JPS59185904A - Steam separating reheater and method of controlling said steam separating reheater - Google Patents

Steam separating reheater and method of controlling said steam separating reheater

Info

Publication number
JPS59185904A
JPS59185904A JP58060006A JP6000683A JPS59185904A JP S59185904 A JPS59185904 A JP S59185904A JP 58060006 A JP58060006 A JP 58060006A JP 6000683 A JP6000683 A JP 6000683A JP S59185904 A JPS59185904 A JP S59185904A
Authority
JP
Japan
Prior art keywords
steam
drain
chamber
heating steam
scavenging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58060006A
Other languages
Japanese (ja)
Other versions
JPH0233923B2 (en
Inventor
安ケ平 紀雄
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58060006A priority Critical patent/JPS59185904A/en
Publication of JPS59185904A publication Critical patent/JPS59185904A/en
Publication of JPH0233923B2 publication Critical patent/JPH0233923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力発電プラント等に用いられる止するに
好適な汽水分離再熱器とその制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a brackish water separation reheater suitable for use in nuclear power plants and the like, and a method for controlling the same.

〔発明の背景〕[Background of the invention]

一般に、沸騰水型あるいは加圧水型軽水炉から発生し原
子力タービンプラントに供給される蒸気は、従来の火力
発電プラントに適用されるボイラの発生蒸気に較べて圧
力の低い飽和蒸気である。
Generally, steam generated from a boiling water type or pressurized water type light water reactor and supplied to a nuclear turbine plant is saturated steam having a lower pressure than steam generated from a boiler applied to a conventional thermal power plant.

この飽和蒸気がタービン内で膨張し、機械的エネルギに
変換される過程において、飽和蒸気の湿分が急激に増加
する。との湿分の高い飽和蒸気をそのまま後続するター
ビン段落に導入すると、タービン内部効率の低下とエロ
ージョンとを引き起し、タービンの性能、信頼性の両面
において、著しく不具合な結果を招いてしまう。そこで
、従来技術においても、第1図に示す如く、高圧タービ
ン101と低圧タービン102間に汽水分離器103、
第1の再熱器104および第2の再熱器105とから構
成される汽水分離再熱器106を介設し、低圧タービン
102側へ流れる飽和蒸気中の湿分の除去と再加熱化を
実施している。
In the process of expanding this saturated steam within the turbine and converting it into mechanical energy, the moisture content of the saturated steam increases rapidly. If saturated steam with high moisture content is directly introduced into the subsequent turbine stage, it will cause a decrease in turbine internal efficiency and erosion, resulting in significant problems in terms of both turbine performance and reliability. Therefore, in the prior art, as shown in FIG. 1, a brackish water separator 103,
A brackish water separation reheater 106 composed of a first reheater 104 and a second reheater 105 is provided to remove moisture from the saturated steam flowing toward the low-pressure turbine 102 and reheat it. It is being implemented.

第1の再熱器104の伝熱管108内には、高圧タービ
ン101の中途から抽気した加熱蒸気が流量制御弁10
7を介して導入され、第2の再熱器105の伝熱管10
9内には、原子炉からの主蒸気から分岐した加熱蒸気が
流量制御弁111を介して導入される。又、第1.第2
再熱管104゜105の伝熱管108,109はリザー
ブタンク110.112に接続し、伝熱管108,10
9内の掃気蒸気とドレンを排出する。リザーブタンク1
10,112、汽水分離器103および低圧タービン1
02に生じたドレンは給水加熱器113に送られる。又
、リザーブタンク110.112から排出される掃気蒸
気は流量制御弁114゜115を介し給水加熱器113
に送られる。
In the heat exchanger tube 108 of the first reheater 104, heated steam extracted from the middle of the high-pressure turbine 101 flows through the flow control valve 10.
7 and the heat exchanger tubes 10 of the second reheater 105
Heating steam branched from main steam from the nuclear reactor is introduced into the reactor 9 via a flow control valve 111 . Also, 1st. Second
The heat exchanger tubes 108 and 109 of the reheat tubes 104 and 105 are connected to the reserve tank 110 and 112, and the heat exchanger tubes 108 and 10
Discharge the scavenging steam and condensate in 9. Reserve tank 1
10, 112, brackish water separator 103 and low pressure turbine 1
The drain generated at 02 is sent to the feed water heater 113. In addition, the scavenging steam discharged from the reserve tanks 110 and 112 is passed through flow control valves 114 and 115 to the feed water heater 113.
sent to.

高圧タービン101からの排気蒸気は汽水分離器103
に入シ湿分を分離した後、第1の再熱器104内に導入
され伝熱管108内を流れる加熱蒸気によシ加熱され、
更に第2再熱器105内に導かれ、伝熱管109内の加
熱蒸気によシ加熱されて過熱蒸気状態に変化して低圧タ
ービン102に送られる。しかし、一方、伝熱管108
.109内では加熱蒸気が凝縮する。この凝縮が過大と
なシ、伝熱管108,109の流出端内で完全凝縮する
不興゛合が生ずる。この不具合を解消すべく、従来技術
においても、後述する第6図に示す如く、伝熱管108
,109内にオリフィス32b等を挿設したが不十分あ
ものとされていた。
Exhaust steam from the high pressure turbine 101 is transferred to a brackish water separator 103
After separating the input moisture, it is introduced into the first reheater 104 and heated by the heating steam flowing inside the heat transfer tube 108.
It is further guided into the second reheater 105, heated by the heated steam in the heat transfer tube 109, changed to a superheated steam state, and sent to the low pressure turbine 102. However, on the other hand, the heat exchanger tube 108
.. In 109 the heated steam condenses. If this condensation is excessive, there will be a problem that the condensation will be completely condensed within the outlet ends of the heat exchanger tubes 108, 109. In order to solve this problem, the conventional technology also uses a heat exchanger tube 108 as shown in FIG.
, 109, but it was considered to be insufficient.

このため、特願昭56−99845に紹介した如き制御
方法が採用された。すなわち、第2図に示す如く、第1
再熱器104(第2の再熱器105も同じ)を経た加熱
蒸気の温度、リザーブタンク110からの掃気蒸気量お
よびドレン量をそれぞれ検出し、これに基づいて流量制
御弁109および114を制御し、伝熱管108内に不
安定流動が生じないようにした。しかし、この方法は多
数本から形成される伝熱管109の個々の流動状態を検
出するものでなく、クロスとして把握するため不十分の
ものとな)、伝熱管108のすべてを安定状態に制御で
きず、プラントの信頼性と熱効率を向上し得ない欠点が
あった。
For this reason, a control method as introduced in Japanese Patent Application No. 56-99845 was adopted. That is, as shown in Figure 2, the first
The temperature of the heated steam that has passed through the reheater 104 (the same applies to the second reheater 105), the amount of scavenging steam and the amount of drain from the reserve tank 110 are detected, and the flow rate control valves 109 and 114 are controlled based on this. In this way, unstable flow is prevented from occurring within the heat exchanger tube 108. However, this method does not detect the individual flow state of the heat exchanger tubes 109 formed from a large number of tubes, but is insufficient because it is grasped as a cross), and cannot control all of the heat exchanger tubes 108 to a stable state. First, there was a drawback that the reliability and thermal efficiency of the plant could not be improved.

次に、従来技術を更に詳しく説明する。Next, the prior art will be explained in more detail.

第3図に汽水分離再熱器106の全体構成を示す。FIG. 3 shows the overall configuration of the brackish water separation and reheater 106.

汽水分離器103、第1および第2の再熱器104.1
05は細長の密閉中空円筒状の外殻シェル17内に挿設
される。図示・の汽水分離再熱器106は大容量のもの
のため中央部を境とし同一形状の第1の再熱器104a
、104bおよび第2の再熱器105a、105bが対
峙して収納される。外殻シェル17の外壁には、高圧タ
ービン101からの排気蒸気6a、6b、6c、6dを
内部に導入するための蒸気入口管5a、5b。
Brackish water separator 103, first and second reheaters 104.1
05 is inserted into an elongated closed hollow cylindrical outer shell 17. The illustrated brackish water separation reheater 106 has a large capacity, so the first reheater 104a has the same shape as the central part.
, 104b and second reheaters 105a, 105b are housed facing each other. Steam inlet pipes 5a, 5b are provided on the outer wall of the outer shell 17 for introducing exhaust steam 6a, 6b, 6c, 6d from the high-pressure turbine 101 into the interior.

5C,5dと、過熱化された供給蒸気8a、8b。5C, 5d and superheated feed steam 8a, 8b.

8Cを低圧タービン102側に送る蒸気出口管7a、7
b、7cがそれぞれ具設されている。
Steam outlet pipes 7a, 7 that send 8C to the low pressure turbine 102 side
b and 7c are provided, respectively.

第4図に示す如く、汽水分離器103は外殻シェル17
の下方側に配設され、スペースファクタの関係上隔m1
9a、19bで区切られた室内にV字形に対象配置され
る汽水分離器103a。
As shown in FIG. 4, the brackish water separator 103 has an outer shell 17
arranged on the lower side of the
A brackish water separator 103a is arranged in a V-shape in a room divided by 9a and 19b.

103bから構成される。第1の再熱器104および第
2の再熱器105は汽水分離器103の上方側に設けら
れ、隔壁19a、19bに接続する隔壁20a、20b
間に形成される室内に支持収納される。又、第1および
第2の再熱器104゜105は後に説明する如く、多数
本の伝熱管群108.109から形成される。又、外殻
シェル17の外壁側には、汽水分離器103で除外され
たドレン16a、16bを排出するためのドレン管15
a、15bが具設される。又、第1および第2の再熱器
104,105の入口側にはヘッダ9.10が形成され
、ヘッダ9,10には加熱蒸気管11.13およびドレ
ン排出管12.14が結合している。加熱蒸気管11は
高圧タービン101に接続し、加熱蒸気管13は図示し
ない原子炉の主蒸気管に接続している。
103b. The first reheater 104 and the second reheater 105 are provided above the brackish water separator 103, and are connected to the partition walls 20a and 20b connected to the partition walls 19a and 19b.
It is supported and stored in the chamber formed between them. Further, the first and second reheaters 104 and 105 are formed from a large number of heat transfer tube groups 108 and 109, as will be explained later. Further, on the outer wall side of the outer shell 17, there is a drain pipe 15 for discharging the drains 16a and 16b excluded by the brackish water separator 103.
a and 15b are provided. Further, headers 9.10 are formed on the inlet sides of the first and second reheaters 104, 105, and a heating steam pipe 11.13 and a drain discharge pipe 12.14 are connected to the headers 9, 10. There is. The heating steam pipe 11 is connected to a high pressure turbine 101, and the heating steam pipe 13 is connected to a main steam pipe of a nuclear reactor (not shown).

第5図にヘッダ9(ヘッダ10も同じ)を示す。FIG. 5 shows header 9 (header 10 is also the same).

ヘッダ9は、外隔壁18、管板22およびこれ等の両端
側に跨設される側壁(図示しない)によシ囲まれた密閉
空間を中間仕切板21で加熱蒸気室24とドレン室25
とに区画し、加熱蒸気室24に加熱蒸気26が導入され
る加熱蒸気管11を設けると共にドレン室にドレン29
が排出されるドレン排出管121r設けたものから形成
される。
The header 9 has a closed space surrounded by an outer partition wall 18, a tube plate 22, and side walls (not shown) installed at both ends of these, and a heating steam chamber 24 and a drain chamber 25 using an intermediate partition plate 21.
A heating steam pipe 11 is provided to introduce heating steam 26 into the heating steam chamber 24, and a drain 29 is provided in the drain chamber.
A drain discharge pipe 121r from which water is discharged is provided.

一方、伝熱管群108は多数本の長いV字形の伝熱管2
3から形成され、その最外縁側の伝熱管23の入口部2
3aと出口部23a′は管板22に保持されると共に加
熱蒸気室24とドレン室25に連通している。同様に最
内縁側の伝熱管23およびその中間にある伝熱管23の
入口部23d、23b、23cと出口部23d’。
On the other hand, the heat exchanger tube group 108 includes a large number of long V-shaped heat exchanger tubes 2.
3, and the inlet portion 2 of the heat exchanger tube 23 on the outermost edge side thereof.
3a and the outlet portion 23a' are held by the tube plate 22 and communicated with the heating steam chamber 24 and the drain chamber 25. Similarly, the innermost heat exchanger tube 23 and the inlet portions 23d, 23b, 23c and outlet portion 23d' of the heat exchanger tube 23 located in the middle thereof.

23b’ 、23C’も加熱蒸気室24とドレン室25
にそれぞれ連通している。
23b' and 23C' also have a heating steam chamber 24 and a drain chamber 25.
are connected to each other.

加熱蒸気管11から加熱蒸気室24内に導入された高圧
タービン101からの加熱蒸気26は、示矢の如く加熱
蒸気27a、27b、27C。
The heated steam 26 from the high-pressure turbine 101 introduced into the heated steam chamber 24 from the heated steam pipe 11 is heated steam 27a, 27b, and 27C as shown by the arrows.

27dに分かれ、それぞれの伝熱管23の入口部23a
、23b、23c、23dに入り、管内を廻って出口部
23a” 、23b’ 、23c’ 。
The inlet portion 23a of each heat transfer tube 23 is divided into 27d.
, 23b, 23c, and 23d, and go around the pipe to exit portions 23a'', 23b', 23c'.

23d′から示矢の如くドレン流28a、28b。From 23d', drain flows 28a and 28b as shown by the arrows.

28c、28dとなシドレン室25内に排出され、ドレ
ン排出管12からドレン29として排出される。伝熱管
23の外周側には、上記の如く汽水分離器103からの
蒸気30が接触し、伝熱管23内の加熱蒸気27a等と
熱交換して過熱蒸気31となシ第2の再熱器105側に
送られる。一方、伝熱管23内には上記の如く、ドレン
流283等が発生する。
It is discharged into the drain chamber 25 such as 28c and 28d, and is discharged as a drain 29 from the drain discharge pipe 12. As described above, the steam 30 from the brackish water separator 103 comes into contact with the outer peripheral side of the heat transfer tube 23, exchanges heat with the heated steam 27a, etc. in the heat transfer tube 23, and becomes superheated steam 31. Sent to the 105 side. On the other hand, the drain flow 283 and the like are generated within the heat exchanger tube 23 as described above.

上記の如く伝熱管23の加熱蒸気27a等は熱交換によ
シ凝縮するが、熱負荷のアンバランスや加熱蒸気量が適
正でないと熱負荷の大きい伝熱管23内に過大の凝縮が
生ずる。このため、伝熱管23の出口部233′等に到
達する前に加熱蒸気278等は完全に凝縮し過冷却の凝
縮液の溜りが生じ、伝熱管23の温度が不均一となシ、
局部的の熱応力、熱変形が誘発される。又、伝達管23
内を流れる蒸気と凝縮液との二相流が層状流とならず、
波状流、ぜん伏流、スラグ流の如き極めて不安定の流動
状態が形成され、水撃現象等の不具合が発生し、伝熱管
の安全性と信頼性を損わす不具合が生ずる。
As described above, the heated steam 27a and the like in the heat exchanger tubes 23 are condensed through heat exchange, but if the heat load is unbalanced or the amount of heated steam is not appropriate, excessive condensation will occur in the heat exchanger tubes 23, which have a large heat load. For this reason, the heated steam 278 and the like are completely condensed before reaching the outlet portion 233' of the heat exchanger tube 23, and a pool of supercooled condensate is generated, which causes the temperature of the heat exchanger tube 23 to become uneven.
Local thermal stress and thermal deformation are induced. Also, the transmission pipe 23
The two-phase flow of steam and condensate flowing inside does not become a laminar flow,
Extremely unstable flow conditions such as wavy flow, flood flow, and slug flow are formed, and problems such as water hammer occur, resulting in problems that impair the safety and reliability of the heat exchanger tubes.

このため、第6図に示す如く、伝熱管23の入口部23
a等および出口部23a′等の端部にオリフィス32b
、32c、32d、32b’ 。
Therefore, as shown in FIG.
an orifice 32b at the end of the outlet section 23a', etc.
, 32c, 32d, 32b'.

32c’ 、32d’を挿入したシ、伝熱管23の内に
これを掃気する蒸気を付加するなどの手段が提案されて
いる。しかし、これ等の手段は上記の不具合を完全に解
決するものでなく、特に、オリフィス32b等を挿入す
る手段は、あらゆる動作条件、負荷変化に対応できるも
のでなく、実際面でも膨大の数の伝熱管23の流動状態
を適正化するオリフィス設計が極めて困難となる。又、
掃気蒸気を付加するだけでは、相当量の加熱蒸気を浪費
するためにタービンプラントの熱効率を低下せしめる欠
点が生ずる。
32c' and 32d' have been proposed, and methods have been proposed in which steam is added to scavenge the heat exchanger tubes 23. However, these measures do not completely solve the above-mentioned problems, and in particular, the means for inserting the orifice 32b etc. cannot cope with all operating conditions and load changes, and in practice, there are a huge number of It becomes extremely difficult to design an orifice to optimize the flow state of the heat exchanger tube 23. or,
Merely adding scavenging steam has the disadvantage of wasting a significant amount of heating steam, thereby reducing the thermal efficiency of the turbine plant.

このため、従来技術でも既に特願昭56−99485号
によシ解決手段が提案されている。この方法は第2図に
概略示すもので、第1の再熱器104(第2の再熱器1
05も同じ)内の過熱蒸気温度を温度検出器116で検
出しこれを比較器117にΔカする。比較器117には
タービンの負荷変化率演算器118から所望の温度設定
値を演算する温度設定器119の設定値が入力され、両
者が比較される。この比較値の信号が開度設定手段12
0の可変温度演算器121、可変流量演算器122およ
び可変弁開度演算器123に入力され、流量制御弁10
9を制御し第1の再熱器104内を通った過熱蒸気の温
度を適正のものに調整する。
Therefore, in the prior art, a solution has already been proposed in Japanese Patent Application No. 56-99485. This method is schematically illustrated in FIG.
05 is the same) is detected by a temperature detector 116, and the detected temperature is inputted to a comparator 117 by Δ. A set value of a temperature setting device 119 that calculates a desired temperature setting value is inputted to the comparator 117 from a turbine load change rate calculator 118, and the two are compared. The signal of this comparison value is the opening degree setting means 12.
0 variable temperature calculator 121, variable flow rate calculator 122, and variable valve opening calculator 123, and the flow rate control valve 10
9 to adjust the temperature of the superheated steam passing through the first reheater 104 to an appropriate temperature.

一方、伝熱管群108から上記リザーブタンク110に
排出された掃気蒸気量を流量検出器124で検出すると
共にドレン量を流量検出器125によシ検出し、それぞ
れの検出信号は流量演算器129の掃気蒸気量演算器1
26、ドレン量演算器127に入力される。この両者の
演算値がフローパターン判定器128に入力され、二相
流の流動状態(フローパターン)が判定される。この流
動状態が上記の波状流、ぜん伏流、スラボ流等の不安定
な流動現象を呈する領域にあると判定されると流量制御
弁114の開度を制御し、適正状態に移向すべく調整す
る。
On the other hand, the amount of scavenging steam discharged from the heat transfer tube group 108 to the reserve tank 110 is detected by the flow rate detector 124, and the amount of drain is detected by the flow rate detector 125, and each detection signal is sent to the flow rate calculator 129. Scavenging steam amount calculator 1
26, is input to the drain amount calculator 127. These two calculated values are input to the flow pattern determiner 128, and the flow state (flow pattern) of the two-phase flow is determined. When it is determined that this flow state is in a region exhibiting unstable flow phenomena such as the above-mentioned wavy flow, allotment flow, and slab flow, the opening degree of the flow rate control valve 114 is controlled and adjusted to shift to an appropriate state. do.

上記の制御方法はそ−れなシの効果はあるが、第1の再
熱器104を経た上記過熱蒸気温度、リザーブタンク1
10からの掃気蒸気量およびドレン量等をクロスとして
それぞれ検出し、不安定状態を回避すべく加熱蒸気量、
掃気蒸気量を調整するため、多数本から形成される伝熱
管23それぞれの二相流の状態を判定することが困難と
なる欠点がある。特に、上記の如く伝熱管23の内の最
外縁側にあるものに最も大きな熱負荷が加わシ、凝縮液
量も最大となる。逆に最内縁側のものは凝縮液量が最小
となる。このように伝熱管23の配設位置により二相流
の状態が変化するためこれ等を上記方法によってすべて
適正化することができない。
Although the above control method has some effects, the temperature of the superheated steam passing through the first reheater 104 and the temperature of the reserve tank 1
The scavenging steam amount and drain amount from 10 are detected as a cross, and the heating steam amount,
Since the amount of scavenging steam is adjusted, there is a drawback that it is difficult to determine the state of two-phase flow in each of the heat exchanger tubes 23 formed from a large number of tubes. In particular, as described above, the largest heat load is applied to the outermost heat transfer tubes 23, and the amount of condensed liquid is also the largest. On the other hand, the amount of condensed liquid is the smallest on the innermost edge side. As described above, since the state of the two-phase flow changes depending on the arrangement position of the heat exchanger tubes 23, it is not possible to optimize all of these by the above method.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の欠点、不具合等を解決すべく創案され
たもので、その目的は、すべての伝熱管内部の過冷却を
防止して安定な流動状態を保持し、伝熱管の安全性、信
頼性を向上すると共に、プラントの熱効率を向上せしめ
る汽水分離再熱器とその制御方法を提供することにある
The present invention was devised to solve the above-mentioned drawbacks and inconveniences, and its purpose is to prevent overcooling inside all heat exchanger tubes, maintain a stable fluid state, and improve the safety of heat exchanger tubes. An object of the present invention is to provide a brackish water separation and reheater that improves reliability and improves the thermal efficiency of a plant, and a method for controlling the same.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的全達成するために、多数本のU字形
の伝熱管の入口部および出口部を保持する管板と外隔壁
および側壁とで形成される密閉空間を中間仕切板で区切
り、加熱蒸気室およびドレン室を形成する再熱管のヘッ
ダの上記加熱蒸気室およびドレン室のそれぞれを、更に
複数段に区画し、第1.第2等の加熱蒸気室およびドレ
ン室を形成し、対応する上記第1.第2等の加熱蒸気室
とドレン室との間に上記伝熱管を連結すると共に、上記
第1.第2等の加熱蒸気室およびドレン室に、高圧ター
ビン又は原子炉からの加熱蒸気を導入する加熱蒸気管お
よび上記リザーブタンクに接続する掃気蒸気管とドレン
管をそれぞれ連結せしめてなる汽水分離再熱器を特徴と
すると共に、上記加熱蒸気の糸路および上記ヘッダのド
レン室から排出される掃気蒸気の流通する系路内に流量
制御弁を介設し、上記それぞれの伝熱器まわりの被加熱
蒸気の入口と出口との温度差を検出し、伝熱管内の温度
上昇値を演算する。この検出値と設定値を比較し、上記
加熱蒸気系路の上記流量制御弁を制御すると共に、上記
それぞれのドレン室からの掃気蒸気およびドレンの流量
を検出し、この検出信号により上記それぞれの伝熱器内
の二相流のフローパターン全判定し、これによって上記
掃気蒸気系路および加熱蒸気系路内の上記流量制御弁を
制御し、各伝熱器ごとに二相流の流動状態を安定化する
ようにした汽水分離再熱器の制御方法を特徴としたもの
である。
In order to achieve all of the above objects, the present invention divides a sealed space formed by a tube sheet holding the inlet and outlet parts of a large number of U-shaped heat exchanger tubes, an outer partition wall, and a side wall with an intermediate partition plate, Each of the heating steam chamber and drain chamber of the header of the reheat pipe forming the heating steam chamber and the drain chamber is further divided into a plurality of stages. A second heating steam chamber and a drain chamber are formed, corresponding to the first and second heating steam chambers and drain chambers. The heat exchanger tube is connected between the second heating steam chamber and the drain chamber, and the first heat exchanger tube is connected between the second heating steam chamber and the drain chamber. Brackish water separation and reheating system in which a heating steam pipe that introduces heating steam from a high-pressure turbine or a nuclear reactor and a scavenging steam pipe and a drain pipe that connect to the above-mentioned reserve tank are connected to a second heating steam room and a drain room, respectively. In addition, a flow control valve is interposed in the line path of the heating steam and the path through which the scavenging steam discharged from the drain chamber of the header flows, and Detects the temperature difference between the steam inlet and outlet and calculates the temperature rise value within the heat exchanger tube. This detected value is compared with a set value to control the flow rate control valve of the heating steam line, and the flow rate of scavenging steam and drain from each of the drain chambers is detected, and this detection signal is used to control the flow rate of each of the above-mentioned transmissions. The entire flow pattern of the two-phase flow in the heater is determined, and the flow control valves in the scavenging steam line and the heating steam line are controlled based on this, and the flow state of the two-phase flow is stabilized for each heat transfer device. The present invention is characterized by a method of controlling a brackish water separation reheater in which the

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

まず、汽水分離再熱器の実施例の概要を説明する。First, an outline of an embodiment of the brackish water separation and reheater will be explained.

第7図に示す如く、第1の再熱器103のヘッダ9は、
外隔壁18と管板22と第8図に示す側壁58.59で
囲まれた密閉空間を中間仕切板21で区切って形成され
る加熱蒸気室およびドレン室を更に複数段に区画した第
1の加熱蒸気室50、第1のドレン室57等によシ形成
される。
As shown in FIG. 7, the header 9 of the first reheater 103 is
A heating steam chamber and a drain chamber formed by dividing a sealed space surrounded by an outer partition wall 18, a tube plate 22, and side walls 58 and 59 shown in FIG. 8 by an intermediate partition plate 21 are further divided into a plurality of stages. It is formed by a heating steam chamber 50, a first drain chamber 57, and the like.

第1の加熱蒸気室50と第1のドレン室57間には最外
縁側にある伝熱管23の入口部23aと出口部33a′
とが接続すると共に、高圧タービン101からの加熱蒸
気が導入される第1の加熱蒸気管38とリザーブタンク
110に掃気蒸気およびドレンを送る第1の掃気蒸気管
48および第1のドレン管49が接続している。同様に
、第2゜第3.第4の加熱蒸気室51,52.53およ
び第2.第3.第4のドレン室56,55.54にも第
2.第3.第4の加熱蒸気管39,40゜41および第
2.第3.第4の掃気蒸気管46゜44.42とドレン
管47,45.43がそれぞれ接続している。
Between the first heating steam chamber 50 and the first drain chamber 57, there is an inlet portion 23a and an outlet portion 33a' of the heat transfer tube 23 on the outermost edge side.
and a first scavenging steam pipe 48 and a first drain pipe 49 that send scavenging steam and drain to the first heating steam pipe 38 into which heated steam from the high pressure turbine 101 is introduced, and the reserve tank 110. Connected. Similarly, 2nd and 3rd. The fourth heating steam chamber 51, 52.53 and the second. Third. The fourth drain chamber 56, 55.54 also has a second drain chamber. Third. The fourth heating steam pipe 39, 40° 41 and the second. Third. The fourth scavenging steam pipe 46°44.42 is connected to drain pipes 47, 45.43, respectively.

次に、本実施例を更に詳しく説明する。Next, this embodiment will be explained in more detail.

第7図および第8図に示す如く、ヘッダ9の上記密閉空
間は上記外隔壁18、管板22お“よび側壁58.59
間に跨設され、上記密閉空間のほぼ中央に配設される中
間仕切板21によシ加熱蒸気室とドレン室とに区切られ
る。加熱蒸気室は更に適宜の間隔を隔てて並設される水
平隔板32゜33.34によシ第1の加熱蒸気室5o、
第2の加熱蒸気室51、第3の加熱蒸気室52、第4の
加熱蒸気室53に区画される。又、ドレン室は同じく適
宜の間隔を隔てて並設される水平隔板37゜36.35
によシ第1のドレン室57、第2のドレン室56、第3
のドレン室55、第4のドレン室54に区画される。第
1ないし第4の加熱蒸気室50,51,52.53のそ
れぞれには、図示しない上記高圧タービン101がらの
加熱蒸気を導入する第1ないし第4の加熱蒸気管38,
39゜40.41が接続している。又、第1ないし第4
のドレン室57,56,55.54のそれぞれには、図
示しない上記リザーブタンク110にドレン室内の掃気
蒸気およびドレンを排出する第1ないし第4の掃気蒸気
管48.46,44.42と第1ないし第4のドレン管
49,47,45゜43が接続している。
As shown in FIGS. 7 and 8, the closed space of the header 9 includes the outer partition wall 18, the tube plate 22, and the side walls 58, 59.
The closed space is divided into a heating steam chamber and a drain chamber by an intermediate partition plate 21 which is disposed astride the space and substantially in the center of the sealed space. The heating steam chamber is further divided into a first heating steam chamber 5o by horizontal partition plates 32.33.34 arranged in parallel at appropriate intervals.
It is divided into a second heated steam chamber 51, a third heated steam chamber 52, and a fourth heated steam chamber 53. Also, the drain chamber has horizontal partition plates 37°36.35 which are arranged in parallel at appropriate intervals.
The first drain chamber 57, the second drain chamber 56, and the third
It is divided into a drain chamber 55 and a fourth drain chamber 54. Each of the first to fourth heating steam chambers 50, 51, 52.53 has first to fourth heating steam pipes 38, which introduce heating steam from the high-pressure turbine 101 (not shown).
39°40.41 are connected. Also, the first to fourth
Each of the drain chambers 57, 56, 55.54 has first to fourth scavenging steam pipes 48.46, 44.42 for discharging scavenging steam and drain from the drain chamber to the reserve tank 110 (not shown) and a fourth scavenging steam pipe 48.46, 44.42. First to fourth drain pipes 49, 47, 45° 43 are connected.

一方、管板22には伝熱管23の入口部23a。On the other hand, the tube plate 22 includes an inlet portion 23a of the heat transfer tube 23.

23b、23c、23dおよび出口部23’a’。23b, 23c, 23d and outlet portion 23'a'.

23b’ 、23C’ 、23d’が固定され、上記最
外縁側の伝熱管230入口部23aと出口部238′は
第1の加熱蒸気室50と第1のドレン室57に連通して
いる。又、最内縁側の伝熱管23の入口部23dと出口
部23d′は第4の加熱蒸気室53と第4のドレン室5
4に連通する。
23b', 23C', and 23d' are fixed, and the inlet part 23a and outlet part 238' of the heat exchanger tube 230 on the outermost edge side communicate with the first heating steam chamber 50 and the first drain chamber 57. In addition, the inlet portion 23d and outlet portion 23d' of the heat exchanger tube 23 on the innermost edge side are connected to the fourth heating steam chamber 53 and the fourth drain chamber 5.
Connects to 4.

最外縁側と最内縁側の中間にある伝熱管23の入口部2
3b、23cと出口部23b’ 、23e’はそれぞれ
第2.第3の加熱蒸気室51.52と第2.第3のドレ
ン室56.55にそれぞれ連通している。
Inlet part 2 of heat exchanger tube 23 located between the outermost edge side and the innermost edge side
3b, 23c and the outlet portions 23b', 23e' are the second. The third heating steam chamber 51.52 and the second. They communicate with third drain chambers 56 and 55, respectively.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

高圧タービン101から送られる加熱蒸気(掃気蒸気を
含むンは、第1ないし第4の加熱蒸気管38.39,4
0.41から上記の如く第1ないし第4の加熱蒸気室5
0,51,52.53に入)、伝熱管23の入口部23
a、23b、23c。
Heating steam (including scavenging steam) sent from the high-pressure turbine 101 is passed through the first to fourth heating steam pipes 38, 39, 4.
0.41 to the first to fourth heating steam chambers 5 as described above.
0, 51, 52, 53), the inlet part 23 of the heat exchanger tube 23
a, 23b, 23c.

23dからそれぞれの伝熱管23内に送られる。23d into each heat transfer tube 23.

それぞれの伝熱管23の外周側には高圧タービン101
から上記汽水分離器103を介して送られる蒸気30が
接触し、伝熱管23内の加熱蒸気と熱交換し過熱され過
熱蒸気31とな9、図示しない第2の再熱器105側に
送られる。。一方、熱量を吸収された伝熱管23内の加
熱蒸気は凝縮し、第1ないし第4のドレン室57,56
,55゜54に掃気蒸気とドレンを排出する。この掃気
蒸気とドレンは第1ないし第4の掃気蒸気管48゜46
.44.42と第1ないし第4のドレン管49.47,
45.43から上記リザーブタンク110側に排出され
る。
A high pressure turbine 101 is installed on the outer peripheral side of each heat transfer tube 23.
The steam 30 sent from the above through the brackish water separator 103 contacts, exchanges heat with the heated steam in the heat transfer tube 23, is superheated, becomes superheated steam 31, and is sent to the second reheater 105 (not shown). . . On the other hand, the heated steam inside the heat exchanger tube 23 that has absorbed the amount of heat is condensed, and the first to fourth drain chambers 57, 56
, 55° 54 to exhaust scavenging steam and condensate. This scavenging steam and drain are connected to the first to fourth scavenging steam pipes 48°46
.. 44.42 and the first to fourth drain pipes 49.47,
45.43 and is discharged to the reserve tank 110 side.

本実施例では第1ないし第4の加熱蒸気室とドレン室と
を形成したが、勿論この数に限定するものでない。又、
各加熱蒸気室およびドレン室にそれぞれ一本の加熱蒸気
管、掃気蒸気管およびドレン管を接続したが複数本を配
備しても勿論かまわない。又、配設位置も図示に限定さ
れない。
In this embodiment, first to fourth heating steam chambers and drain chambers are formed, but of course the number is not limited to this number. or,
Although one heating steam pipe, one scavenging steam pipe, and one drain pipe are connected to each heating steam chamber and drain chamber, it is of course possible to provide a plurality of pipes. Moreover, the arrangement position is not limited to that shown in the drawings.

第9図および第10図は汽水分離再熱器に関する本発明
の別の実施例を示すものである。
9 and 10 show another embodiment of the present invention relating to a brackish water separation and reheater.

本実施例は、上記実施例の水平隔板32等の替わシに同
心円上に配設される弧状隔板32′等によって加熱蒸気
室およびドレン室を区画したものである。すなわち、中
間仕切板21により区切られた加熱蒸気室は、同心円状
に適宜の間隔を隔てて配設された弧状隔板32’ 、3
3’ 、34’によシ第1の加熱蒸気室50′、第2の
加熱蒸気室51′、第3の加熱蒸気室52′および第4
の加熱蒸気室53′に区画される。又、ドレン室は同様
に弧状隔板35’ 、3.6’ 、37’により第1の
ドレン室57′、第2のドレン室56’、第3のドレン
室55′および第4のドレン室54′に区画される。又
、上記実施例と同様に第10図に示す如く、ヘッダ9の
側壁58.59には第1ないし第4の加熱蒸気室50’
 、51’ 、52’ 。
In this embodiment, the heating steam chamber and the drain chamber are partitioned by arc-shaped partition plates 32' and the like arranged concentrically in place of the horizontal partition plate 32 and the like of the above embodiment. That is, the heating steam chamber divided by the intermediate partition plate 21 is divided into arc-shaped partition plates 32' and 3 arranged concentrically at appropriate intervals.
3', 34', a first heating steam chamber 50', a second heating steam chamber 51', a third heating steam chamber 52', and a fourth heating steam chamber 50'.
The heating steam chamber 53' is divided into two heating steam chambers 53'. Similarly, the drain chambers are divided into a first drain chamber 57', a second drain chamber 56', a third drain chamber 55', and a fourth drain chamber by arc-shaped partition plates 35', 3.6', and 37'. It is divided into 54'. In addition, as in the above embodiment, as shown in FIG.
, 51', 52'.

53′に連通ずる第1ないし第4の加熱蒸気管38’ 
、39’ 、40’ 、41’が連通して接続し、第1
な、いし第4のドレン室57’ 、56’ 。
first to fourth heating steam pipes 38' communicating with 53';
, 39', 40', and 41' are connected in communication, and the first
4th drain chamber 57', 56'.

55’ 、54’には第1ないし第4の掃気蒸気管48
’ 、46’ 、44’ 、42’および第1ないし第
4のドレン管49’ 、47’ 、45’ 、43’が
それぞれ連通して接続している。
55' and 54' have first to fourth scavenging steam pipes 48.
', 46', 44', 42' and first to fourth drain pipes 49', 47', 45', 43' are connected in communication with each other.

本実施例の作用、効果は上記実施例と同様であるが、弧
状隔板32′等を使用するため耐圧性に優れ、各区画空
間の圧力損失が異なる場合には有利となる。
The functions and effects of this embodiment are similar to those of the above-mentioned embodiments, but since the arc-shaped partition plate 32' and the like are used, it has excellent pressure resistance, and is advantageous when the pressure loss of each partitioned space is different.

次に、汽水分離再熱器の制御方法に関する発明の実施に
好適な実施例を図に基づいて説明する。
Next, a preferred embodiment for carrying out the invention relating to a method of controlling a brackish water separation and reheater will be described based on the drawings.

まず、本実施例の概要を第14図により説明する。First, an outline of this embodiment will be explained with reference to FIG. 14.

ヘッダ9の第1ないし第4の加熱蒸気室50等には図示
しない上記高圧タービン101からの加熱蒸気90a、
90b、90c、90dが導入され・る加熱蒸気系路が
形成され、その系路内にはそれぞれ流量制御弁91a、
91b、91c、91dが介設される。又、第1ないし
第4のドレ、1室57等からリザーブタンク110には
掃気蒸気62およびドレン61が送られる。リザーブタ
ンク110には、掃気蒸゛気管66とドレン管67が連
結され、その管系路内には流量制御弁68と70が介設
される。
Heating steam 90a from the high-pressure turbine 101 (not shown) is supplied to the first to fourth heating steam chambers 50 of the header 9,
90b, 90c, and 90d are introduced into a heating steam system path, and flow control valves 91a, 91a, and 90d are installed in the system, respectively.
91b, 91c, and 91d are interposed. Further, scavenging steam 62 and drain 61 are sent to the reserve tank 110 from the first to fourth drains, the first chamber 57, and the like. A scavenging steam pipe 66 and a drain pipe 67 are connected to the reserve tank 110, and flow control valves 68 and 70 are interposed in the pipe system.

一方、第1の再熱器104(第2の再熱器105も同じ
)内のそれぞれの伝熱管23には、その入口部23a等
および出口部23a′等近傍の被加熱蒸気の温度上昇値
ΔTs 、ΔT1に測定する温度差検出器63.64等
が係合する。この検出値を温度上昇検出器72に入力し
温度上昇値が求められ、この値は比較器73に入力され
る。一方タービン負荷等によって定められる所望の温度
上昇設定値が温度上昇設定器74から比較器73に入力
される。比較器73による両者の差によシ制御信号83
が流量制御弁912等に送られ、加熱蒸気90a等の流
量が制御され適性化される。
On the other hand, each heat exchanger tube 23 in the first reheater 104 (the same applies to the second reheater 105) has a temperature increase value of the steam to be heated near the inlet section 23a, etc. and outlet section 23a', etc. Temperature difference detectors 63, 64, etc. that measure ΔTs and ΔT1 are engaged. This detected value is input to the temperature rise detector 72 to obtain a temperature rise value, and this value is input to the comparator 73. On the other hand, a desired temperature rise set value determined by the turbine load, etc. is inputted from the temperature rise setter 74 to the comparator 73. The control signal 83 is determined by the difference between the two by the comparator 73.
is sent to the flow rate control valve 912 etc., and the flow rate of the heated steam 90a etc. is controlled and optimized.

一方、掃気蒸気管66とドレン管67には、この管内を
流れる流量を測定する流量検出器69゜71が係合する
。これ等の検出値は掃気蒸気量演、算器75、凝縮液量
演算器76に入力され、この演算値を基にして掃気率演
算器77によシ掃気率が求められる。この掃気率によp
、各伝熱管23内の二相流の流動状態をフローパターン
判定器78によシ判定し、不安定流動か否かを評価する
On the other hand, flow rate detectors 69 and 71 are engaged with the scavenging steam pipe 66 and the drain pipe 67 to measure the flow rate flowing through these pipes. These detected values are input to a scavenging steam amount calculator 75 and a condensed liquid amount calculator 76, and based on these calculated values, a scavenging rate calculator 77 determines the scavenging rate. With this scavenging rate, p
, the flow state of the two-phase flow in each heat transfer tube 23 is determined by the flow pattern determiner 78, and it is evaluated whether the flow is unstable or not.

もし、不安定流動領域であれば、掃気率修正器79によ
シ、掃気率を修正し、その制御信゛号86を掃気蒸気量
を制御する流量制御弁68に送シ、流量制御をする。掃
気流量を制御すると、これと同時に加熱蒸気90a等の
流量も制御しなければならないため、掃気率修正器79
およびフローパターン判定器78から制御信号84.8
5が送られ、加熱蒸気90a等の流量制御弁91avf
を制御する。
If the flow is in an unstable flow region, the scavenging rate is corrected by the scavenging rate corrector 79, and the control signal 86 is sent to the flow rate control valve 68 which controls the amount of scavenging steam to control the flow rate. . When controlling the scavenging flow rate, the flow rate of the heating steam 90a etc. must also be controlled at the same time, so the scavenging rate corrector 79
and a control signal 84.8 from the flow pattern determiner 78.
5 is sent to the flow rate control valve 91avf of the heated steam 90a, etc.
control.

以上の制御方法によシ、各伝熱管23ごとに二相流が安
定化される。
By the above control method, the two-phase flow is stabilized for each heat exchanger tube 23.

次に、本実施例誉更に詳しく説明する。Next, this embodiment will be explained in more detail.

第11図は、横軸に伝熱管23管束人口■(第14図の
蒸気30側)から管束出口O(過熱蒸気31側)までの
距離りを示し、縦軸にその位置における被加熱蒸気(上
記汽水分離103からの蒸気)の温度上昇値ΔTを示し
たものである。図に側の伝熱管23の出口部23a′に
近い部分の温度上昇値ΔT、1が最も大きく、管束出口
0、すなわち最外縁側の伝熱管23の入口部23aに近
い部分の温度上昇値ΔT8が最小であることが表示され
る。なお管束中央人は中間仕切板21の位置を示す。今
、上記実施例に示す如く、ヘッダ9の加熱蒸気室とドレ
ン室を第1ないし第4の加熱蒸気室およびドレン室に区
画し、それぞれの室に連通ずる伝熱管23まわシの上記
温度上昇値をΔTI+ΔT2+ΔTs 、ΔT4+ Δ
T5+ ΔT6+ΔT 7 +ΔT8とすると、最外縁
側の伝熱管23によって加熱される被加熱蒸気の温度上
昇値はΔTI十ΔT8となシ、最内縁側の伝熱管23に
よる温度上昇値はΔT4+ΔT5となる。そして中間の
温度上昇値はΔT2+ΔT7.ΔT3+ΔT6となる。
In FIG. 11, the horizontal axis shows the distance from the heat exchanger tube 23 tube bundle population ■ (steam 30 side in FIG. 14) to the tube bundle outlet O (superheated steam 31 side), and the vertical axis shows the heated steam ( The figure shows the temperature rise value ΔT of the steam (steam from the brackish water separation 103). The temperature rise value ΔT, 1 of the portion near the outlet portion 23a′ of the heat transfer tube 23 on the side shown in the figure is the largest, and the temperature rise value ΔT8 of the portion near the inlet portion 23a of the heat transfer tube 23 on the outermost edge side, which is the tube bundle outlet 0. is shown to be the minimum. Note that the pipe bundle central person indicates the position of the intermediate partition plate 21. Now, as shown in the above embodiment, the heating steam chamber and drain chamber of the header 9 are divided into first to fourth heating steam chambers and drain chambers, and the temperature of the heat transfer tube 23 connected to each chamber is increased. The values are ΔTI+ΔT2+ΔTs, ΔT4+ Δ
When T5 + ΔT6 + ΔT 7 +ΔT8, the temperature increase value of the heated steam heated by the outermost heat exchanger tube 23 is ΔTI + ΔT8, and the temperature increase value due to the innermost heat exchanger tube 23 is ΔT4 + ΔT5. The intermediate temperature rise value is ΔT2+ΔT7. ΔT3+ΔT6.

このように、各伝熱管23ごとに被加熱蒸気の温度上昇
値が異なるため、それぞれの伝熱管23ごとにその内部
を流れる加熱蒸気および凝縮液からなる二相流の流動状
態が異なシ、1つの伝熱管23が安定流動していても、
他のものに不安定流動が生じている場合が生ずる。
In this way, since the temperature rise value of the heated steam differs for each heat exchanger tube 23, the flow state of the two-phase flow consisting of heated steam and condensed liquid flowing inside each heat exchanger tube 23 differs. Even if one heat exchanger tube 23 is flowing stably,
There may be cases where unstable flow occurs in other items.

今、伝熱管23内に挿入された加熱蒸気が伝熱管23の
出口部233′等で全部凝縮液に変化する場合の加熱蒸
気量GHEATは次式により求められる。
Now, the amount of heated steam GHEAT when the heated steam inserted into the heat exchanger tube 23 is completely changed to condensate at the outlet portion 233' of the heat exchanger tube 23, etc. is determined by the following equation.

ここで、 G、7山は被加熱蒸気量、Xは曹束入口(以下入口とい
う)の加熱蒸気の湿υ度、Xは入口の被加熱蒸気の湿シ
度、11′は入口の加熱蒸気中の湿分エンタルピ、iス
“は入口の加熱蒸気中の乾き蒸気エンタルピ、12/は
加熱蒸気凝縮液のエンタルピ、11′は入口の被加熱蒸
気中の湿分エンタルピ、■7′は入口の被加熱蒸気中の
乾き蒸気エンタルピ、I2は出口の被加熱蒸気のエンタ
ルピを示す。
Here, G, 7 is the amount of steam to be heated, X is the humidity of the heated steam at the inlet of soda lime (hereinafter referred to as the inlet), X is the humidity of the steam to be heated at the inlet, and 11' is the heated steam at the inlet. is the enthalpy of dry steam in the heated steam at the inlet, 12/ is the enthalpy of the heated steam condensate, 11' is the enthalpy of moisture in the heated steam at the inlet, and 7' is the enthalpy of moisture in the heated steam at the inlet. The dry steam enthalpy in the heated steam, I2, indicates the enthalpy of the heated steam at the outlet.

乾き蒸気のエンタルピ11”+ I+“および湿分のエ
ンタルピiI’+Il’は流体の圧力、温度の関係であ
るが、実際には加熱蒸気側および被加熱蒸気側共に圧力
損失は微少のため、これ等のエンタルピはほとんど温度
に依存する。従って加熱蒸気量()gzムTは、被加熱
蒸気のエンタルピ変化Δ■(ΔニーΔT 0UT−ΔT
IN、ここでΔTOUTは管束川口側の温度上昇値、Δ
エエNは管束入口側の温度上昇値を示すンおよび加熱蒸
気のエンタルピ変化Δiによシ比較的簡単に求められる
The enthalpy of dry steam 11"+I+" and the enthalpy of moisture iI'+Il' are related to the pressure and temperature of the fluid, but in reality the pressure loss on both the heating steam side and the heated steam side is small, so this The enthalpy of etc. depends mostly on temperature. Therefore, the amount of heated steam ()gzmuT is the enthalpy change Δ■(Δknee ΔT 0UT−ΔT
IN, where ΔTOUT is the temperature rise value on the outlet side of the tube bundle, Δ
E N can be determined relatively easily from N, which indicates the temperature rise value on the tube bundle inlet side, and the enthalpy change Δi of the heated steam.

しかし、加熱蒸気量GHEAT を伝熱管23の出口部
で全部凝縮させると上記の如く過冷却が生ずるため、第
12図に示す如く伝熱管23には掃気蒸気量()sを付
加する必要がある。
However, if the heating steam amount GHEAT is completely condensed at the outlet of the heat exchanger tube 23, supercooling will occur as described above, so it is necessary to add a scavenging steam amount ()s to the heat exchanger tube 23 as shown in FIG. .

上記した特願昭56−99845号にて紹介した如ψ・
Wの値によって分類される。ここでGtは蒸気流量、G
Eは凝縮液流量、ψ、Fは流体の特性によって変化する
特性値で、(Ft−tb)単位では次式で表示される。
As introduced in the above-mentioned patent application No. 56-99845,
Classified by the value of W. Here, Gt is the steam flow rate, G
E is the condensate flow rate, ψ and F are characteristic values that change depending on the characteristics of the fluid, and are expressed in (Ft-tb) units by the following equation.

ここで、’rtは蒸気の比重量、rtは凝縮液の比重量
、σは表面張力、μtは凝縮液の粘性係数である。
Here, 'rt is the specific weight of vapor, rt is the specific weight of condensate, σ is surface tension, and μt is the viscosity coefficient of condensate.

従って上記の掃気蒸気量Gsと加熱蒸気量GH]8A丁
 の対比で表示される掃気蒸気率Gs/Ga1er は
上記のG4 / G t・ψ・Wで示される値によって
定まる流動状態が層状流、層状流の如き安定流となるよ
うに選定することが必要となる。
Therefore, the scavenging steam rate Gs/Ga1er, which is expressed by comparing the scavenging steam amount Gs and the heating steam amount GH]8A, indicates that the flow state determined by the value shown by G4/Gt・ψ・W is a laminar flow, It is necessary to select a flow that provides a stable flow such as a laminar flow.

第11図は、横軸に伝熱管23の位置を示し、縦軸には
、それぞれの伝熱管23内に導入される加熱蒸気量GI
IIAT、掃気蒸気量Gsおよび掃気蒸気率Gs、/G
iA]ct  e示したものである。最外縁側の伝熱管
23と最内縁側の伝熱管23(図では便宜上入口部23
a、23dおよび出口部23a’ 、23d’で表示し
ている)とでは熱負荷が相違するため加熱蒸気量Gui
ATは異なり、最外縁側に向って増加している。従って
、一定の掃気蒸気率G s / G nxAt  (図
に一点鎖線で示す)を得るためには、図示の如く掃気蒸
気量Gsも最外縁側に向って増加する必要がある。
In FIG. 11, the horizontal axis shows the position of the heat exchanger tubes 23, and the vertical axis shows the amount of heated steam GI introduced into each heat exchanger tube 23.
IIAT, scavenging steam amount Gs and scavenging steam rate Gs, /G
iA]ct e is shown. The heat exchanger tube 23 on the outermost edge side and the heat exchanger tube 23 on the innermost edge side (in the figure, for convenience, the inlet section 23
a, 23d and outlet portions 23a', 23d'), the heating steam amount Gui
AT is different and increases toward the outermost edge. Therefore, in order to obtain a constant scavenging vapor rate Gs/GnxAt (indicated by a dashed line in the figure), the scavenging vapor amount Gs must also increase toward the outermost edge as shown in the figure.

以上の理論の下に、第14図に示す制御方法の本実施例
が示される。上記の如く、被加熱蒸気の温度上昇値を設
定値と比較し、加熱蒸気系路を流量制御弁91a等によ
多制御すると共に、第1ないし第4のドレン室57 5
7’、’56 56’ 。
Based on the above theory, the present embodiment of the control method shown in FIG. 14 will be described. As described above, the temperature increase value of the heated steam is compared with the set value, and the heating steam line is controlled by the flow rate control valve 91a etc., and the first to fourth drain chambers 57 to 5 are controlled.
7', '56 56'.

55 55’、 54 54’  (第7図および第9
図に示す)から流出する掃気蒸気量およびドレン量を検
出し、上記の掃気蒸気量Gs/GHEATf求め、二相
流の流動状態を判定し、加熱蒸気および掃気蒸気を流量
制御弁91a等および68によって調整し安定状態に保
持すべくしたものである。これによってすべての伝熱管
23の過冷却は防止され安定状態の二相流が得られると
共に、水撃現象等が生ずることなぎタービンプラントの
熱効率を向上することが可能となる。
55 55', 54 54' (Figures 7 and 9
Detect the amount of scavenging steam and drain amount flowing out from the flow rate control valve 91a etc. and determine the amount of scavenging steam Gs/GHEATf described above, determine the flow state of the two-phase flow, and transfer the heating steam and scavenging steam to the flow rate control valve 91a etc. It is intended to be adjusted and maintained in a stable state. This prevents all of the heat transfer tubes 23 from being overcooled, providing a stable two-phase flow, and also making it possible to improve the thermal efficiency of the Nagi turbine plant without causing water hammer or the like.

第15図は本発明の別の実施例を示したものである。FIG. 15 shows another embodiment of the invention.

上記の実施例では、リザーブタンク110から排出され
る掃気蒸気量およびドレン量を検出したが本実施例では
第1ないし第4のドレン室57゜56.55.54から
排出される掃気蒸気62a。
In the embodiment described above, the amount of scavenging steam and the amount of drain discharged from the reserve tank 110 were detected, but in this embodiment, the amount of scavenging steam 62a discharged from the first to fourth drain chambers 57°, 56, 55, 54 was detected.

62b、62c、62dおよびドレy6ia。62b, 62c, 62d and drey6ia.

61b、61c、61dの流量を直接検出し、これ等を
掃気蒸気量演算器75、凝縮液量演算器76に入力し、
図示しない流量制御弁によシそれぞれの掃気蒸気量を制
御するようにしたものである。その作用、効果は上記実
施例と同様である。
Directly detect the flow rates of 61b, 61c, and 61d, and input these to the scavenging steam amount calculator 75 and the condensed liquid amount calculator 76,
A flow rate control valve (not shown) is used to control the amount of scavenging steam for each. Its action and effect are the same as those of the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかの如く、本発明によれば、す
べての伝熱器内の過冷却を防止し、安定の流動状態を保
持しその安全性と信頼性を向上し得ると共に、プラント
の熱効率を向上する効果が上げられる。
As is clear from the above explanation, according to the present invention, it is possible to prevent supercooling in all heat transferers, maintain a stable flow state, improve safety and reliability, and improve the thermal efficiency of the plant. Improved effects can be achieved.

なお当然のことではあるが、本発明は図示の実施例にの
み限られるものではない。
It should be noted that, as a matter of course, the present invention is not limited to the illustrated embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は汽水分離再熱器を備えた原子力発電プラントの
概要サイクル構成図、第2図は従来の汽水分離再熱器の
制御方法を示す制御系統図、第3図は汽水分離器および
再熱器の一般的の構造図、第4図の第3図の■−■線矢
視の断面図、第5図は従来の再熱器のヘッダまわりの構
成図、第6図は第5図の変形構成図、第7図は本発明の
一実施例のヘッダまわシを示す断面図、第8図は第7図
の鳥諏図、第9図は本発明の別の実施例のヘッダまわシ
の断面図、第10図は第9図の鳥敞図、第11図は再熱
器による温度上昇特性’eyr5す線図、第12図は掃
気蒸気の付加状態を示す説明図、第13図は掃気蒸気の
特性を示す線図、第14図は本方法発明の実施に好適′
な一実施例を示す制御系統構成図、第15図はその別実
施例の部分的制御系統構成図である。 101・・・高圧タービン、102・・・低圧タービン
、103 、103 a 、 103 b =−汽水分
離器、104゜104a、 104b−・第1の再熱器
、105゜105a、105b−第2の再熱器、106
 ・・・汽水分離再熱器、108,109・・・伝熱管
群、110゜112・・・リザーブタンク、113・・
・給水加熱器、5a、5b、5c、5d・・・蒸気入口
管、6a。 6b、6c、6d・・−排気蒸気、7a、7b、7c・
・・蒸気出口管、8a、sb、8c・・・供給蒸気、9
゜10・・・ヘッダ、11.13・・・加熱蒸気管、i
2゜14・・・ドレン排出管、15a、15b・・・ド
レン管、16a、16b・・・ドレン、17・・・外殻
シェル、18・・・外隅壁、19a、19b・・・隔壁
、20a。 20b・・・隔壁、21・・・中間仕切板、22・・・
管板、23 ・・・伝熱管、23a、23b、23c、
23d・・・入口部、23a’ 、23b’ 、23c
’ 。 23d′・・・出口部、24・・・加熱蒸気室、25・
・・ドレン室、26.27a、27b、27c、27d
・・・加熱蒸気、28a、28b、28c、28d−ド
レン流、29・・・ドレン、30・・・蒸気、31・・
・過熱蒸気、32b、32C,32d、32b’ 。 32c’ 、32d’・・・オリフィス、32,33゜
34.35,36.37・・・水平隔板、32′。 33’ 、34’ 、35’ 、36’ 、37’・・
・弧状隔板、38.38’ 、39.39’ 、40.
40’、41.41’・・・第1ないし第4の加熱蒸気
管、48.48’ 、46.46’、44.44’、4
2.42’・・・第1ないし第4の掃気蒸気管、49.
49’、47.47’、45.45’、4j、43′・
・・第1ないし第4のドレン管、50゜50′、51.
51’、52.52’、53゜53′・・・第1ないし
第4の加熱蒸気室、57゜57’、56.56’、55
.55’、54゜54′・・・第1ないし第4のドレン
室、58,59壱側壁、61,61a、61b、61c
、61d・・・ドレン、62 、62 a 、  62
 b 、 62 c 、 62d・・・掃気蒸気、63
.64・・一温度差検出器、66・・・掃気蒸気管、6
7・・・ドレン管、68・・・流量制御弁、69.71
・・・流量検出器、72・・・温度上昇検出器、73・
・・比較器、74・・・温度上昇設定器、75・・・掃
気蒸気量演算器、76・・・凝縮液量演算器、77・・
・掃気室演算器、78・・・フローパターン判定器、7
9・・・掃気率修正器、83,84,85.86・・・
制御信号、90 a 、 90 b 、 90 c 、
 90 d =−・加熱蒸気、91a、91b、91c
、91d・・−流量制御弁。 箔6図 唯q図 q
Figure 1 is a schematic cycle configuration diagram of a nuclear power plant equipped with a brackish water separator and reheater, Figure 2 is a control system diagram showing the conventional control method for a brackish water separator and reheater, and Figure 3 is a diagram of the brackish water separator and reheater. General structural diagram of a heating device, Figure 4 is a sectional view taken along the line ■-■ in Figure 3, Figure 5 is a configuration diagram around the header of a conventional reheater, and Figure 6 is Figure 5. FIG. 7 is a sectional view showing a header wheel according to an embodiment of the present invention, FIG. 8 is a cross-sectional view of FIG. 7, and FIG. 10 is a bird's-eye view of FIG. 9, FIG. 11 is a diagram showing the temperature rise characteristics due to the reheater, FIG. 12 is an explanatory diagram showing the addition state of scavenging steam, and FIG. The figure is a diagram showing the characteristics of scavenging steam, and Figure 14 is a diagram suitable for carrying out the present method invention.
FIG. 15 is a control system configuration diagram showing one embodiment, and FIG. 15 is a partial control system configuration diagram of another embodiment. 101...High pressure turbine, 102...Low pressure turbine, 103, 103a, 103b =-Brackish water separator, 104° 104a, 104b--First reheater, 105°105a, 105b-Second Reheater, 106
...Brackish water separation reheater, 108,109... Heat exchanger tube group, 110°112... Reserve tank, 113...
- Feed water heater, 5a, 5b, 5c, 5d...Steam inlet pipe, 6a. 6b, 6c, 6d...-exhaust steam, 7a, 7b, 7c...
...Steam outlet pipe, 8a, sb, 8c...Supply steam, 9
゜10... Header, 11.13... Heating steam pipe, i
2゜14... Drain discharge pipe, 15a, 15b... Drain pipe, 16a, 16b... Drain, 17... Outer shell, 18... Outer corner wall, 19a, 19b... Partition wall , 20a. 20b...Partition wall, 21...Intermediate partition plate, 22...
Tube sheet, 23... Heat exchanger tube, 23a, 23b, 23c,
23d... Inlet part, 23a', 23b', 23c
'. 23d'...Exit part, 24...Heating steam chamber, 25.
...Drain room, 26.27a, 27b, 27c, 27d
... Heating steam, 28a, 28b, 28c, 28d - Drain flow, 29... Drain, 30... Steam, 31...
- Superheated steam, 32b, 32C, 32d, 32b'. 32c', 32d'... Orifice, 32, 33° 34.35, 36.37... Horizontal diaphragm, 32'. 33', 34', 35', 36', 37'...
・Arc-shaped partition plate, 38.38', 39.39', 40.
40', 41.41'...first to fourth heating steam pipes, 48.48', 46.46', 44.44', 4
2.42'...first to fourth scavenging steam pipes, 49.
49', 47.47', 45.45', 4j, 43'・
...first to fourth drain pipes, 50°50', 51.
51', 52.52', 53°53'...first to fourth heating steam chambers, 57°57', 56.56', 55
.. 55', 54° 54'...first to fourth drain chambers, 58, 59 first side wall, 61, 61a, 61b, 61c
, 61d...drain, 62, 62a, 62
b, 62c, 62d...Scavenging steam, 63
.. 64...Temperature difference detector, 66...Scavenging steam pipe, 6
7... Drain pipe, 68... Flow rate control valve, 69.71
...Flow rate detector, 72...Temperature rise detector, 73.
...Comparator, 74...Temperature rise setting device, 75...Scavenging steam amount calculator, 76...Condensed liquid amount calculator, 77...
・Scavenging chamber calculator, 78...Flow pattern determiner, 7
9...Scavenging rate corrector, 83, 84, 85.86...
control signal, 90a, 90b, 90c,
90 d =-・Heating steam, 91a, 91b, 91c
, 91d...-Flow control valve. Foil figure 6 figure q figure q

Claims (1)

【特許請求の範囲】 1、原子力タービンプラントを構成する高圧タービンと
低圧タービンとの間に設けられ、上記高圧タービンから
の排気蒸気の湿分を分離する汽水分離器と、上記高圧タ
ービン又は原子炉からの加熱蒸気が導入される密閉空間
を形成するヘッダを有し、該ヘッダに接続する多数本の
U字形の伝熱管内に導入される上記加熱蒸気によシ上記
汽水分離器から上記伝熱管の外周側に送られる湿分分離
後の上記排気蒸気と熱交換し、上記伝熱管内に発生する
ドレンを上記ヘッダを介してリザーブタンク側に排出す
る再熱器とを備える汽水分離再熱器において、上記ヘッ
ダを、上記密閉空間を中間仕切板で区画してなる加熱蒸
気室とドレン室とで形成せしめると共に、上記加熱蒸気
室およびドレン室とを更に複数段に区画し、第1.第2
等の加熱蒸気室およびドレン室を形成し、対応する上記
第1゜第2等の加熱蒸気室とドレン室との間を上記管板
に保持されて配設される上記伝熱管で連結し、更に、上
記第1.第2等の加熱蒸気室に、上記高圧タービン又は
原子炉からの加熱蒸気を導入する加熱蒸気管を連結する
と共に、上記第1.第2等のドレン室に、上記リザーブ
タンク側に接続する掃気蒸気管およびドレン管とを連結
せしめたことを特徴とする汽水分離再熱器。 2、上記第1.第2等の加熱蒸気室およびドレン室が、
適宜の間隔を隔てて並設される隔板によって上記ヘッダ
の加熱蒸気室およびドレン室を複数段に区画して形成さ
れたものであることを特徴とする特許請求の範囲第1項
に記載の汽水分離再熱器。 3、上記第1.第2等の加熱蒸気室およびドレン室が、
適宜の間隔を隔て設けられる同心円の弧状隔板によって
上記ヘッダの加熱蒸気室およびドレン室を複数段に区画
して形成されたものであることを特徴とする特許請求の
範囲第1項に記載の汽水分離再熱器。 4、再熱器の上記ヘッダ内に形成される上記第1゜第2
等の加熱蒸気室およびドレン室と、これ等に連結する上
記加熱蒸気管および掃気蒸気管とドレン管と、対応する
上記第1.第2等の加熱蒸気室とドレン室との間に連結
される上記伝熱管と、上記掃気蒸気管およびドレン管と
に接続し、上記第1、第2等のドレン室内から排出され
る掃気蒸気とドレンとを分離して排出する上記リザーブ
タンクとを有する再熱器の、上記加熱蒸気室に導入され
る加熱蒸気および上記掃気蒸気の流量を制御する汽水分
離再熱器の制御方法において、上記加熱蒸気、掃気蒸気
の流通する系路内に流量制御弁を設け、それぞれの上記
伝熱管まわシの被加熱蒸気の入口と出口との温度差を検
出し、温度上昇値を算出し、この温度上昇値の検田値と
設定値とを比較して上記加熱蒸気系路の流量制御弁を制
御すると共に、上記掃気蒸気およびドレンの流量を検出
し、この検出信号から上記伝熱管内の蒸気およびドレン
の二相流の流動状態(フローパターン)全判定し、これ
によって上記掃気蒸気系路および加熱蒸気系路の上記流
量制御弁を制御するようにしたことを特徴とする汽水分
離再熱器の制御方法。
[Claims] 1. A brackish water separator that is provided between a high pressure turbine and a low pressure turbine constituting a nuclear turbine plant and that separates moisture from exhaust steam from the high pressure turbine, and the high pressure turbine or nuclear reactor. The heating steam is introduced into a large number of U-shaped heat transfer tubes connected to the header, and the heat transfer tubes are connected to the heat transfer tubes from the brackish water separator. a reheater for exchanging heat with the moisture-separated exhaust steam sent to the outer circumferential side of the heat exchanger tube and discharging drain generated in the heat transfer tube to the reserve tank side via the header. In the header, the closed space is formed by a heating steam chamber and a drain chamber formed by partitioning the closed space with an intermediate partition plate, and the heating steam chamber and the drain chamber are further divided into a plurality of stages. Second
forming heating steam chambers and drain chambers such as, and connecting the corresponding first and second heating steam chambers and drain chambers with the heat transfer tubes held and disposed on the tube plate; Furthermore, the above 1. A heating steam pipe for introducing heating steam from the high pressure turbine or the nuclear reactor is connected to the second heating steam chamber, and a heating steam pipe for introducing heating steam from the high pressure turbine or the nuclear reactor is connected to the first heating steam chamber. A brackish water separation and reheater characterized in that a second drain chamber is connected to a scavenging steam pipe and a drain pipe connected to the reserve tank side. 2. Above 1. The second class heated steam room and drain room are
Claim 1, wherein the heating steam chamber and the drain chamber of the header are divided into a plurality of stages by partition plates arranged in parallel at appropriate intervals. Brackish water separation reheater. 3. Above 1. The second class heated steam room and drain room are
Claim 1, wherein the heating steam chamber and the drain chamber of the header are divided into a plurality of stages by concentric arc-shaped partition plates provided at appropriate intervals. Brackish water separation reheater. 4. The first and second parts formed in the header of the reheater.
The heating steam chamber and the drain chamber, the heating steam pipe, the scavenging steam pipe, and the drain pipe connected thereto, the corresponding heating steam chamber and the drain pipe, and the corresponding heating steam chamber and drain chamber. The scavenging steam is connected to the heat exchanger tube connected between the second heating steam chamber and the drain chamber, and the scavenging steam pipe and the drain pipe, and is discharged from the first and second drain chambers. In the method for controlling a brackish water separation reheater, the method includes controlling the flow rate of the heating steam introduced into the heating steam chamber and the scavenging steam of the reheater having the reserve tank for separating and discharging the water and the drain. A flow rate control valve is provided in the system through which heating steam and scavenging steam flows, detects the temperature difference between the inlet and outlet of the heated steam of each heat transfer tube turner, calculates the temperature rise value, and calculates the temperature increase. The flow rate control valve of the heating steam line is controlled by comparing the detected field value of the rising value with the set value, and the flow rate of the scavenging steam and drain is detected, and from this detection signal, the steam and A brackish water separation and reheater characterized in that the flow state (flow pattern) of the two-phase flow of condensate is completely determined, and the flow rate control valves of the scavenging steam system path and the heating steam system path are controlled based on this. Control method.
JP58060006A 1983-04-07 1983-04-07 Steam separating reheater and method of controlling said steam separating reheater Granted JPS59185904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58060006A JPS59185904A (en) 1983-04-07 1983-04-07 Steam separating reheater and method of controlling said steam separating reheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58060006A JPS59185904A (en) 1983-04-07 1983-04-07 Steam separating reheater and method of controlling said steam separating reheater

Publications (2)

Publication Number Publication Date
JPS59185904A true JPS59185904A (en) 1984-10-22
JPH0233923B2 JPH0233923B2 (en) 1990-07-31

Family

ID=13129566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58060006A Granted JPS59185904A (en) 1983-04-07 1983-04-07 Steam separating reheater and method of controlling said steam separating reheater

Country Status (1)

Country Link
JP (1) JPS59185904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106208A (en) * 1985-10-31 1987-05-16 株式会社日立製作所 Method and device for discharging drain from moisture separating heater
JP2008175072A (en) * 2007-01-16 2008-07-31 Mitsubishi Heavy Ind Ltd Drain treatment device of moisture separating heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646042A (en) * 1979-09-17 1981-04-27 Dori Deino Quake resisting construction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646042A (en) * 1979-09-17 1981-04-27 Dori Deino Quake resisting construction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106208A (en) * 1985-10-31 1987-05-16 株式会社日立製作所 Method and device for discharging drain from moisture separating heater
JP2008175072A (en) * 2007-01-16 2008-07-31 Mitsubishi Heavy Ind Ltd Drain treatment device of moisture separating heater

Also Published As

Publication number Publication date
JPH0233923B2 (en) 1990-07-31

Similar Documents

Publication Publication Date Title
US6957630B1 (en) Flexible assembly of once-through evaporation for horizontal heat recovery steam generator
US4044820A (en) Method and apparatus for preheating combustion air while cooling a hot process gas
US2830797A (en) Refrigerant condenser
JPH02242088A (en) Steam condenser
US4223722A (en) Controllable inlet header partitioning
US4300481A (en) Shell and tube moisture separator reheater with outlet orificing
US7882809B2 (en) Heat exchanger having a counterflow evaporator
US4165783A (en) Heat exchanger for two vapor media
GB1572471A (en) Process for evaporation and evaporator
JPS59185904A (en) Steam separating reheater and method of controlling said steam separating reheater
JP5197602B2 (en) Condenser
US3130780A (en) Live steam reheater
US11725856B2 (en) Refrigerant processing unit, a method for evaporating a refrigerant and use of a refrigerant processing unit
US4671214A (en) Heat exchanger device for drying and superheating steam
US4541366A (en) Feed water preheater
EP0205194B1 (en) Combined cycle power plant
WO2022174741A1 (en) Steam heat exchanger
KR100922120B1 (en) Moisture separation heater
CN217504441U (en) Steam heating device
US4886111A (en) Heat pipe type heat exchanger
RU2775748C1 (en) Steam turbo plant
JPS637244B2 (en)
NO153983B (en) HEAT EXCHANGE.
JPS6151236B2 (en)
RU2159906C1 (en) Sectional intermediate reservoir for industrial ammonia refrigerating plants