JPS59186352A - Semiconductor resin sealing method - Google Patents
Semiconductor resin sealing methodInfo
- Publication number
- JPS59186352A JPS59186352A JP58061842A JP6184283A JPS59186352A JP S59186352 A JPS59186352 A JP S59186352A JP 58061842 A JP58061842 A JP 58061842A JP 6184283 A JP6184283 A JP 6184283A JP S59186352 A JPS59186352 A JP S59186352A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- sealing
- closed cell
- containing body
- sealing method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3135—Double encapsulation or coating and encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は半導体素子、ダイパッド部およびIJ−ド条帯
を有するリードフレームを含む所要の部分を封止樹脂に
より封止する半導体樹脂封止法に関する。さらに詳しく
は耐湿性、α線遮蔽性および生産性に優れ、硬化応力の
低い半導体樹脂封止品を作製するために半導体素子上憎
に単一または複数の独立気泡含有体をもう+−する半導
体樹脂封止法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor resin sealing method for sealing required parts including a semiconductor element, a die pad portion, and a lead frame having an IJ-doped strip with a sealing resin. More specifically, in order to produce semiconductor resin-encapsulated products with excellent moisture resistance, alpha ray shielding properties, and productivity, and low curing stress, semiconductors that contain single or multiple closed cells are added to the semiconductor element. Regarding resin sealing method.
従来からICなどの半導体部品を外的環境から保護する
ために全体または一部に外層を形成することが行なわれ
ている。前記外層の形成は金鵜やセラミックを用いる気
密封止(ハーメチックンール)が主流であったが生産量
の種穴とと′らに封止樹脂を用いる樹脂封止にかわって
さている。2. Description of the Related Art Conventionally, in order to protect semiconductor components such as ICs from the external environment, an outer layer has been formed on all or part of semiconductor components. The mainstream of formation of the outer layer was hermetic sealing using metal or ceramic, but resin sealing using sealing resin has been replaced in production volumes.
前記樹脂封止法としてはあらかじめ加熱し、軟化させた
封止樹脂または液状の封止IJ IJ’+i iプレス
を用いて金型内に圧入するトランスファ成型法が用いら
れている。As the resin sealing method, a transfer molding method is used in which a sealing resin that has been heated and softened in advance or a liquid sealing press is press-fitted into a mold.
前記封止樹脂としてはエポキシ樹脂またはシリコーン樹
脂などに硬化剤、充填材、難燃剤、カップリング剤、着
色剤などを混合せしめた封止樹脂が用いられており、と
くにエポキシ樹脂系封止樹脂が最もよく用いられている
。The sealing resin used is a mixture of epoxy resin, silicone resin, etc. with a curing agent, filler, flame retardant, coupling agent, coloring agent, etc. Epoxy resin type sealing resin is especially used. Most commonly used.
前記エポキシ樹脂糸封止樹脂を用いるトランスファ成形
法により作製された半導体封止品の内部は完全に封止樹
脂でみたされており、たとえば工C(以下、半導体部品
の代表例として工Cについて述べる)のチップおよびボ
ンディングワイヤなどは直接封止樹脂と密着しており、
耐湿性、耐振動性、熱伝導性および耐衝撃性などに優れ
ているという特徴を有している。The inside of the semiconductor encapsulation product manufactured by the transfer molding method using the epoxy resin thread encapsulation resin is completely filled with the encapsulation resin, for example, Process C (hereinafter, Process C will be described as a representative example of semiconductor parts). ) chips and bonding wires are in direct contact with the encapsulating resin.
It is characterized by excellent moisture resistance, vibration resistance, thermal conductivity, and impact resistance.
シカシ近年IOの集積度が向上するにつれて前記特性に
ついてさらに信頼性の高い封止材料が望まれていること
や封止材料から発生するα線にょる77 トエラーなど
の問題が提起されている。とくに硬化応力によるチップ
の破壊またはソフトエラーについては従来のような方法
による改良、たとえば樹脂の純度、充填材の純度と混合
量、触媒の種類と混合量、表面処理剤の種類と使用量お
よび封止法などの検討を行なっても解決できず、高集積
の工Cは樹脂封止できないという欠点を有している。と
くに封止樹脂が高粘度のばあいにはICなどの金線だお
れなどの欠点がクローズアップきれている。Shikashi In recent years, as the degree of integration of IOs has improved, there has been a demand for sealing materials with even higher reliability in terms of the above-mentioned characteristics, and problems such as 77 error due to alpha rays generated from the sealing materials have been raised. In particular, chip destruction or soft errors due to curing stress can be improved by conventional methods, such as resin purity, filler purity and mixing amount, catalyst type and mixing amount, surface treatment agent type and amount used, and sealing. Even after investigating various sealing methods, the problem cannot be solved, and the highly integrated process C has the disadvantage that it cannot be sealed with resin. In particular, when the encapsulating resin has a high viscosity, drawbacks such as sagging of gold wires in ICs and the like are highlighted.
樹脂封止型工Cの耐湿性テストによる不良発生は封止樹
脂層および該樹脂層とり一ド接着界面の2系統を透湿し
てくる水分によることがわかっている。それらを透湿し
てくる水は封止樹脂中の不純物を溶解し、水自体がアル
カリ性または酸性に変化しており、その水がチップ表面
のアルミニウム電極に達し、アルミニウム電極を腐蝕す
ると考えられている。It has been found that the occurrence of defects in the moisture resistance test of resin-sealed mold C is due to moisture permeating through two systems: the sealing resin layer and the bonding interface between the resin layer and the resin layer. The water that permeates through them dissolves impurities in the sealing resin, and the water itself changes to alkaline or acidic, and it is thought that this water reaches the aluminum electrodes on the chip surface and corrodes the aluminum electrodes. There is.
前記腐蝕の問題を解決するため樹脂や充填材の純度の向
上、触媒の種類と混合量およびカップリング剤の種類と
処理法の改良などがはかられてきており年々改良されて
きた。しかしそのような手法による特性向上には限度が
あり、前記問題を完全に解決することは困難である。In order to solve the above corrosion problem, efforts have been made to improve the purity of resins and fillers, the type and amount of catalysts mixed, the type of coupling agents and treatment methods, and improvements have been made year by year. However, there are limits to the improvement of characteristics by such methods, and it is difficult to completely solve the above problems.
樹脂封止工Cチップの割れまたは歪による不良は封止樹
脂の硬化応力が原因である。そのような問題を解決する
ために工Cチップと封止樹脂との線膨張係数の差をでき
るだけ小さくすべく樹脂中にシリカなどの充填材を混合
することが行なわれている。現在封止樹脂に使用されて
いる充填材としては、たとえばシリカ、ガラス、セラミ
ックなどおよび難燃剤−とじての三酸化アンチモンなど
かあけられ、封止樹脂全体の70〜80%(重量%、以
下同様)を占めている。しかし充填材を多量に混合して
も封止樹脂とICチップとの線膨張率の差をなくすこと
は基本的に困難であり、さらには硬化応力低減のために
混合する充填材に含有されているトリウムまたはウラニ
ウムなどから放出される放射線、とくにα線がICチッ
プ表面に達し、そのエネルギーによりICが誤動作する
ソフトエラーを生ずる問題がある。これを防止するため
にウラニウム含量が少なく、α線放出量がほとんどない
、たと工LJホ’)イミド樹脂などをICチップ表面に
コーティングしているが充分な効果かえられていない。Resin-sealed C-chip failures due to cracks or distortion are caused by the curing stress of the sealing resin. In order to solve such problems, a filler such as silica is mixed into the resin in order to minimize the difference in linear expansion coefficient between the engineered C chip and the sealing resin. Fillers currently used in sealing resins include silica, glass, ceramics, etc., and antimony trioxide, which is a flame retardant. (similar). However, even if a large amount of filler is mixed, it is fundamentally difficult to eliminate the difference in linear expansion coefficient between the sealing resin and the IC chip. There is a problem in that radiation emitted from thorium or uranium, etc., which is present, reaches the surface of the IC chip, and the energy thereof causes a soft error in which the IC malfunctions. To prevent this, the surface of the IC chip is coated with a resin such as imide resin, which has a low uranium content and hardly emits alpha rays, but this has not been effective enough.
シカモコーティングの作業性がわるいこと、材料費が高
くなることなどの欠点がある。前記のごとく樹脂中に無
機質充填材などを混合したものは高集積工Cに適用する
ことができない。Disadvantages include poor workability of Shikamo coating and high material costs. As mentioned above, a resin containing an inorganic filler or the like cannot be applied to high-integration construction C.
一方、ハーメチックンールのような中空ハラケージは良
好な特性を有するがコストが高くなり、かつ外部からの
振動や衝撃によりトラブルがおこりやすく、シばしば工
Cの不良原因となっている。On the other hand, a hollow cage such as a hermetic ring has good characteristics, but is expensive, and is prone to troubles due to external vibrations and shocks, which are often the cause of defects in construction C.
今後ますます高集積化する工Cチップの樹脂封止は前記
のごとく耐湿性、封止樹脂の硬化1+]+力によるチッ
プ割れ、金線だおれまたはα線によるソフトエラーなど
の問題に直面している。As mentioned above, resin encapsulation of engineering C chips, which will become increasingly highly integrated, will face problems such as moisture resistance, chip cracking due to hardening 1+]+ force of the encapsulation resin, and soft errors due to gold wire sagging or alpha rays. ing.
本発明者らは前記のような問題に鑑み鋭意研死を重ねた
結果、半導体素子、グイバット部およびリード条帯を有
するリードフレームを含む所望の部分を封止樹脂により
封止する半導体樹脂封止法において、半導体素子上およ
びその周辺に42.−または複数の独立気泡含有体をも
うけることにより、前記諸欠点を解決させうろことを見
出した。The inventors of the present invention have made extensive research in view of the above-mentioned problems, and as a result, have developed a semiconductor resin sealing method in which a desired portion including a semiconductor element, a Guibat portion, and a lead frame having a lead strip is sealed with a sealing resin. In the method, 42. It has been found that the above-mentioned drawbacks can be overcome by providing a body containing - or a plurality of closed cells.
すなわち本発明では半導体素子上およびその周辺に単一
または複数の独立気泡含有体をもう番することにより、
封止樹脂の硬化応力(こよるICチップ割れや歪、α線
によるソフトエラー、金線だおれを少なくし、耐湿性を
良好にしうるとl/Xう顕著な効果かえられる。That is, in the present invention, by disposing single or multiple closed cell containing bodies on and around the semiconductor element,
If the curing stress of the sealing resin (due to IC chip cracking and distortion, soft errors caused by alpha rays, and gold wire sag) can be reduced, and moisture resistance can be improved, a significant increase in l/X can be achieved.
本発明により形成される独立気泡含有体4ま無機材料お
よび(または)有機材料Gこ低沸点不活性媒体、ガスを
発生して分解する物質、反応Gこよりガスを発生する物
質、水、溶媒、気体および(または)熱などを作用させ
ることしこよりえられる。前記独立気泡含有体に含有さ
れてしする気泡(ま5虫立気泡であるため気泡中に封止
樹脂力5浸入すること(まなく、■チツプレこ影響を与
えなし’ b’ 、好ましく【ま耐湿性が良好、ソフト
エラーおよび封止樹)1旨Gこよる変形がないなどの点
から高純度で硬質の舌虫立気泡含有体が好ましい。Closed-cell containing materials formed according to the present invention, inorganic and/or organic materials, low-boiling inert media, gas-generating and decomposing substances, reaction gas-generating substances, water, solvents, It can be obtained by applying gas and/or heat. Since the air bubbles contained in the closed cell containing body are small, the sealing resin force does not penetrate into the air bubbles (it is preferable that the air bubbles do not have any influence on the air bubbles). A highly pure and hard foam-containing material is preferable because it has good moisture resistance and is free from soft errors and deformation due to sealing.
本発明に用いられる無機材料として(まシ1J力、ガラ
ス、アルミナまたはケイ酸カルシウムなど力(あげられ
、有機材料としてはウレタン樹脂、シリコーン樹脂、ポ
リエステル樹脂、フェノール樹脂、メラミン樹脂、エポ
キシ樹脂、ポリエチレン樹脂、ポリスチレン樹脂、ポリ
プロピレン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポ
リフェニレンサルファイY 樹ah tたはポリエーテ
ルエーテルケトン樹脂などの熱硬化性樹脂や熱可塑性樹
脂があげられる。Inorganic materials used in the present invention include glass, alumina, and calcium silicate; organic materials include urethane resin, silicone resin, polyester resin, phenolic resin, melamine resin, epoxy resin, and polyethylene. Examples include thermosetting resins and thermoplastic resins such as resins, polystyrene resins, polypropylene resins, polyamide resins, polyimide resins, polyphenylene sulfide resins, and polyether ether ketone resins.
本発明により形成される独立気泡含有体は工Cチップと
ボンディングワイヤがうまる程度であればよく、樹脂封
止工Cに占める割合にとくに制限はないが樹脂封止工C
の機械的強度をそこなわない40容量%以下が望ましい
。The closed cell-containing body formed by the present invention only needs to be large enough to accommodate the chip C and the bonding wire, and there is no particular restriction on its proportion in the resin encapsulation C.
It is desirable that the content be 40% by volume or less so as not to impair the mechanical strength of the glass.
本発明に用いられる封止樹脂としては汎用の熱硬化性樹
脂、たとえばエポキシ樹脂、ウレタン樹脂、ポリエステ
ル樹脂、シリコーン樹脂、などや汎用の熱可塑性樹脂、
たとえばポリフェニレンサルファイド樹脂、ポリアミド
樹脂などに硬化剤、充填材、難燃剤、カップリング剤、
着色剤などを混合せしめた封止樹脂があげられ、好まし
くは独立気泡含有体を変形したりしない低粘度のエポキ
シ樹脂、ウレタン樹1jfl 、ポリエステル樹脂・シ
リコーン嶺脂、ポリフェニレンサルファイド’M b=
などを用いた封止樹脂があげられる0
本発明の方法を図面を用いて説明する。The sealing resin used in the present invention includes general-purpose thermosetting resins such as epoxy resins, urethane resins, polyester resins, silicone resins, general-purpose thermoplastic resins, etc.
For example, polyphenylene sulfide resin, polyamide resin, etc. have hardening agents, fillers, flame retardants, coupling agents, etc.
Examples include sealing resins mixed with colorants, etc., preferably low-viscosity epoxy resins that do not deform closed cell-containing bodies, urethane resins, polyester resins/silicone resins, and polyphenylene sulfide.
The method of the present invention will be explained with reference to the drawings.
第1図は従来の方法により作製された樹脂封止工Cの概
略断面図であり、リードフレーム(1)に取付けられた
ICチップ(2)、ダイノぜット(3)および金線のボ
ンディングワイヤ(4)がトランスファ成形法などの方
法により封止樹脂(5)により樹脂封止された従来法に
よる樹脂封止工aを示す。前記従来法による樹脂封止工
Cでは工Cチップ(2)や金線ボンディングワイヤ(4
)が直接封止樹脂(5)中に封止されているため封止樹
脂(5)の硬化応力や充填材に起因するα線などを直接
うける。FIG. 1 is a schematic cross-sectional view of resin encapsulation C manufactured by a conventional method, showing the bonding of an IC chip (2) attached to a lead frame (1), a die nozzle (3), and a gold wire. A conventional resin sealing process a is shown in which a wire (4) is sealed with a sealing resin (5) by a method such as a transfer molding method. In the resin sealing process C using the conventional method, the process C chip (2) and the gold wire bonding wire (4
) is directly sealed in the sealing resin (5), so it is directly exposed to the curing stress of the sealing resin (5) and alpha rays caused by the filler.
第2図は本発明の方法により作製された樹脂封止工Cの
概略断面図であり、リードフレーム(1)に取付けられ
た工Cチップ(2)、ダイパッド(3)および金線のボ
ンディングワイヤ(4)上およびその周辺にウレタン樹
脂、シリコーン樹脂、ポリスチレン樹脂またはフェノー
ル樹脂などを独立気泡含有体(6)を形成し、トランス
ファ成形法などの方法により封止樹脂(5)により樹脂
封止された本発明の方法による樹脂封止工Cを示す。本
発明の方法による樹脂封止工Cは工Cチップ(2〕や金
線のボンディングワイヤ(4)が独立気泡含有体(6)
で固定保護され、直接封止樹脂(5)と接触しないため
封止樹脂(5)の硬化応力や封止樹脂(5)中の充填材
から放出されるα線の影響を直接うけることはなく、独
立気泡含有体(6)のそれらに影響される。それゆえ独
立気泡含有体(6)に硬化ル6力の少ない、充填材を含
有しない独立気泡含有体(6)を用いることにより、従
来法による欠点を解消しつる。また耐湿性に関しても従
来法によるものと比較してなんの遜色もない。FIG. 2 is a schematic cross-sectional view of the resin encapsulation C manufactured by the method of the present invention, in which the encapsulation C chip (2), die pad (3) and gold wire bonding wires are attached to the lead frame (1). (4) A closed cell containing body (6) is formed using urethane resin, silicone resin, polystyrene resin, phenol resin, etc. on and around it, and the body is sealed with sealing resin (5) by a method such as transfer molding. The resin sealing process C according to the method of the present invention is shown. Resin sealing process C according to the method of the present invention is a process in which the C chip (2) and the gold wire bonding wire (4) are formed into a closed cell containing material (6).
Since it is fixed and protected by the sealing resin (5) and does not come into direct contact with the sealing resin (5), it is not directly affected by the curing stress of the sealing resin (5) or the alpha rays emitted from the filler in the sealing resin (5). , those of the closed cell containing body (6). Therefore, the disadvantages of the conventional method can be overcome by using a closed cell containing body (6) which has a small hardening force and does not contain a filler. Also, in terms of moisture resistance, there is no inferiority compared to those made by conventional methods.
つぎに本発明の方法を実施例および比較例にもとづき説
明する。Next, the method of the present invention will be explained based on Examples and Comparative Examples.
実施例1〜12
リードフレームに第1表に示す工Cチップをグイボンド
し、ワイヤボンディングしたのちICチップとボンディ
ングワイヤ上に第1表に示す独立気泡含有体を形成する
ウレタン樹脂にフロンを混合し、■製の’w+枢500
0で樹脂封止を行ない、第2図に示す樹脂封止工Cと同
様の樹脂封止工Cをえた。えられた樹脂封止■Cは金線
だおれによる不良が全くなかった。Examples 1 to 12 A C chip shown in Table 1 was bonded to a lead frame, and after wire bonding, CFC was mixed with a urethane resin to form a closed cell containing body shown in Table 1 on the IC chip and bonding wire. , ■ made 'w+bore 500
Resin sealing was carried out using No. 0, and a resin sealing process C similar to the resin sealing process C shown in FIG. 2 was obtained. The resulting resin sealing ■C had no defects due to gold wire sagging.
えられた樹脂封止工Cについて耐湿性、ヒートサイクル
性、ヒートショック性および耐湿性ハイマス性を測定し
た1、
その結果を第1表に示す。Moisture resistance, heat cycle resistance, heat shock resistance, and moisture resistance and high mass resistance were measured for the obtained resin sealing process C1, and the results are shown in Table 1.
なお測定は下記条件下に試料100個をおいたのちファ
ンクションテストを行ない不良品の割合ヲもとめること
Gごより行なった。)
耐湿性=120°a、2気圧、湿度100%、5000
時間ヒートサイクル性ニー55°C×60分間と125
°C!X30分間とを200サイクル
ヒ−)シq7り性: −190°OXS分間と2600
0X5分間とを50サイクル
耐湿逆パイマス性:1200as2気圧、湿度100%
の状態でDC!10Vを1000時間印加
また第1表中のICチップのc51521 、c532
06および05G1400はそれぞれ三菱電機■製のバ
イポーラ彫工Oa5t521.05.!+206および
MO3工005G 1400である。The measurement was carried out by placing 100 samples under the following conditions and performing a function test to determine the percentage of defective products. ) Moisture resistance = 120°a, 2 atm, humidity 100%, 5000
Time heat cycle knee 55°C x 60 minutes and 125
°C! Shearability: -190°OXS minutes and 2600 cycles
0x5 minutes for 50 cycles Humidity resistance: 1200 as 2 atm, humidity 100%
DC in the state of! Applying 10V for 1000 hours Also, IC chips c51521 and c532 in Table 1
06 and 05G1400 are bipolar carving Oa5t521.05. manufactured by Mitsubishi Electric. ! +206 and MO3 engineering 005G 1400.
実施例13
実施例1で用いた工aチップのかわりに三菱電機■製の
表面に有機材料をコーティングしていない64キロビツ
トダイナミツクラムを用い実施例1と同様にして多孔質
層をもうけ、樹脂封止し、第2図に示す樹脂封止工aと
同様の樹脂封止工Cをえた。Example 13 A porous layer was formed in the same manner as in Example 1 using a 64 kilobit dynamic chip manufactured by Mitsubishi Electric ■ whose surface was not coated with an organic material instead of the engineering a chip used in Example 1. Resin sealing was performed to obtain resin sealing process C similar to resin sealing process a shown in FIG.
えられた樹脂封止工C! 100個をそれぞれ測定器に
セットし、1000時間測定し、発生したソフトエラー
率を求めた。Resin encapsulant C obtained! 100 pieces were each set in a measuring device, measured for 1000 hours, and the soft error rate that occurred was determined.
その結果全第2表に示す。The results are shown in Table 2.
比較例1〜3
実施例1で作製した独立気泡含有体を作製しない以外は
実施例1と同様にして第1表に示す材料を用いて第1図
に示す樹脂封止XCと同様の樹脂封止工Cを作製した。Comparative Examples 1 to 3 Resin sealing similar to resin sealing XC shown in FIG. 1 was performed in the same manner as in Example 1 except that the closed cell containing body produced in Example 1 was not produced using the materials shown in Table 1. Stop C was produced.
えられた樹脂封止工Cを用いて実施例1と同様にして耐
湿性、ヒートサイクル性1ヒートシヨツク性オヨび耐湿
性バイマス性を測定した。Using the obtained resin sealant C, moisture resistance, heat cycle resistance, heat shock resistance, moisture resistance, and bimass resistance were measured in the same manner as in Example 1.
その結果を第1表に示す。The results are shown in Table 1.
比較例4
実施例16で作製した独立気泡含有体を作製しない以外
は実施例13と同様にして樹脂封止Xaを作製し、ソフ
トエラー率を求めた。Comparative Example 4 A resin-sealed Xa was produced in the same manner as in Example 13 except that the closed cell containing body produced in Example 16 was not produced, and the soft error rate was determined.
その結果を第2表に示す。The results are shown in Table 2.
第2表
第1表の結果から本発明の方法により封止された工Cは
耐湿性、ヒートサイクル性、ヒートショック性および耐
湿逆バイマス性のいずれにおいても従来法により封止さ
れたICよりも優れた特性を有していることがわかる。From the results shown in Table 2 and Table 1, the IC sealed by the method of the present invention has better moisture resistance, heat cycle resistance, heat shock resistance, and moisture reverse bimass resistance than the IC sealed by the conventional method. It can be seen that it has excellent properties.
耐湿性については独立気泡含有体と工Cチップとが直接
接触する面積が低下することにより、耐湿性が向上し、
ヒートショック性については工Cチップに加わる封止樹
脂による応力が独立気泡含有体の存在により減少されて
いるものと考えられる。また耐湿逆バイマス性において
も顕著な差がみられ、封止樹脂が直接工Cチップにしな
ければ工Cチップ表面のアルミニウム電極は腐蝕されに
くいことがわかる。Regarding moisture resistance, the direct contact area between the closed cell containing body and the engineered C chip is reduced, which improves moisture resistance.
Regarding heat shock resistance, it is thought that the stress caused by the sealing resin applied to the C-chip is reduced by the presence of the closed cell containing material. There is also a remarkable difference in moisture resistance and reverse bimass properties, indicating that unless the sealing resin is applied directly to the C-chip, the aluminum electrodes on the surface of the C-chip are less likely to corrode.
また第2表の結果から本発明の方法により封止されたI
Cはソフトエラーが全く生じない良好な品質のものであ
ることがわかる。これは封止樹脂に含まれる無機充填材
の不純物として存在するトリウムやウラニウムなどから
発生ずるα線を独立気泡含有体が遮蔽する効果をもつこ
とがらも予想される結果である。Also, from the results in Table 2, the I sealed by the method of the present invention
It can be seen that C is of good quality with no soft errors occurring at all. This result is also expected because the closed cell containing material has the effect of shielding alpha rays generated from thorium, uranium, etc., which are present as impurities in the inorganic filler contained in the sealing resin.
以上詳述したように工Cチップのまわりに単一マたは複
数の独立気泡含有体を形成することにより耐湿性、硬化
応力によるチップ割れ、余暇たおれ(金線切れ)および
α線によるソフトエラーなどの工C部品に関する問題が
同時に解決される。+jit記方法は工C部品に限らず
あらゆる半導体素子の封止法として採用しうるものであ
る。As detailed above, by forming a single cell or multiple closed cell containing bodies around the engineering C chip, moisture resistance, chip cracking due to curing stress, leisure folding (gold wire breakage), and soft errors due to alpha rays are achieved. Problems related to engineering C parts such as these are solved at the same time. The +jit method can be employed as a sealing method not only for engineering C components but also for all semiconductor devices.
第1図は従来の方法による樹脂封止■cの概略断面図、
第2図は本発明の方法による樹脂封止■Cの概略断面図
である。
(図面の符号)
(1): リードフレーム
(2):工Cチップ
(3)、グイバット
(4): ボンディングワイヤ
(5):封止樹脂
(6):独立気泡含有体
代理人 大岩増141(はが2名)Figure 1 is a schematic cross-sectional view of resin sealing ■c by the conventional method.
FIG. 2 is a schematic cross-sectional view of resin sealing C according to the method of the present invention. (Drawing codes) (1): Lead frame (2): Engineering C chip (3), Guibat (4): Bonding wire (5): Sealing resin (6): Closed cell containing agent Masu Oiwa 141 ( (2 people)
Claims (1)
するリードフレームを含む所望の部分を封止樹脂により
封止する半導体樹脂封止法において、半導体素子上およ
びその周辺に単一または複数の独立気泡含有体をもうけ
ることを特徴とする半導体樹脂封止法。 (2)前記単一または複数の独立気泡含有体が無機材料
および(または)有機材料からなる特許請求の範囲第(
1)項記載の封止法。 (8)前記無機材料がシリカ、ガラス、アルミナまたは
ケイ酸カルシウムである特許請求の範囲第(2)項記載
の封止法。 (4)前記有機材料が熱硬化性樹脂または熱可塑性樹脂
である特許請求の範囲第(2)項記載の封止法。 (5)前記単一または複数の独立気泡含有体が硬質であ
る特許請求の範囲第(1)項記載の封止法。 (6)前記封止樹脂が低圧成型可能な低粘度樹脂を用い
た封止樹脂である特許請求の範囲第(1)項記載の封圧
法。[Scope of Claims] (1) In a semiconductor resin encapsulation method in which a desired portion including a semiconductor element, a die pad portion, and a lead frame having a lead strip is encapsulated with a sealing resin, a single layer is placed on and around the semiconductor element. A semiconductor resin encapsulation method characterized by forming one or more closed cell containing bodies. (2) The single or plural closed cell containing bodies are made of an inorganic material and/or an organic material.
Sealing method described in section 1). (8) The sealing method according to claim (2), wherein the inorganic material is silica, glass, alumina, or calcium silicate. (4) The sealing method according to claim (2), wherein the organic material is a thermosetting resin or a thermoplastic resin. (5) The sealing method according to claim (1), wherein the single or plural closed cell containing bodies are hard. (6) The pressure sealing method according to claim (1), wherein the sealing resin is a sealing resin using a low-viscosity resin that can be molded at low pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58061842A JPS59186352A (en) | 1983-04-06 | 1983-04-06 | Semiconductor resin sealing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58061842A JPS59186352A (en) | 1983-04-06 | 1983-04-06 | Semiconductor resin sealing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59186352A true JPS59186352A (en) | 1984-10-23 |
Family
ID=13182742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58061842A Pending JPS59186352A (en) | 1983-04-06 | 1983-04-06 | Semiconductor resin sealing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59186352A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012035338A (en) * | 2010-08-03 | 2012-02-23 | Dainippon Printing Co Ltd | Mems device and method for manufacturing the same |
JP2012035337A (en) * | 2010-08-03 | 2012-02-23 | Dainippon Printing Co Ltd | Mems device and method for manufacturing the same |
-
1983
- 1983-04-06 JP JP58061842A patent/JPS59186352A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012035338A (en) * | 2010-08-03 | 2012-02-23 | Dainippon Printing Co Ltd | Mems device and method for manufacturing the same |
JP2012035337A (en) * | 2010-08-03 | 2012-02-23 | Dainippon Printing Co Ltd | Mems device and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0158868B1 (en) | Semiconductor device | |
JPH0315339B2 (en) | ||
JP2702219B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS6012744A (en) | Semiconductor device | |
JPS59186352A (en) | Semiconductor resin sealing method | |
JPS59186351A (en) | Semiconductor resin sealing method | |
WO2000007234A1 (en) | Semiconductor device and method for manufacturing the same | |
JP2748955B2 (en) | Semiconductor device | |
JP2748954B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2982952B2 (en) | Semiconductor device | |
JP2698065B2 (en) | Method for manufacturing semiconductor device | |
JPS6167247A (en) | Hybrid integrated circuit | |
KR0167388B1 (en) | Semiconductor device | |
JP2698064B2 (en) | Semiconductor device | |
KR0167438B1 (en) | Method for manufacturing semiconductor device | |
JP2698066B2 (en) | Semiconductor device | |
JPS59191358A (en) | Electronic device | |
KR0182505B1 (en) | High heat release package having heat sink for protecting bonding wire | |
JP3048546B2 (en) | Semiconductor device | |
JPH02268456A (en) | Semiconductor element package | |
KR0167389B1 (en) | Semiconductor device | |
JPS6219064B2 (en) | ||
JPS6433939A (en) | Resin sealed type semiconductor device | |
KR100268989B1 (en) | Semiconductor package with built-in heat sink having double sealing part and manufacturing method thereof | |
JPS61292943A (en) | Filler for resin sealed type semiconductor device |