JPS59185834A - Fuel feed device of internal-combustion engine - Google Patents

Fuel feed device of internal-combustion engine

Info

Publication number
JPS59185834A
JPS59185834A JP6084983A JP6084983A JPS59185834A JP S59185834 A JPS59185834 A JP S59185834A JP 6084983 A JP6084983 A JP 6084983A JP 6084983 A JP6084983 A JP 6084983A JP S59185834 A JPS59185834 A JP S59185834A
Authority
JP
Japan
Prior art keywords
amount
air
fuel
throttle valve
intake pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6084983A
Other languages
Japanese (ja)
Inventor
Satoru Takizawa
瀧澤 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6084983A priority Critical patent/JPS59185834A/en
Publication of JPS59185834A publication Critical patent/JPS59185834A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To correct the fuel feed quantity in response to the air quantity sucked into a cylinder when the throttle valve opening is changed abruptly and stabilize the feed quantity using the change of the air quantity as a parameter when the throttle valve is in a condition other than that fully closed. CONSTITUTION:A control unit 31 constituted as shown in the figure is fed with signals from a full-close switch 32 which is turned ON when a throttle valve 17 is fully closed and is turned OFF otherwise, an air flow meter 15 detecting the air quantity of an intake pipe, an engine speed sensor 33 outputting a signal at every engine rotation, and a reference signal generator 34 respectively. These signals are arithmetically processed by the unit 31 in required processing steps; when the opening of the throttle valve is abruptly changed to the increasing direction, the augmentation of the air quantity sucked into the intake pipe is delayed, thereby the correction function is decreased to decrease the fuel injection quantity; when the opening is rapidly changed to the decreasing direction, the decrease of the air quantity sucked into the cylinder is delayed, thereby the correction factor is increased to increase the fuel injection quantity.

Description

【発明の詳細な説明】 本発明は、内燃機関の燃料供給装置に関し、詳しくはス
ロソトルハルブ開度が急変する過渡運転時の空燃比を適
正に制御し、燃焼を安定化して運転性能の向上を図った
燃料供給装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply system for an internal combustion engine, and more specifically, the present invention aims to appropriately control the air-fuel ratio during transient operation in which the throttle valve opening changes suddenly, stabilize combustion, and improve operating performance. The present invention relates to a fuel supply device.

従来の内燃機関の燃料供給装置としては、例えば第1図
の燃料系統、第2図の空気系統および電子制御系統を組
み合せたものが知られている。
As a conventional fuel supply system for an internal combustion engine, one that combines, for example, a fuel system shown in FIG. 1, an air system and an electronic control system shown in FIG. 2 is known.

第1図の燃料系統においては、燃料はツユエルタンク1
よりツユエルポンプ2で吸入され、加圧されて圧送され
る。次にフユエルダンバ3によりツユエルポンプ2で生
ずる燃料の脈動が減衰され、さらにツユエルフィルタ4
で塵芥や水分が取り除かれた後、プレッシャレギュレー
タ5で一定の燃料圧力に調整された燃料が、機関6の各
シリンタフの吸気弁8近傍において吸気管9に取り付け
られたインジェクタ(燃料噴射弁)10から、所定の時
期に後述するようにコントロールユニット11で演算さ
れた所定の噴射量T(噴射時間)だけ、噴射される。
In the fuel system shown in Figure 1, the fuel is in the Tsuyuel tank 1.
It is sucked in by the Tsuyuel pump 2, pressurized, and pumped out. Next, the fuel damper 3 damps the fuel pulsation generated by the fuel pump 2, and the fuel filter 4
After dust and moisture are removed by the pressure regulator 5, the fuel is regulated to a constant fuel pressure and is injected into the injector (fuel injection valve) 10 attached to the intake pipe 9 near the intake valve 8 of each cylinder tough of the engine 6. From then on, fuel is injected at a predetermined time for a predetermined injection amount T (injection time) calculated by the control unit 11 as described later.

尚、余剰燃料はプレッシャレギュレータ5からツユエル
タンク1に戻される。12は冷却水温度を検出する水温
センサ、13は冷却水温度が低温の時に機関を始動する
際に開いて燃料供給量を増量するためのコールドスター
トバルブである。
Incidentally, surplus fuel is returned to the tsuyuel tank 1 from the pressure regulator 5. 12 is a water temperature sensor that detects the temperature of the cooling water; 13 is a cold start valve that is opened to increase the amount of fuel supplied when starting the engine when the temperature of the cooling water is low.

空気系統は第2図に示すように、空気はエアクリーチ1
4から吸い込まれて除塵され、エアフローメータ15に
より吸入空気量Qが計量されると共に、スロットルチャ
ンバ16においてスロットルバルブ17により吸入空気
量Qが加減され、吸気管9において、上述したインジェ
クタ10から噴射される燃料と混合された後混合気が各
シリンダ7に供給される。スロットルチャンバ16には
スロットルバルブ17が開の時にOFF、閉の時にON
となるスロットルスイッチ18が取り付けられている。
The air system is as shown in Figure 2.
The intake air amount Q is measured by the air flow meter 15, the intake air amount Q is adjusted by the throttle valve 17 in the throttle chamber 16, and the air is injected from the above-mentioned injector 10 in the intake pipe 9. The air-fuel mixture is supplied to each cylinder 7 after being mixed with the fuel. The throttle chamber 16 has a valve that is OFF when the throttle valve 17 is open and ON when the throttle valve 17 is closed.
A throttle switch 18 is attached.

19はスロットルバルブ17が閉(ずなわち、アイドリ
ング)の時の吸入空気のバイパス通路、20はそのバイ
パス通路19の空気流量を調整するアイドルアシヤス1
−スクリュー、21ばエアレギュレークで始動及びその
後の暖機運転中に補助空気弁として空気の増量を行うも
のである。
19 is a bypass passage for intake air when the throttle valve 17 is closed (i.e., idling); 20 is an idle axis 1 for adjusting the air flow rate in the bypass passage 19;
- The screw, 21, is an air regulator that serves as an auxiliary air valve to increase the amount of air during startup and subsequent warm-up operation.

次に電子制御系統はコントロールユニント11において
、エアフローメータ15からの吸入空気量Q信号と機関
6のクランク軸に取り付けられたクランク角セン−!J
−22からの機関回転数N信号とを受けて基本噴射量T
p Tp=K (Q/N)(但し、Kは定数)・・・(1)
を演算する。さらに機関や車両各部位の状態を検出した
各種情報を入力して、噴射量の補正を演算して、実際の
燃料噴射量Tを求め、このTによりインジェクタ10を
各シリンダ同時に機関1回転につき1回駆動する。
Next, the electronic control system uses the intake air amount Q signal from the air flow meter 15 and the crank angle sensor attached to the crankshaft of the engine 6 in the control unit 11. J
- Basic injection amount T based on the engine speed N signal from 22.
p Tp=K (Q/N) (K is a constant)...(1)
Calculate. Furthermore, by inputting various information detected on the state of the engine and each part of the vehicle, correction of the injection amount is calculated to determine the actual fuel injection amount T. Based on this T, the injector 10 is simultaneously injected into each cylinder at a rate of 1.5 times per engine rotation. Drive times.

各種補正を詳述すると、インゾェクタ10の駆動電圧の
変動による補正としてのバッテリ電圧補正Tsは、第3
図に示すように、ハソテリ電圧VBに応じて、 Ts=a−1−b  (1,4−VB>  (但し、a
、bは定数)  ・・・(2) で与えられる。
To explain the various corrections in detail, the battery voltage correction Ts as a correction due to fluctuations in the drive voltage of the injector 10 is
As shown in the figure, Ts=a-1-b (1,4-VB> (however, a
, b is a constant) ...(2) is given by the following.

機関が充分暖機されていない時の水温増量補正Ftは、
水温に応して第4図に示す特性図から求める。
The water temperature increase correction Ft when the engine is not sufficiently warmed up is:
It is determined from the characteristic diagram shown in FIG. 4 according to the water temperature.

内肩な始動性を得るため、及び始動からアイ1−リング
へのつなき゛を円滑に行うための始動後増量補正KAs
は、スタータモータがオンになった時の初期値KAso
がその時の水温に応して第5図に示す特性図から求めら
れ、以後、時間の経過と共に0に減少していく。
Increased amount correction KAs after starting to obtain smooth starting performance and to smoothly connect from starting to eye 1-ring
is the initial value KAso when the starter motor is turned on
is determined from the characteristic diagram shown in FIG. 5 according to the water temperature at that time, and thereafter decreases to 0 with the passage of time.

暖機が充分行なわれていない時の発進を内扇にするため
にアイドル後増量補正KAiば、スロットルスイッチ1
8がOFFとなった時の初期値KAi(+が、その時の
水温に応じて第6図に示す特性図から求められ、以後、
時間の経過と共に0に減少してい(。
In order to use the internal fan when starting when warm-up has not been performed sufficiently, increase the amount after idling correction KAi, throttle switch 1
The initial value KAi (+) when 8 is turned off is determined from the characteristic diagram shown in Fig. 6 according to the water temperature at that time.
It decreases to 0 with the passage of time (.

その他に、排気センサによる補正等を行う場合もある。In addition, correction using an exhaust sensor may be performed.

また、機関の始動時には次のような制御を行う。Furthermore, the following control is performed when starting the engine.

T+=TpX (1−1−KAs)Xl、3→−′7″
s −t:3)T 2 = T S T X K N 
S T X K T S T    −(41の2つの
値を演算し、大きい方を始動時の燃料噴射量とする。
T+=TpX (1-1-KAs)Xl, 3→-'7''
s − t: 3) T 2 = T S T X K N
S T

但し、(4)式中のTST、KNST、KTSTは夫々
、水温3機関回転数、始動後経過時間に応じて夫々第7
図、第8図、第9図の特性図から求められる。
However, TST, KNST, and KTST in equation (4) are respectively determined by the water temperature, engine speed, and time elapsed after startup.
It can be obtained from the characteristic diagrams shown in FIGS.

しかしながら、かかる従来装置においてはシリンダに吸
入される空気量qに比例する値として設定される基本噴
射量を常時Tp=に−Q/Nとして求めていたが、過渡
運転時においては吸気管に吸入される空気量Qの変化に
対してシリンダに吸入される空気量qの変化に遅れを生
じるため、]゛pを良好な値に設定することができず運
転性に悪影響を及ぼしていた。
However, in such conventional devices, the basic injection amount, which is set as a value proportional to the air amount q taken into the cylinder, is always determined as Tp = -Q/N, but during transient operation, the basic injection amount is set as a value proportional to the air amount q taken into the cylinder. Since there is a delay in the change in the amount of air q taken into the cylinder with respect to the change in the amount of air Q taken into the cylinder, it is not possible to set ゛p to a good value, which has an adverse effect on drivability.

例エバ、第】0図に示すようにスロットルバルブが全閉
以外にあっ−ζ開度が急変する時にもQの変化に対して
qの変化に遅れを生じ、かつ、Qの惰性によるオーバー
シュー[−やアンダーシェードに伴ない燃料供給量もオ
ーバーシュートやアンダーシュートを生じるため、運転
不調を招くという問題を生しる。
For example, as shown in Figure 0, when the throttle valve is not fully closed, even when the ζ opening changes suddenly, there is a delay in the change in q with respect to the change in Q, and overshoot due to the inertia of Q occurs. [- and undershading also causes overshoots and undershoots in the fuel supply amount, resulting in problems such as poor driving.

本発明はこのような従来の問題点に鑑の為されたもので
、機関のスロットルバルブ開度が急変する過渡運転時に
おいて空燃比を安定化し過渡運転性能を向上した内燃機
関の燃料供給装置を提供することを目的とする。
The present invention has been made in view of these conventional problems, and provides a fuel supply system for an internal combustion engine that stabilizes the air-fuel ratio and improves transient operation performance during transient operation when the throttle valve opening of the engine changes suddenly. The purpose is to provide.

このため、本発明においてはスロ・71−ルバルブの開
度を検出する手段と、吸気管に吸入される空気量の変化
分を検出する手段と、これら検出手段からの信号に基づ
きスロットルバルブが全閉以外の時に吸気管に吸入され
る空気量の変化分をパラメータとして燃料供給量を補正
する手段を設けた構成とする。
Therefore, in the present invention, a means for detecting the opening degree of the throttle valve, a means for detecting a change in the amount of air taken into the intake pipe, and a means for detecting a change in the amount of air taken into the intake pipe are provided, and the throttle valve is fully operated based on signals from these detecting means. The configuration includes means for correcting the fuel supply amount using a change in the amount of air taken into the intake pipe when the intake pipe is not closed as a parameter.

以下に本発明を図面に基ついて説明する。The present invention will be explained below with reference to the drawings.

但し、機関の燃料系統及び空気系統は第1図及び第2図
に示した従来例と同様であるから同一符号を付して説明
する。
However, since the fuel system and air system of the engine are the same as those of the conventional example shown in FIGS. 1 and 2, the same reference numerals will be used to describe them.

第11図は本発明の一実施例を示ずブロック図である。FIG. 11 is a block diagram showing one embodiment of the present invention.

図において、コントロールユニノl□31には、スロッ
トルバルブ17の全閉時にON、それ以外でOFFとな
るスロットル全閉スイッチ32、吸気管に吸入される空
気量を検出するエアフローメーク15、機関が1°回転
する毎に信号を出力する回転数センサ33、機関が1回
転する毎に信号を出力する基準信号発生器34からの各
信号が入力される。
In the figure, the control unit l□31 includes a throttle fully closed switch 32 that is turned on when the throttle valve 17 is fully closed and turned off otherwise, an air flow make 15 that detects the amount of air taken into the intake pipe, and an engine. Signals are input from a rotational speed sensor 33 that outputs a signal every time the engine rotates by 1°, and from a reference signal generator 34 that outputs a signal every time the engine rotates once.

コントロールユニット31はf&Jする各ユニットで構
成されている。即ち、A/D変換器35はエアフローメ
ーク15からの信号をアナログ−デジタル変換し、デジ
タル値の吸入空気量Q信号を出力する。
The control unit 31 is composed of units that perform f&j. That is, the A/D converter 35 performs analog-to-digital conversion on the signal from the air flow make 15, and outputs a digital intake air amount Q signal.

パルスカウンタ36は回転数センサ33からの1°毎の
パルス信号をカウントして機関回転数N信号を出力する
。演算回路37はこれらスロリト全開スイッチ32.A
/Di換器35.パルスカウンタ36.基準信号発生器
34及びメモリー38からの信号に基つき、第12図の
フローチャー1−に示すように動作する。第1に吸入空
気量Qを所定期間(所定時間又は所定回転)毎にメモリ
ー38に転送する(Sl)。
The pulse counter 36 counts pulse signals every 1 degree from the rotation speed sensor 33 and outputs an engine rotation speed N signal. The arithmetic circuit 37 operates on these fully open throttle switches 32. A
/Di converter 35. Pulse counter 36. Based on the signals from the reference signal generator 34 and memory 38, the operation is performed as shown in flowchart 1- of FIG. First, the intake air amount Q is transferred to the memory 38 every predetermined period (predetermined time or predetermined rotation) (Sl).

第2に現在及び所定期間前の機関回転数N及び吸入空気
iQを読み込んだ後(S2)、スロ・7トルパルブ全開
スイツチ32がONであるか否かを判IJJiしくS3
) 、ONの場合にはS2で読み込ん/どQとNとから
基本噴射量T p = K・Q/Nを演算する(S4)
Second, after reading the current and previous engine speed N and intake air iQ (S2), it is determined whether the throttle/7 torque valve fully open switch 32 is ON or not.
), if it is ON, read it in S2 and calculate the basic injection amount T p = K・Q/N from Q and N (S4)
.

また、S3でスロットル全開スイッチ32かOFFであ
ると判断された場合は、S2で読み込んた現在の吸入空
気(iQとメモリー38から人力した所定期間前の吸入
空気+JQ’ とから吸入空気量の変化分ΔQ=Q−Q
’ を求め(S5)、このΔQに基づいて設定される補
正関数Foff  (ΔQ)と、A/D変換器の出力Q
と前記Nとから基本噴射量Tp=Foff  (ΔQ)
・K−Q/Nを演算する(S6)次にこのようにして求
められたTpをもとに、前記した従来同様の各種運転条
件に基づく補正を行って最終的な燃料噴射量Tiを演算
しくS7)、その信号をレジスタ39に転送する(S8
)−6レジスタ39は、この値を演算回路37から新た
な信号を入力するまで一次格納する。又、クロックジェ
ネレータ40ば所定の周波数をもつパルスを発信し、カ
ウンタ41は、クロックジェネレータ40がらのパルス
をカラン1−シ基準信号発生器34からの基準信号によ
りリセフトされる。比較器42ば基準信号発注器34か
らの基準信号を入力すると、トランジスタ43をOFF
にし、インジェクタ10を通電させて開き燃料の噴射を
開始させると共に、レジスタ39の値(即ち燃料噴射量
T i )とカウンタ41の値とを比較しカウンタ41
の値が大きくなってレジスタ39の値−カウンタ41の
値となった所で、トランジスタ43をONにし、インジ
ェクタ10を閉じて燃料の噴射を終了させる(第13図
参照)。
In addition, if it is determined in S3 that the throttle fully open switch 32 is OFF, the intake air amount changes based on the current intake air read in S2 (iQ and the intake air manually input from the memory 38 + JQ' for a predetermined period of time). Minute ΔQ=Q-Q
' (S5), and the correction function Foff (ΔQ) set based on this ΔQ and the output Q of the A/D converter
From the above N, the basic injection amount Tp=Foff (ΔQ)
・Calculate K-Q/N (S6) Next, based on Tp obtained in this way, the final fuel injection amount Ti is calculated by making corrections based on various operating conditions as in the conventional method described above. (S7) and transfers the signal to the register 39 (S8)
)-6 register 39 temporarily stores this value until a new signal is input from the arithmetic circuit 37. Further, the clock generator 40 emits pulses having a predetermined frequency, and the counter 41 is reset by a reference signal from the reference signal generator 34 in response to the pulses from the clock generator 40. When the comparator 42 inputs the reference signal from the reference signal orderer 34, it turns off the transistor 43.
The injector 10 is energized to open and start injecting fuel, and the value of the register 39 (i.e. fuel injection amount T i ) is compared with the value of the counter 41.
When the value increases to the value of the register 39 minus the value of the counter 41, the transistor 43 is turned on, the injector 10 is closed, and fuel injection is completed (see FIG. 13).

ここにおいて、前記演算回路37のS5及びS7で使用
される補正関数Foff(ΔQ)が例えば次のように設
定される。
Here, the correction function Foff(ΔQ) used in S5 and S7 of the arithmetic circuit 37 is set, for example, as follows.

即ち、 a、ΔQ≧Qαのとき Foff  (△Q)≦1.O
b、Qα〉ΔQ>Qβのとき Foff  (ΔQ)=’1.O C1ΔQ≦Qβのとき ト’off  (八〇)≧1,
0但しQα≧0.Qβ≦0.  Foff  (八〇)
≧0とする。即ち、前記したようにスロットルバルブが
開度増大方向に急変するとき(前記a)は吸気管に吸入
される空気量Qの増量にり1してシリンダに吸入される
空気量の+ItJ量に遅れかあるため、補正関数Fof
f(ΔQ)を小さくして燃料噴射量を減量補正し、反対
に開度減少方向に急変するとき(前記C)はシリンダに
吸入される空気量の減少に遅れがあるため補正関数Fo
ff(△Q)を大きくして燃料噴射量を増量補正するこ
とにより真のシリンダ吸入空気量に良好に対応した燃料
量が供給され空燃比が安定して運転性が向上する。
That is, when a, ΔQ≧Qα, Foff (△Q)≦1. O
b, when Qα>ΔQ>Qβ, Foff (ΔQ)='1. OC1ΔQ≦Qβ, off (80)≧1,
0 provided that Qα≧0. Qβ≦0. Foff (80)
≧0. That is, as mentioned above, when the throttle valve suddenly changes in the direction of increasing opening (a), the increase in the amount of air Q taken into the intake pipe lags behind the amount of +ItJ of air taken into the cylinder. Since there is a correction function Fof
When f(ΔQ) is decreased to correct the fuel injection amount, and on the other hand, when the opening changes suddenly in the direction of decreasing opening (C), there is a delay in decreasing the amount of air taken into the cylinder, so the correction function Fo
By increasing ff(ΔQ) and increasing the fuel injection amount, a fuel amount that satisfactorily corresponds to the true cylinder intake air amount is supplied, the air-fuel ratio is stabilized, and drivability is improved.

尚、吸入空気量の変化分ΔQとして次のような値を用い
ることにより、変化量検出等のバラツキによる誤動作を
防くことができると共により最適な制御が可能となる。
By using the following value as the amount of change ΔQ in the amount of intake air, it is possible to prevent malfunctions due to variations in detection of the amount of change, etc., and to achieve more optimal control.

1)現在の値Qと、過去の所定期間の平均値あるいは加
重平均値(Q゛)との差(Q−Q’ )ii )現在を
含む最新の所定期間の平均値あるいは加重平均値(間)
と、過去の所定期間の平均値あるいは加重平均値(Q゛
)との差(Q−Q”)111)前記実施例及び上記i)
、ii)における差(ちのいずれか一つの加重平均値 (ΔQ= (1−a)八〇’  +a −Q)iv)前
記実施例及び上記i)、ii)における差(Q−Q’ 
) 、 (Q−Q”) 、 (Q−Q’ ) 、のうち
いずれか一つの移動平均値(ΔQ−去ダΔQ i ) 第14図は本発明の第2の実施例のフローチャートを示
す。但し、演算回路における動作以外の構成は前記実施
例と同様であるのでこれらに関する説明は省略する。
1) Difference (Q-Q') between the current value Q and the average value or weighted average value (Q゛) of the past predetermined period (Q-Q')ii) Difference between the current value Q and the average value or weighted average value (Q゛) of the latest predetermined period including the present )
and the average value or weighted average value (Q゛) of the past predetermined period (Q-Q'') 111) The above embodiment and the above i)
, ii) (weighted average value of any one of them (ΔQ=(1-a)80' +a-Q)iv) Difference (Q-Q' in the above example and i), ii) above
), (Q-Q"), (Q-Q'), the moving average value of any one (ΔQ-removal ΔQ i ) FIG. 14 shows a flowchart of the second embodiment of the present invention. However, since the configuration other than the operation of the arithmetic circuit is the same as that of the previous embodiment, a description thereof will be omitted.

演算回路は現在の吸気管に吸入される空気量Qを所定期
間毎にメモリー38に転送すること(Sll)は前記実
施例と同様である。一方、NとQとを読み取った後(S
12)、基本噴射量1−p(−に−Q/N)を演算する
(S13)。
As in the previous embodiment, the arithmetic circuit transfers the current amount of air Q taken into the intake pipe to the memory 38 at predetermined intervals (Sll). On the other hand, after reading N and Q (S
12) Calculate the basic injection amount 1-p (-Q/N) (S13).

次にスロットル全閉スイッチ32かONであるから否か
を判断しく514)、ONの場合にはそのまま後述する
S17に移る。
Next, it is determined whether the throttle fully closed switch 32 is ON or not (514), and if it is ON, the process directly proceeds to S17, which will be described later.

また314でスロットル全開スイッチがOFFの場合に
はまず現在の吸気管吸入空気量Qと所定期間前の吸気管
吸入空気量Q゛ とからその変化分(ΔQ=Q−Q″)
を求め(S15)、このΔQから燃料補正骨Goff 
 (ΔQ)を上記]゛pに加算し結果を改めてTpとす
る(316)。
In addition, if the full throttle switch is OFF at 314, first calculate the change (ΔQ=Q-Q'') from the current intake pipe intake air amount Q and the intake pipe intake air amount Q'' from a predetermined period before.
(S15), and from this ΔQ, the fuel correction bone Goff
(ΔQ) is added to the above ]p and the result is re-set as Tp (316).

次にこれら313で求められたTp又はS16で補正さ
れたTpをもとに、従来通りの補正演算を行って最終的
な燃料噴射量Tiを求めてレジスフに転送する(317
)。
Next, based on the Tp obtained in 313 or the Tp corrected in S16, the conventional correction calculation is performed to obtain the final fuel injection amount Ti, which is transferred to the register (317
).

ここで、燃料補正骨Goff  (ΔQ)は例えば次の
ような値とする。
Here, the fuel correction bone Goff (ΔQ) is assumed to be, for example, the following value.

d、ΔQ≧jQαのとき C,off  (ΔQ)≦O
e、Qα〉八〇>Qβのとき Goff  (ΔQ)=O f、ΔQ≦Qβのとき Goff  (ΔQ)≧0但し
、Qα≧0.Qβ≦0 尚、Qの変化分ΔQとしては前記実施例で示したものと
同様なものが考えられる。
d, when ΔQ≧jQα, C, off (ΔQ)≦O
e, when Qα〉80>Qβ, Goff (ΔQ)=O f, when ΔQ≦Qβ, Goff (ΔQ)≧0, however, Qα≧0. Qβ≦0 Note that the change in Q ΔQ may be the same as that shown in the above embodiment.

この実施例においても補正係数を乗算する代りに燃料補
正骨を与える(加減する)ことによってシリンダに吸入
される真の空気量に良好に対応した燃料供給量を補正す
ることができ過渡運転時の空燃比を安定させて運転性を
向上させることができる。
In this embodiment as well, by providing (adjusting or subtracting) a fuel correction value instead of multiplying by a correction coefficient, it is possible to correct the fuel supply amount that corresponds well to the true amount of air taken into the cylinder, and thus during transient operation. It is possible to stabilize the air-fuel ratio and improve drivability.

以上説明したように、本発明においてはスロソトルハル
ブが全閉以外の時において、吸気管に吸入される空気量
の変化分ΔQをパラメータとして燃料供給量を補正する
手段を設けたためスロソトルハルブ開度の急変時シリン
ダに吸入される空気量に良好に対応した燃料供給量に補
正して空燃比を安定させ運転性能を向上させることがで
きるものである。
As explained above, in the present invention, when the throttle valve is not fully closed, a means for correcting the fuel supply amount using the change ΔQ in the amount of air taken into the intake pipe as a parameter is provided, so that when the throttle valve opening degree suddenly changes. It is possible to stabilize the air-fuel ratio and improve driving performance by correcting the fuel supply amount to suitably correspond to the amount of air taken into the cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電子制御式燃料供給装置の燃料系統の構
成図、第2図は同上装置の空気系統の構成図、第3図は
ハソテリ電圧とハソテリ電圧補正値の関係を示す特性図
、第4図は水温と水温増量補正値の関係を示す特性図、
第5図は水温と始動後増量補正の初期値の関係を示す特
性図、第6図は水温とアイドリング後増量補正の初期値
の関係を示1−特性図、第7図は水温と補正値TSTの
関係を示す特性図、第8図は機関回転数と補正値KNS
Tの関係を示す特性図、第9図は始動後経過時間と補正
値KNSTの関係を示す特性図、第10図は従来装置の
スロソトルハルブ開度急変時のスロットル開度、シリン
ダ吸入空気量、燃料供給量の挙動を示す線図、第11図
は本発明に係る一実施例装置のブロック図、第12図f
Al、 (Blは夫々同上実施例装置の主要動作を示す
フローチャート、第13図は同上実施例装置の主要部の
出力波形図、第14図fAl、 FB+は夫々本発明に
係る別実施例装置の主要動作を示すフローチャートであ
る。 6・・・機関  10・・・インジェクタ  15・・
・エアフローメータ  31・・・コントロールユニッ
ト32・・・スロットル全閉スイッチ  33・・・回
転数センサ  34・・・基準信号発生器  35・・
・A/D変換器36・・・パルスカウンタ  37・・
・演算回路  38・・・メモリー  39・・・レジ
スフ  40・・・クロックジェネレータ  41・・
・カウンタ  42・・・比較器43・・・トランジス
タ 特許出願人  日産自動車株式会社 代理人  弁理士 笹 島 冨二雄 第3因 第4図 氷シi(’C) 第5因 末 シ孟 (0C) 第6凶 第7図 末堀−(0C) 第8因 狽■口転数N (rl)m)
Fig. 1 is a configuration diagram of the fuel system of a conventional electronically controlled fuel supply device, Fig. 2 is a configuration diagram of the air system of the same device, and Fig. 3 is a characteristic diagram showing the relationship between the internal voltage and the internal voltage correction value. Figure 4 is a characteristic diagram showing the relationship between water temperature and water temperature increase correction value,
Figure 5 is a characteristic diagram showing the relationship between water temperature and the initial value of the increase correction after starting, Figure 6 is a characteristic diagram showing the relationship between the water temperature and the initial value of the increase correction after idling, and Figure 7 is the water temperature and correction value. A characteristic diagram showing the relationship between TST and Figure 8 shows the engine speed and correction value KNS.
Figure 9 is a characteristic diagram showing the relationship between the elapsed time after startup and the correction value KNST, and Figure 10 is a characteristic diagram showing the relationship between the time elapsed after starting and the correction value KNST, and Figure 10 shows the throttle opening, cylinder intake air amount, and fuel when the throttle opening of the conventional device suddenly changes. A diagram showing the behavior of the supply amount, FIG. 11 is a block diagram of an embodiment of the device according to the present invention, and FIG. 12 f
Al, (Bl is a flowchart showing the main operation of the device according to the above embodiment, FIG. 13 is an output waveform diagram of the main part of the device according to the embodiment above, and FIG. It is a flowchart showing main operations. 6... Engine 10... Injector 15...
・Air flow meter 31...Control unit 32...Throttle fully closed switch 33...Rotational speed sensor 34...Reference signal generator 35...
・A/D converter 36...Pulse counter 37...
・Arithmetic circuit 38...Memory 39...Regisf 40...Clock generator 41...
・Counter 42...Comparator 43...Transistor patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio Sasashima Third cause 4th figure ice si ('C) 5th cause Shi Meng (0C ) No. 6 No. 7 Suehori - (0C) No. 8 No. of mouth rolls N (rl)m)

Claims (1)

【特許請求の範囲】[Claims] 吸気管に吸入される空気量と機関回転数とに基づいて燃
料の基本供給量を設定してなる内燃機関の燃料供給装置
において、吸気管に介装されたスロソトルハルブの開度
を検出する手段と、吸気管に吸入される空気量の変化分
を検出する手段と、これらの検出手段からの信号に基づ
いてスロ71−ルバルブの全開以外の時に吸気管に吸入
される空気量の変化分をパラメータとして燃料供給量を
補正する手段と、を設けて構成したことを特徴とする内
燃機関の燃料供給装置。
In a fuel supply system for an internal combustion engine in which a basic supply amount of fuel is set based on the amount of air taken into an intake pipe and the engine speed, means for detecting the opening degree of a throttle valve installed in an intake pipe; , means for detecting changes in the amount of air taken into the intake pipe, and based on signals from these detection means, changes in the amount of air taken into the intake pipe when the throttle valve is not fully open are set as parameters. 1. A fuel supply device for an internal combustion engine, comprising: means for correcting a fuel supply amount.
JP6084983A 1983-04-08 1983-04-08 Fuel feed device of internal-combustion engine Pending JPS59185834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6084983A JPS59185834A (en) 1983-04-08 1983-04-08 Fuel feed device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6084983A JPS59185834A (en) 1983-04-08 1983-04-08 Fuel feed device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59185834A true JPS59185834A (en) 1984-10-22

Family

ID=13154231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6084983A Pending JPS59185834A (en) 1983-04-08 1983-04-08 Fuel feed device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59185834A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113835A (en) * 1985-11-13 1987-05-25 Mazda Motor Corp Fuel injection control device for engine
JPS62248841A (en) * 1986-04-23 1987-10-29 Mitsubishi Electric Corp Fuel control device for internal combustion engine
JPS62248843A (en) * 1986-04-23 1987-10-29 Mitsubishi Electric Corp Fuel control device for internal combustion engine
JPS62279242A (en) * 1986-05-29 1987-12-04 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injector for internal combustion engine
JPS6361738A (en) * 1986-09-01 1988-03-17 Hitachi Ltd Fuel control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113835A (en) * 1985-11-13 1987-05-25 Mazda Motor Corp Fuel injection control device for engine
JPS62248841A (en) * 1986-04-23 1987-10-29 Mitsubishi Electric Corp Fuel control device for internal combustion engine
JPS62248843A (en) * 1986-04-23 1987-10-29 Mitsubishi Electric Corp Fuel control device for internal combustion engine
JPS62279242A (en) * 1986-05-29 1987-12-04 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injector for internal combustion engine
JPS6361738A (en) * 1986-09-01 1988-03-17 Hitachi Ltd Fuel control device

Similar Documents

Publication Publication Date Title
US4658787A (en) Method and apparatus for engine control
US4444168A (en) Engine idling speed control method and apparatus
JPS59221435A (en) Control method for fuel injection
JPS6411814B2 (en)
US4550705A (en) Electrical fuel injector
JPS59185834A (en) Fuel feed device of internal-combustion engine
JPH04279742A (en) Fuel injection control device of internal combustion engine
US4976242A (en) Fuel injection control device of an engine
JPH05256172A (en) Fuel control device for engine
JPH04166637A (en) Air-fuel ratio controller of engine
JPS61135948A (en) Method of controlling injection quantity of fuel in internal combustion engine
JP2584299B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS59115445A (en) Electronic control for linear solenoid type idle-speed control valve of engine equipped with supercharger
JPS59185829A (en) Fuel feed device of internal-combustion engine
JPS60162065A (en) Control device for internal-combustion engine
JPS597750A (en) Mixed-gas controlling apparatus for internal-combustion engine
JPS58192932A (en) Electronic controlled fuel injection device for internal- combustion engine
JPH0123662B2 (en)
JPS59128927A (en) Electronically controlled fuel injection device
JP2677421B2 (en) Fuel injection amount control method for internal combustion engine
JPS59126039A (en) Fuel supply controlling apparatus for internal- combustion engine
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JPS58131332A (en) Electronically controlled fuel injection apparatus
JPS58195034A (en) Fuel supply control device for engine
JP3053155B2 (en) Fuel injection control method