることが望ましい。本発明
における検出用電極には、酸化性成分の検出を除いて水
銀を用いることが望ましい。水銀は水素過電圧が大きく
、水素発生反応のような妨害反応を完全に除くことがで
きる。酸化性成分の検出定量は、三成分中最も貴な電極
電位で行われ、ここでは、他の電極材質でも水素発生に
よる妨害はあまv問題にならない。酸素など酸化性成分
と第一鉄との反応は非可逆であり1反応生成物である第
二鉄は液に蓄積するため、これは常に還元して行かねば
ならない。
Ferrous iron generates a nitrosyl complex from nitrogen monoxide and nitrogen dioxide, and reacts with oxidizing components to become ferric iron. As long as the rate at which these reactions occur is constant, both components b1 can be quantified with high accuracy. In addition, sulfur dioxide quickly creates a solubility equilibrium with this acidic solution b1 and
It is possible to measure this dissolved sulfur dioxide with high accuracy. When the acidity of the solution decreases, the solubility equilibrium of sulfur dioxide increases, and the amount of dissolved sulfur dioxide relative to the nitrosyl complex becomes large in excess, which interferes with the detection and quantification of the nitrosyl complex. In the absorption liquid of the present invention, the solubility equilibrium of nitrogen oxides is extremely small compared to conventional absorption liquids using iron citrate, etc. Therefore, regarding nitrogen oxides, the maximum amount of nitrosyl It is necessary to form a complex in a liquid to make the detection and quantification of nitrosyl complexes as easy as possible. Also, as long as the acid concentration is constant, b1 nitrogen oxides,
Measurements of sulfur dioxide are more accurate when carried out under dissolution equilibrium conditions. For this reason, it is desirable to increase the acidity of the solution, especially for sulfur dioxide, in order to shorten the time until dissolution equilibrium as much as possible and increase the response speed. It is desirable to use mercury for the detection electrode in the present invention except for the detection of oxidizing components. Mercury has a large hydrogen overvoltage and can completely eliminate interfering reactions such as hydrogen generation reactions. The detection and quantification of the oxidizing component is carried out at the most noble electrode potential of the three components, and here, even with other electrode materials, interference due to hydrogen generation is not a problem. The reaction between oxidizing components such as oxygen and ferrous iron is irreversible, and one reaction product, ferric iron, accumulates in the liquid, so it must be constantly reduced.

したがつて本発明においては第二鉄還元用の電極を必要
とするが、この電極における電解電流を酸化性成分濃度
に対比させることができるので、この電解電流または電
気量を指標として酸化性成分の濃度の計測が可能となる
。上記ガス濃度の測定に際しては、水銀電極と水銀また
は他の材質からなる電極とを作用極として持つ電解槽内
に吸収液を入れ、さらに上記ガスを導入し、電解槽中の
水銀電極によつて、窒素酸化物、二酸化硫黄および酸化
性成分のうち、少なくとも一成分の濃度を測定すると共
に、もう一方の電極に卦いて、第二鉄を第一鉄に還元し
、この還元電流値または電気量を検出することによつて
、ガス中の酸化性成分の濃度が測定される。
Therefore, in the present invention, an electrode for ferric reduction is required, but since the electrolytic current at this electrode can be compared with the concentration of oxidizing components, the electrolytic current or quantity of electricity can be used as an index to reduce the oxidizing components. It becomes possible to measure the concentration of When measuring the concentration of the above gases, an absorption liquid is placed in an electrolytic cell having a mercury electrode and an electrode made of mercury or other material as working electrodes, the above gas is introduced, and the mercury electrode in the electrolytic cell is used to measure the concentration of the above gas. , the concentration of at least one component among nitrogen oxides, sulfur dioxide, and oxidizing components is measured, and the other electrode is used to reduce ferric iron to ferrous iron, and this reduction current value or quantity of electricity is measured. By detecting this, the concentration of oxidizing components in the gas is measured.

以下、本発明を実施例によりさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 第1図に示す検出器を用い、一酸化窒素、二酸化硫黄、
酸素および窒素の混合ガスを試料として、それぞれの濃
度を変化させて検出器の定量性を検討した。
Example 1 Using the detector shown in Figure 1, nitrogen monoxide, sulfur dioxide,
Using a mixed gas of oxygen and nitrogen as a sample, we examined the quantitative performance of the detector by varying the concentrations of each gas.

吸収液は(1+4)リン酸酸性0.2m01−齢−3硫
酸第一鉄水溶液を使用した。対極液には(1+4)リン
酸を使用し、両液は陰イオン交換膜で分離した。吸収液
1中の第二鉄を還元する陰極4は、白金網電極とし、直
流電解法で、また、二酸化硫黄とニトロシル錯体を回転
水銀電極7で交流ポーラログラフ法によつて、それぞれ
検出、測定した。ここに、交流ポーラログラフ法とは、
検出電極に交流を重畳した直流電圧を掃引するもので、
第3図に示すように、電導度の変化が出力として観察さ
れる。この検出電極7は、内径6mmのガラス管の下端
を多孔質膜で塞ぎ、この膜で水銀を保持する薄膜担持型
の回転水銀電極である。白金陰極4の電極電位は参照電
極9で−0.2対SCEに維持した。
As the absorption liquid, a (1+4) phosphoric acid acidic 0.2 mO1-3 ferrous sulfate aqueous solution was used. (1+4) phosphoric acid was used as the counter electrode solution, and both solutions were separated using an anion exchange membrane. The cathode 4 for reducing ferric iron in the absorption liquid 1 was a platinum wire mesh electrode, and sulfur dioxide and nitrosyl complexes were detected and measured by a DC electrolysis method using a rotating mercury electrode 7 by an AC polarographic method. Here, what is AC polarographic method?
It sweeps a DC voltage with alternating current superimposed on the detection electrode.
As shown in FIG. 3, a change in conductivity is observed as an output. The detection electrode 7 is a rotating mercury electrode of a thin film supporting type, in which the lower end of a glass tube having an inner diameter of 6 mm is closed with a porous membrane, and the membrane holds mercury. The electrode potential of the platinum cathode 4 was maintained at -0.2 vs. SCE at the reference electrode 9.

各含有成分濃度が既知である混合ガス100dTI1J
n−1をガス導入管10から検出器の陰極液1中に通じ
、10分後の各電極の測定値を記録した。一酸化窒素、
二酸化硫黄および酸素のガス中の濃度と測定結果との相
関験量線)を第3図および第4図に示す。図中、Aは二
酸化硫黄に関する検量線、Bは一酸化窒素に関する検量
線、Cは酸素に関する検量線である。図から明らかなよ
うに、いずれの場合も良好な検量線が得られ、膿レベル
の一酸化窒素と二酸化硫黄、パーセントレベルの酸素の
測定に対して、本発明方法が十分な性能を持つているこ
とが明らかである。次に、酸素の含有されない上記混合
ガスを用いて、陰極4の回路を開き以下同様の測定を行
つたが、その結果は、第3図と同じく、良好な検量線が
得られた。
Mixed gas 100dTI1J with known concentration of each component
n-1 was passed through the gas introduction tube 10 into the catholyte 1 of the detector, and the measured values of each electrode after 10 minutes were recorded. nitric oxide,
Correlation curves between the concentrations of sulfur dioxide and oxygen in the gas and the measurement results are shown in FIGS. 3 and 4. In the figure, A is a calibration curve for sulfur dioxide, B is a calibration curve for nitrogen monoxide, and C is a calibration curve for oxygen. As is clear from the figure, good calibration curves were obtained in all cases, and the method of the present invention has sufficient performance for measuring nitric oxide and sulfur dioxide at the pus level and oxygen at the percent level. That is clear. Next, using the above-mentioned mixed gas containing no oxygen, the circuit of the cathode 4 was opened and similar measurements were carried out, and as in the case of FIG. 3, a good calibration curve was obtained.

比較例 1 第1図に示す検出器を用い、吸収液組成以外は実施例1
と同様にして測定を行つた。
Comparative Example 1 Using the detector shown in Figure 1, except for the absorption liquid composition, Example 1 was used.
Measurements were carried out in the same manner.

吸収液1としては、0.01m01−h−3エチレンジ
アミン四酢酸鉄を含む1m0I−Dm−3リン酸二水素
一ナトリウム水溶液を用いた。この場合、ガス導入後3
0分を経過しても、実施例1のような定常性のある測定
値は得られなかつた。そこで、白金陰極4の電位を−0
.85V対SCEとしたところ、ガス導入後約25分で
定常性のある測定値を得た。このように本比較例の吸収
液では、応答に長い時間が必要であつた。つぎに吸収液
1として0.01m01−Dm−3クエン酸鉄を含むリ
ン酸酸性リン酸ナトリウム水溶液(PH3に調整)を用
いたところ、実施例1の条件では、ガス導入後30分を
経過しても、実施例1のように定常性のある測定値は得
られなかつた。
As absorption liquid 1, a 1 m0 I-Dm-3 monosodium dihydrogen phosphate aqueous solution containing 0.01 m01-h-3 iron ethylenediaminetetraacetate was used. In this case, after introducing the gas,
Even after 0 minutes, stable measured values like those in Example 1 were not obtained. Therefore, the potential of the platinum cathode 4 is set to -0
.. When the voltage was set at 85 V vs. SCE, a stable measured value was obtained about 25 minutes after the gas was introduced. As described above, the absorption liquid of this comparative example required a long time for response. Next, when a phosphoric acid acidic sodium phosphate aqueous solution (adjusted to PH3) containing 0.01 m01-Dm-3 iron citrate was used as absorption liquid 1, under the conditions of Example 1, 30 minutes had passed after gas introduction. However, as in Example 1, stable measured values could not be obtained.

そこで白金陰極4の電位を−0.85V対SCEとして
ガス導入後約20分で定常性のある測定値を得た。この
場合も応答によシ長い時間が必要であつた。これらの吸
収液を用いる測定において、ガス組成を一酸化窒素、二
酸化硫黄および窒素の混合組成とし、酸化性成分である
酸素を除外する以外の条件は同一にして測定試験を行つ
たところ、白金陰極電位−0.3V対SCEでは、ガス
導入後30分を経過しても、定常性のある測定値は得ら
れず、実施例1の場合と相違した。
Therefore, the potential of the platinum cathode 4 was set to -0.85 V vs. SCE, and a stable measured value was obtained about 20 minutes after the gas introduction. In this case too, a long time was required for response. In measurements using these absorption liquids, measurement tests were conducted with the gas composition being a mixture of nitrogen monoxide, sulfur dioxide, and nitrogen, and with the same conditions except for the exclusion of oxygen, an oxidizing component. At a potential of -0.3 V vs. SCE, no steady measured value was obtained even after 30 minutes had passed after gas introduction, which was different from the case of Example 1.

しかし、白金電極電位を−0.85V対SCEにした場
合は、ガス導入後約20分で定常性ある測定値を得るこ
とができた。これは、吸収液1中に吸収され、生成した
被電解物質が、−0.85対SCEの電位をもつ電極で
電解を受ける量と、新たに生成する量とがほぼ一定にな
るまで約20分を要するためと考えられる。しかし、白
金電極電位が−0.3対SCEのときは、一酸化窒素お
よび二酸化硫黄に由来する吸収液中の生成物が電解還元
を受けないため、液中の生成物濃度が一定になるには、
吸収平衡が達成されるまで待たなければならず、これに
は1時間以上を要するものと思われる。実施例 2 第2図に示す検出器を用い、一酸化窒素、二酸化硫黄、
酸素および窒素の混合ガスを試料として、それぞれの濃
度を変化させて検出器の定量性を検討した。
However, when the platinum electrode potential was set to -0.85 V vs. SCE, stable measured values could be obtained approximately 20 minutes after gas introduction. This is carried out for approximately 20 minutes until the amount of the electrolyte absorbed in the absorption liquid 1 and generated undergoes electrolysis at an electrode with a potential of -0.85 vs. SCE and the amount newly generated become approximately constant. This is thought to be because it takes several minutes. However, when the platinum electrode potential is -0.3 vs. SCE, the products in the absorption liquid derived from nitrogen monoxide and sulfur dioxide do not undergo electrolytic reduction, so in order for the product concentration in the liquid to be constant,
One must wait until absorption equilibrium is achieved, which may take an hour or more. Example 2 Using the detector shown in Figure 2, nitrogen monoxide, sulfur dioxide,
Using a mixed gas of oxygen and nitrogen as a sample, we examined the quantitative performance of the detector by varying the concentrations of each gas.

吸収液は(1+1)リン酸酸性0.05m01−Dm−
3硫酸第一鉄水溶液を使用した。対極液には(1+1)
リン酸を使用し、両液は多孔性のフツ化エチレン系樹脂
膜で分離した。第二鉄を還元する陰極5は水銀プール電
極とし、吊下滴水銀電極8を二酸化硫黄およびニトロシ
ル錯体の検出電極とし、水銀プール電極電位を−0.2
Vとして、第二鉄と直流法で電解しつつ、吊下滴水銀電
極において、二酸化硫黄とニトロシル錯体を交流ポーラ
ログラフ法で測定し、観察される波の高さを測定した。
ガス導入後10分の波高とそれぞれのガス濃度とは検討
した濃度範囲において良い直線関係を示し、特に一酸化
窒素および二酸化硫黄の場合には原点を通る検量線が得
られる。各ガスの濃度範囲は一酸化窒素0〜446鬼、
二酸化硫黄0〜662膿、酸素0〜2170である。次
に、酸素の測定を吊下滴水銀電極で行わずに、水銀プー
ル電極5の電解電流値を直接読みとつて行つた。
The absorption liquid is (1+1) phosphoric acid acidic 0.05m01-Dm-
An aqueous solution of ferrous sulfate was used. For the counter electrode (1+1)
Phosphoric acid was used, and both liquids were separated using a porous ethylene fluoride resin membrane. The cathode 5 for reducing ferric iron is a mercury pool electrode, the hanging drop mercury electrode 8 is a detection electrode for sulfur dioxide and nitrosyl complexes, and the mercury pool electrode potential is -0.2.
As V, while electrolyzing with ferric iron using a direct current method, sulfur dioxide and a nitrosyl complex were measured using an AC polarographic method using a hanging mercury electrode, and the height of the observed waves was measured.
The wave height 10 minutes after gas introduction and the concentration of each gas show a good linear relationship in the concentration range studied, and especially in the case of nitrogen monoxide and sulfur dioxide, a calibration curve passing through the origin can be obtained. The concentration range of each gas is nitric oxide 0 to 446,
Sulfur dioxide is 0-662 pus, oxygen is 0-2170. Next, oxygen was measured by directly reading the electrolytic current value of the mercury pool electrode 5, without using the hanging mercury electrode.

この場合も、酸素濃度0〜21%に対して良好な検量線
を得ることができた。な卦、この吸収液組成をもつ検出
器は、全稼動時間10時間以上、放置時間20日以上を
経過しても非常に安定に動作した。
In this case as well, a good calibration curve could be obtained for oxygen concentrations of 0 to 21%. Furthermore, the detector with this absorption liquid composition operated very stably even after a total operating time of more than 10 hours and a standing time of more than 20 days.

比較例 2 第1図に示す検出器を用い、吸収液以外は実施例2と同
様の条件で測定を行つた。
Comparative Example 2 Using the detector shown in FIG. 1, measurements were carried out under the same conditions as in Example 2 except for the absorption liquid.

吸収液は、0.01m01−齢−3クエン酸鉄を含むリ
ン酸酸性リン酸ナトリウム水溶液(PH3に調整)を用
い、また水銀プール電極電位は−0.85V対SCEと
した。酸素濃度0〜21%にわたる約10時間の測定後
に吸収液中のクエン酸鉄濃度を測定したところ、0.0
06m01−Dm−3に減少していた。また、この測定
中、本検出器の一酸化窒素および二酸化硫黄に対する感
度も徐々に減少していつた。比較例 3第2図に示す検
出器を用い、吸収液以外は実施例2と同様の条件で測定
を行つた。
The absorption liquid used was a phosphoric acid aqueous sodium phosphate solution (adjusted to PH3) containing 0.01 mO1-3 iron citrate, and the mercury pool electrode potential was -0.85 V vs. SCE. When the iron citrate concentration in the absorption liquid was measured after measuring oxygen concentrations ranging from 0 to 21% for about 10 hours, it was found to be 0.0.
It had decreased to 06m01-Dm-3. Also, during this measurement, the sensitivity of this detector to nitrogen monoxide and sulfur dioxide gradually decreased. Comparative Example 3 Using the detector shown in FIG. 2, measurements were carried out under the same conditions as in Example 2 except for the absorption liquid.

吸収液は(1+1)リン酸を使用し、また検出電極8を
滴下水銀極とするとともに、水銀プール電極5の電位を
一0.2V対SCEとした。この場合、二酸化硫黄につ
いては実施例2と同様の結果を得た。酸素については、
吸収液1中の溶存酸素を交流ポーラログラフ法で良好に
測定することができた。しかし、一酸化窒素については
、第一鉄がなく、ニトロシル錯体として吸収液中にとb
込まれることがないため、0〜446PP1の濃度範囲
では測定不能であつた。実施例2における実験を、吸収
液1として2規定硫酸酸性0.1m01−Dm−3硫酸
第一鉄水溶液を用いる以外は、全く同じ条件で行つた。
(1+1) phosphoric acid was used as the absorption liquid, the detection electrode 8 was a dropping mercury electrode, and the potential of the mercury pool electrode 5 was set to -0.2 V vs. SCE. In this case, the same results as in Example 2 were obtained regarding sulfur dioxide. Regarding oxygen,
Dissolved oxygen in the absorption liquid 1 could be measured satisfactorily by the AC polarographic method. However, with regard to nitric oxide, there is no ferrous iron, and it is present in the absorption liquid as a nitrosyl complex.
It was impossible to measure in the concentration range of 0 to 446 PP1. The experiment in Example 2 was conducted under exactly the same conditions except that a 2N sulfuric acid acidic 0.1 m01-Dm-3 ferrous sulfate aqueous solution was used as the absorption liquid 1.

その結果、一酸化窒素、二酸化硫黄および酸素に対して
良好な検量線が得られた。以上、本発明によれば、卿レ
ベルの窒素酸化物および二酸化硫黄、パーセントレベル
から卿レベルの酸化性成分を長時間安定して測定するこ
とができ、また前記特願昭51−102861号および
特願昭53−15701号の方法を比較しても、これら
の長所に加えて自動計測化が極めて容易となう、かつ長
時間の計測に対しても安定した感度が得られるという利
点がある。
As a result, good calibration curves were obtained for nitrogen monoxide, sulfur dioxide, and oxygen. As described above, according to the present invention, it is possible to stably measure nitrogen oxides and sulfur dioxide at a high level, and oxidizing components from a percent level to a low level over a long period of time. Comparing the method of Japanese Patent Application No. 53-15701, in addition to these advantages, it has the advantage that automatic measurement is extremely easy and stable sensitivity can be obtained even for long-term measurements.

従つて燃焼排ガスなどを対象とする窒素酸化物、二酸化
硫黄および酸化性成分の自動計測に極めて有効である。
Therefore, it is extremely effective for automatically measuring nitrogen oxides, sulfur dioxide, and oxidizing components in combustion exhaust gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明に用いるガス分析用検出
器の実施例を示す概略断面図、第3図および第4図は、
本発明の実施例における検量線を示す図である。 1・・・・・・第1鉄化合物を含む吸収液(陰極液)、
2・・・・・・対極液(陽極液)、3・・・・・・隔膜
、4・・・・・・陰極(白金)、5・・・・・・陰極(
水銀)、6・・・・・・対極(陽極)、7・・・・・・
回転水銀電極、8・・・・・・吊下水銀滴電極または滴
下水銀電極、9・・・・・・参照電極、10・・・・・
・ガス導入管、11・・・・・・水銀、12・・・・・
・リード線、13・・・・・・かくはん用回転棒。
1 and 2 are schematic sectional views showing an embodiment of the gas analysis detector used in the present invention, and FIGS. 3 and 4 are
FIG. 3 is a diagram showing a calibration curve in an example of the present invention. 1... Absorption liquid (catholyte) containing a ferrous compound,
2...Counter electrode (anolyte), 3...Diaphragm, 4...Cathode (platinum), 5...Cathode (
mercury), 6... Counter electrode (anode), 7...
Rotating mercury electrode, 8... Hanging mercury drop electrode or dropping mercury electrode, 9... Reference electrode, 10...
・Gas introduction pipe, 11...Mercury, 12...
・Lead wire, 13... Rotating rod for stirring.

Claims (1)

【特許請求の範囲】[Claims] 1 第一鉄化合物を含有し、かつ、無機酸を加えること
により水素イオン濃度を1以下にした水溶液を、窒素酸
化物、二酸化硫黄および上記溶液中の第一鉄化合物を酸
化し得る酸化性成分のうち、少なくとも一成分を含むガ
スと接触せしめ、該接触によつて上記溶液中に生じた化
学種を電解定量し、これにより上記ガス中の三成分のう
ち、少なくとも一成分の濃度を計測することを特徴とす
るガス分析法。
1. An oxidizing component capable of oxidizing nitrogen oxides, sulfur dioxide, and the ferrous compounds in the solution, which contains an aqueous solution containing a ferrous compound and having a hydrogen ion concentration of 1 or less by adding an inorganic acid. The solution is brought into contact with a gas containing at least one of the three components, and the chemical species generated in the solution due to the contact is electrolytically quantified, thereby measuring the concentration of at least one of the three components in the gas. A gas analysis method characterized by:
JP53141475A 1978-11-15 1978-11-15 gas analysis method Expired JPS5918661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53141475A JPS5918661B2 (en) 1978-11-15 1978-11-15 gas analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53141475A JPS5918661B2 (en) 1978-11-15 1978-11-15 gas analysis method

Publications (2)

Publication Number Publication Date
JPS5567649A JPS5567649A (en) 1980-05-21
JPS5918661B2 true JPS5918661B2 (en) 1984-04-28

Family

ID=15292744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53141475A Expired JPS5918661B2 (en) 1978-11-15 1978-11-15 gas analysis method

Country Status (1)

Country Link
JP (1) JPS5918661B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111798645A (en) * 2020-05-14 2020-10-20 苏州洪昇新能源科技有限公司 Real-time monitoring system for hazardous gas

Also Published As

Publication number Publication date
JPS5567649A (en) 1980-05-21

Similar Documents

Publication Publication Date Title
Jagner Potentiometric stripping analysis in non-deaerated samples
Cai et al. Determination of trace aluminium by differential pulse adsorptive stripping voltammetry of aluminium (II)-8-hydroxyquinoline complex
García-Mendoza et al. Analysis of water in room temperature ionic liquids by linear sweep, differential pulse and square wave cathodic stripping voltammetries
Lee et al. Anodic Voltammetry and EPR Studies of Isomeric Phenylenediamines.
Pecsok et al. Polarographic Characteristics of Vanadium Complexed with Ethylenediamine Tetraacetic Acid
Salaria et al. Polarographic and Coulometric Determination of Technetium.
Sankar et al. Buffers for the Physiological pH Range: Thermodynamic Constants of 3-(N-Morpholino) propanesulfonic Acid from 5 to 50. degree. C
Pinilla et al. Determination of mercury by open circuit adsorption stripping voltammetry on a platinum disk electrode
US3856634A (en) Method for measuring dissolved oxygen in aqueous solution using tungsten bronzes as a potentiometric indicating electrode
US5250171A (en) Sensor for carbon monoxide
Ireland-Ripert et al. Determination of methylmercury in the presence of inorganic mercury by anodic stripping voltammetry
Hung et al. Time Dependence of AC Polarographic Currents.
JPS5918661B2 (en) gas analysis method
Radić Determination of nanomole amounts of aluminium by use of a fluoride ion-selective electrode
Fehér et al. The application of hydrodynamic voltammetry in chemical analysis
Nikelly et al. Amperometric Titrations of Micromolar Solutions
Biedermann et al. On the Standard Potential of the Europium (II, III) Couple
Shalgosky The polarographic determination of uranium
Tseng et al. Direct potentiometric measurement of sulfite ion with mercuric sulfide/mercurous chloride membrane electrode
Snider et al. Coulometric studies of the reduction of nitric oxide, nitrous acid and nitrogen dioxide in acidic halide media with a platinum flow-through electrode
Buděšínský et al. The preparation and properties of the acetate complex of trivalent cobalt
Komersová et al. Adsorptive stripping voltammetric determination of aluminium using arsenazo III
Nagy et al. A novel titration technique for the analysis of streamed samples—the triangle-programmed titration technique: Part 3. Titrations with Electrically Generated Bromine
Peters et al. Chronopotentiometric determination of halides and analysis of halide mixtures with silver anodes
Lai et al. Cathodic action of the lead-glutamate complex at the dropping mercury electrode