JPS59185806A - Turbine control device - Google Patents

Turbine control device

Info

Publication number
JPS59185806A
JPS59185806A JP6002083A JP6002083A JPS59185806A JP S59185806 A JPS59185806 A JP S59185806A JP 6002083 A JP6002083 A JP 6002083A JP 6002083 A JP6002083 A JP 6002083A JP S59185806 A JPS59185806 A JP S59185806A
Authority
JP
Japan
Prior art keywords
signal
bleed
control
turbine
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6002083A
Other languages
Japanese (ja)
Inventor
Yoshinao Sano
佐野 芳直
Yoichi Tone
洋一 戸根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6002083A priority Critical patent/JPS59185806A/en
Publication of JPS59185806A publication Critical patent/JPS59185806A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent rise of the turbine exhaust temperature and minimize generator output within a range witout hindrance to controlling steam extraction by controlling an adjustment valve for the last stage steam extraction at the minimum definite opening at the time of generating minimum operation of a steam extraction turbine. CONSTITUTION:In a control device of a two-stage steam extraction turbine, a signal sD, obtained by letting a speed deviation signal es pass through a speed controller 13, is added to a load setting signal lL by means of an adder 15, and the sum is inputted to a distribution ratio operation part 25 as a signal cL. Further, deviation signals cp1, cp2 for the difference between the first extraction pressure and the second extraction pressure are also inputted to the operation part 25, and openings of a steam adjustment valve and the first, the second steam extraction adjustment valves are controlled by means of controllers 26-28. At the time of the generating minimum operation, a switch 22 is put in ON state and a load setting signal lL, corresponding to a deviation of a minimum opening setting signal dR2ECV for the second steam extraction adjustment valve from an actual opening signal b2ECV, is sent out to maintain the the second steam extraction adjustment valve at the minimum opening all the time, therefore, the extraction pressure is constant and the minimum generator output can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は抽気タービンの抽気圧力に影響を与えることな
く、負荷制御するに好適なタービン制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a turbine control device suitable for load control without affecting the extraction pressure of an extraction turbine.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に抽気タービンは電力と蒸気の2種類のエネルギー
を必要とする産業用自家発電設備に採用される。この抽
気タービンを運転する際の一次的運転要求として調速制
御と抽気制御とがある。即ち、調速制御の重要性は言う
に及ばないが、抽気圧力を一定に制御することは工場生
産活動を維持する上で重要な役割を担う。一方、二次的
運転要求として負荷制御がある。これは、電力料金が高
い時間帯には発電最大運転を行ない、逆に電力料。
Generally, extraction turbines are employed in industrial private power generation equipment that requires two types of energy: electric power and steam. The primary operational requirements when operating this bleed turbine include speed control control and bleed control. In other words, the importance of speed governor control goes without saying, but controlling the bleed pressure to a constant level plays an important role in maintaining factory production activities. On the other hand, there is load control as a secondary operation requirement. This means that during times when electricity prices are high, power generation is maximized, which in turn reduces electricity costs.

金が安い時間帯には発電最小運転を行なって買電するこ
とが制御の中心となる。
The main control is to minimize power generation and purchase electricity during times when money is cheap.

この発電最小運転を行なうためには、負荷設定を下げ、
タービンへ入力する蒸気流量を絞る必要がある。しかし
、蒸気流量を絞シ過ぎると、タービン排気流量が減少し
過ぎ、その結果、冷却低によシ排気温度上昇を生じ、最
終段タービンの過熱に至る。更に、この過熱が続くとタ
ービンに致命的損傷を与える。
In order to perform this minimum power generation operation, lower the load setting and
It is necessary to reduce the flow rate of steam input to the turbine. However, if the steam flow rate is reduced too much, the turbine exhaust flow rate decreases too much, resulting in poor cooling and a rise in exhaust gas temperature, leading to overheating of the final stage turbine. Furthermore, if this overheating continues, it will cause fatal damage to the turbine.

このため、運転員は排気流量がある流量以下にならぬよ
う制限しつつ、なおかつ、抽気流量の変化に対して抽気
圧力が変動しないように監視操作しなければならず、そ
の運転操作に多大の労力を要する問題点があった。
For this reason, operators must restrict the exhaust flow rate so that it does not fall below a certain flow rate, and monitor and operate the bleed air pressure so that it does not fluctuate in response to changes in the bleed air flow rate. There were problems that required effort.

〔発明の目的〕[Purpose of the invention]

本発明はタービン排気流量を一定に保ち、最終段タービ
ンの過熱を防ぎつつ、なおかつ、工場で使用する抽気流
量の如何にかかわらず、抽気圧力を一定に保った上で、
そのときの抽気流量に応じて取シ得る最小の負荷即ち発
電出力が得られるタービン制御装置を提供することを1
目的とする。
The present invention maintains the turbine exhaust flow rate constant, prevents overheating of the final stage turbine, and maintains the extraction pressure constant regardless of the extraction flow rate used in the factory.
1. It is an object of the present invention to provide a turbine control device that can obtain the minimum load that can be handled, that is, the power generation output, depending on the flow rate of extracted air at that time.
purpose.

〔発明の概要〕[Summary of the invention]

このため、本発明は発電最小運転時に最終段抽気加減弁
開度を最小一定開度に制御することによシ、タービン排
気温度上昇を防ぎ、かつ抽気制御C′−】 に支障のない範囲内で発電機出力が取り得る最小となる
ようにしたことを特徴としている。
Therefore, the present invention prevents the turbine exhaust temperature from rising by controlling the opening of the final stage bleed control valve to a minimum constant opening during the minimum power generation operation, and maintains the temperature within a range that does not interfere with the bleed control C'-]. The feature is that the generator output is the minimum possible.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す実施例を参照して説明する。 The present invention will be described below with reference to embodiments shown in the drawings.

第1図は本発明の実施例に係る二段抽気タービン制御系
の構成図を示したもので、1はタービン制御装置、2は
蒸気加減弁、3は第一抽気加減弁、4は第二抽気加減弁
1.5は高圧タービン、6は中圧タービン、7は低圧タ
ービン、8は発電機、9は速度センサ、10.11は圧
力センサである。
FIG. 1 shows a configuration diagram of a two-stage bleed air turbine control system according to an embodiment of the present invention, in which 1 is a turbine control device, 2 is a steam control valve, 3 is a first bleed air control valve, and 4 is a second bleed air control system. The extraction control valve 1.5 is a high pressure turbine, 6 is an intermediate pressure turbine, 7 is a low pressure turbine, 8 is a generator, 9 is a speed sensor, and 10.11 is a pressure sensor.

タービン制御装置1は速度センサ9、圧力センサ10.
11よシそれぞれ速度信号S、第一抽気圧力信号pl、
第二抽気圧力信号p2を入力し、速度負荷制御と第一抽
気圧制御と第二抽気圧制御とが互いに非干渉となるよう
蒸気加減弁駆動信号aCV 、第一抽気加減弁駆動信号
algcy、第二抽気加減弁駆動信号a2ECVをそれ
ぞれ蒸気加減弁2、第一抽気加減弁3、第二抽気加減弁
4に出力する。
The turbine control device 1 includes a speed sensor 9, a pressure sensor 10.
11, respectively, a speed signal S, a first bleed pressure signal pl,
The second bleed pressure signal p2 is input, and the steam control valve drive signal aCV, the first bleed control valve drive signal algcy, and the The second bleed control valve drive signal a2ECV is output to the steam control valve 2, first bleed control valve 3, and second bleed control valve 4, respectively.

このとき、各加減弁の流量と各抽気流量との間には次の
関係が成立する。
At this time, the following relationship is established between the flow rate of each control valve and each bleed air flow rate.

’c ”= f、E +f、zc    ”−・−・−
(1)fl。。=f2゜十’2IIC・・・・・・・・
・・・・・・・・・・ (2)f2お。” fCON 
      ・・・・・・・・・・・・・−・・・・ 
(3)但し、foは主蒸気流量、fIBは第一抽気流量
、fiECは第一抽気加減弁流量、f2゜は第二抽気流
量、f2ECは第二抽気加減弁流量、fcoNは排気流
量である。
'c ''=f, E +f, zc ''−・−・−
(1) fl. . = f2゜10'2IIC...
・・・・・・・・・・・・ (2) f2 Oh. ”fCON
・・・・・・・・・・・・・・・・・・・・・
(3) However, fo is the main steam flow rate, fIB is the first bleed air flow rate, fiEC is the first bleed air control valve flow rate, f2° is the second bleed air flow rate, f2EC is the second bleed air control valve flow rate, and fcoN is the exhaust flow rate. .

また、高圧タービン5、中圧タービン6および低圧ター
ビン7によって駆動される発電機8の出力即ち負荷りは
次式で示される。
Further, the output or load of the generator 8 driven by the high pressure turbine 5, intermediate pressure turbine 6, and low pressure turbine 7 is expressed by the following equation.

L=ηhf。+ηlf、つ。十ηtf2□、・・・・・
・・・・・・・・・・(4)但し、η5は高圧タービン
流量出力比、η1は中圧タービン流量出力比、ηえは低
圧タービン流量出力比である。
L=ηhf. +ηlf, one. 1ηtf2□,...
(4) However, η5 is the high pressure turbine flow rate output ratio, η1 is the intermediate pressure turbine flow rate output ratio, and η is the low pressure turbine flow rate output ratio.

従って、上記(1)〜(4)式から、発電最小運転を行
なわないときの抽気タービン制御は以下のように行なえ
ばよいことが判る。
Therefore, from equations (1) to (4) above, it can be seen that the extraction turbine control when the minimum power generation operation is not performed can be performed as follows.

例え−ば、抽気圧力に変動を与えることなく負荷のみ増
加させるためには、蒸気加減弁2を開け、主蒸気流量f
cを増加すると同時に、第一抽気流量f1. 、第二抽
気流量f2Kが増加しないよう、第一抽気加減弁3と第
二抽気加減弁4とを開くように制御すればよい。
For example, in order to increase only the load without causing fluctuations in the extraction pressure, open the steam control valve 2 and open the main steam flow rate f.
c and at the same time, the first bleed air flow rate f1. , the first bleed air control valve 3 and the second bleed air control valve 4 may be controlled to be opened so that the second bleed air flow rate f2K does not increase.

次に、負荷りおよび第二抽気圧p2に変動を与えること
なく第一抽気圧plのみ上げるためには、先ず蒸気加減
弁2を開け、第一抽気加減弁3を閉じて第一抽気流量f
lEを増やす。このとき、負荷を絞るため第一抽気加減
弁3が閉じるので、第一抽気加減弁流量fl。。が減シ
、第二抽気流量f2Eが減るので、第二抽気加減弁4を
閉じるよう制御する。
Next, in order to increase only the first bleed pressure pl without changing the load and the second bleed pressure p2, first open the steam control valve 2, close the first bleed control valve 3, and then increase the first bleed air flow rate f.
Increase lE. At this time, the first bleed air control valve 3 is closed to reduce the load, so the first bleed air control valve flow rate fl. . decreases, and the second bleed air flow rate f2E decreases, so the second bleed air control valve 4 is controlled to be closed.

一方、電力料金が安い時間帯に最小限発電を行なう場合
の抽気タービン制御は、本芙施例の場合、第二抽気加減
弁4を最小開度に制御する。この状態で、抽気流量’I
E 、f2には工場での使用に合わせテ抽気圧力P11
P2が一定となるよう蒸気加減弁2、第一抽気加減弁3
を開閉することによシ制御する。これによシ、発電機出
力はそのときの抽気量に応じて取り得る最小限の出力が
得られる。
On the other hand, in the case of performing the minimum amount of power generation during a time period when the electric power rate is low, the bleed air turbine control in this embodiment controls the second bleed air control valve 4 to the minimum opening degree. In this state, the bleed air flow rate 'I
E, f2 has bleed air pressure P11 according to factory use.
Steam control valve 2 and first bleed air control valve 3 so that P2 is constant.
Control by opening and closing. As a result, the minimum possible output of the generator can be obtained depending on the amount of extracted air at that time.

第2図は以上の制御を行なうためのタービン制御装置1
の具体的構成図を示したもので、12゜17.20.2
3は偏差演算器、13は速度制御部、14は負荷設定器
、15は加算器、16は第一抽気圧設定器、18は第一
抽気制御部、19は第二抽気圧設定器、21は第二抽気
°制御部、22は発電最小モード選択スイッチ、24は
発電最小制御部、25は配分比演算部、26 、27 
、28はノ4ワーアンノより成るバルブコントローラテ
する。
Figure 2 shows a turbine control device 1 for performing the above control.
This shows the specific configuration diagram of 12゜17.20.2
3 is a deviation calculator, 13 is a speed control unit, 14 is a load setting device, 15 is an adder, 16 is a first bleed pressure setting device, 18 is a first bleed air control portion, 19 is a second bleed pressure setting device, 21 22 is a power generation minimum mode selection switch; 24 is a power generation minimum control unit; 25 is a distribution ratio calculation unit; 26, 27
, 28 is a valve controller consisting of a four-way controller.

図の構成で、電力料金の高い時間帯は発電最小モード選
択スイッチ22をOFF l、ておく。このとき、偏差
演算器12は速度設定信号8Rと速度信号Bとの偏差を
演算し、速度偏差信号esを出力する・速度制御部13
は速度偏差信号e8を入力し、比例定数倍して速度制御
指令信号BDを出力する。負荷設定器14は負荷設定信
号tLを出力し、加算器15はこの負荷設定信号tLと
前記速度制御指令8pを入力、加算して負荷制御指令信
号CLを出力する。
In the configuration shown in the figure, the minimum power generation mode selection switch 22 is turned off during times when electricity rates are high. At this time, the deviation calculator 12 calculates the deviation between the speed setting signal 8R and the speed signal B, and outputs the speed deviation signal es.
inputs the speed deviation signal e8, multiplies it by a proportionality constant, and outputs the speed control command signal BD. The load setting device 14 outputs a load setting signal tL, and the adder 15 inputs and adds this load setting signal tL and the speed control command 8p, and outputs a load control command signal CL.

次に、偏差演算器17は第一抽気圧設定器16よシ出力
された第一抽気圧設定信号PIBと第一抽気圧信号pl
との偏差を演算し、第一抽気制御部18はこの第一抽気
圧偏差信号e p 1を入力し、進み遅れ補償および比
例倍して第一抽気制御指令信号cpiを出力する。
Next, the deviation calculator 17 outputs the first bleed pressure setting signal PIB output from the first bleed pressure setting device 16 and the first bleed pressure signal pl.
The first bleed air control unit 18 inputs this first bleed pressure deviation signal e p 1, performs lead/lag compensation and proportionally multiplies it, and outputs a first bleed air control command signal cpi.

第二抽気制御についても以上に述べた第一抽気制御同様
の過程を経て、第二抽気制御部21は第二抽気制御指令
信号CP2を出力する。ここで、p2Rは第二抽気圧設
定信号、p2は第二抽気圧信号、eP2は第二抽気圧偏
差信号である。
Regarding the second air bleed control, the second air bleed control section 21 outputs the second air bleed control command signal CP2 through the same process as the first air bleed control described above. Here, p2R is a second extraction pressure setting signal, p2 is a second extraction pressure signal, and eP2 is a second extraction pressure deviation signal.

配分比演算部25は負荷制御指令信号CI、と第一抽気
制御指令信号CPlと第二抽気制御指令信号e、p□と
を入力し、第1図の説明でも述べたように負荷を増減し
ても各抽気圧力が変化しないよう、また各抽気圧力を増
減しても負荷や他の抽気圧力に変化の彦いよう、即ち速
度負荷制御と各抽気制御が互いに干渉しないよう、例え
ば下記(5)式で示す配分比演算を行ない、蒸気加減弁
開度指令d、、v。
The distribution ratio calculation unit 25 inputs the load control command signal CI, the first bleed control command signal CPl, and the second bleed control command signals e and p□, and increases or decreases the load as described in the explanation of FIG. For example, the following (5 ) calculation of the distribution ratio shown in the formula is performed to obtain the steam control valve opening commands d,,v.

第一抽気加減弁開度指令dIKCV、第二抽気加減弁開
度指令d2ECVを出力する。
A first bleed control valve opening command dIKCV and a second bleed control valve opening command d2ECV are output.

(但し、α、jは演算定数を示す) バルブコントローラ26は蒸気加減弁開度指令信号dc
vを入力し、蒸気加減弁駆動信号a。Vを蒸気加減弁2
に出力する。バルブコントローラ27は第一抽気加減弁
開度指令信号dIECVを入力し、第一抽気加減弁駆動
信号”、ECVを第一抽気加減弁3に出力する。また、
バルブコントローラ28は第二抽気加減弁開度指令信号
d2ECVを入力し、第二抽気加減弁駆動信号a2Ec
V′を第二抽気加減弁。
(However, α and j indicate calculation constants.) The valve controller 26 receives a steam control valve opening command signal dc.
Input v and steam control valve drive signal a. V is the steam control valve 2
Output to. The valve controller 27 inputs the first bleed control valve opening command signal dIECV, and outputs the first bleed control valve drive signal "ECV" to the first bleed control valve 3.
The valve controller 28 inputs the second bleed control valve opening command signal d2ECV, and receives the second bleed control valve drive signal a2Ec.
V' is the second bleed air control valve.

に出力する。Output to.

これによシ、第一抽気圧力信号P1%第二抽気圧力信号
p2を一定に保った上、必要な第一抽気流量flゎ、第
二抽気流量f28を工場へ供給することができる。
This makes it possible to maintain the first bleed pressure signal P1% and the second bleed pressure signal p2 constant, and to supply the required first bleed air flow rate fl2 and second bleed air flow rate f28 to the factory.

次に、発電最小運転時には、発成最小モード選択スイッ
チ22をON L、て発電最小モードを選択する。する
と、加算器15は、第二抽気加減弁最小開度設定信号d
R2つcvと第二抽気加減弁実開度信号b2□cvとの
開度偏差信号e、に応じた負荷設定信号LLと前記速度
制御指令信号とを加算して配分比演算部25に出力する
Next, during the minimum power generation operation, the minimum power generation mode selection switch 22 is turned ON and L to select the minimum power generation mode. Then, the adder 15 outputs the second bleed control valve minimum opening setting signal d.
The load setting signal LL corresponding to the opening deviation signal e between R2cv and the second bleed control valve actual opening signal b2□cv and the speed control command signal are added and output to the distribution ratio calculation unit 25. .

くれによシ、発電最小運転時、第二抽気加減弁4は常に
最小開度の一定に制御される。従って、このとき第二抽
気加減弁4には抽気流量fIE 、f2□で決まる最小
の蒸気流量が流れ、抽気圧力信号p1+p2に影響を与
えない範囲で最小の発′ε機出カが得“られる。
In fact, during the minimum power generation operation, the second bleed air control valve 4 is always controlled to a constant minimum opening degree. Therefore, at this time, the minimum steam flow determined by the bleed flow rates fIE and f2□ flows through the second bleed air control valve 4, and the minimum steam output is obtained within a range that does not affect the bleed pressure signal p1+p2. .

尚、第二抽気加減弁最小開度設定信号dR2EC’Vは
抽気流量変動分を見込んで第二抽気加減弁開度の必要最
小値よ多やや大きめの値に設定する。
The second bleed air control valve minimum opening degree setting signal dR2EC'V is set to a value slightly larger than the required minimum value of the second bleed air control valve opening degree, taking into account the variation in the bleed air flow rate.

まだ、上記実施例では二段抽気タービンに適用した例に
ついて述べたが、本発明はこれに限らず、一段抽気ター
ビン、三段以上の多段抽気タービンにも同様にして適用
できることは言う迄もない。
Although the above embodiment describes an example in which the present invention is applied to a two-stage bleed turbine, it goes without saying that the present invention is not limited to this and can be similarly applied to a single-stage bleed turbine and a multi-stage bleed turbine of three or more stages. .

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、最小発電を行なう際に、
排気温度の上昇を防ぎ、最終段タービンを過熱から保護
することができ、なおかつ、発電最小の制御ループを積
分特性とし時定数を適切に選ぶことによシ、圧力、速度
制御を優先的に作用させ抽気圧カ一定を保ったままの発
電最小運転が可能となる。
As described above, according to the present invention, when performing minimum power generation,
It is possible to prevent a rise in exhaust temperature and protect the final stage turbine from overheating. Furthermore, by making the control loop that minimizes power generation an integral characteristic, and by appropriately selecting the time constant, pressure and speed control are prioritized. Minimum power generation operation is possible while keeping the extraction pressure constant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る二段抽気タービン制御
系の構成図、第2図は第1図のタービン制御装置の構成
図である。 1・・・タービン制御装置、2・・・蒸気加減弁、3・
・・第一抽気加減弁、4・・・第二抽気加減弁、5・・
・高圧タービン、6・・・中圧タービン、7・・・低圧
タービン、8・・・発電機、9・・・速度センサ、10
,11・・・圧力センサ、12,17,20.23・・
・偏差演算器、13・・・速度制御部、14・・・負荷
設定器、15・・・加算器、16・・・第一抽気圧設定
器、18・・・第一抽気制御部、19・・・第二抽気圧
設定器、21・・・第−抽気制御部、22・・・発電最
小モード選択スイッチ、24・・・発電最小制御部、2
5・・・配分比演算部、26.27.28・・・パルプ
コントローラ。 第1図 第2図 転
FIG. 1 is a block diagram of a two-stage extraction turbine control system according to an embodiment of the present invention, and FIG. 2 is a block diagram of the turbine control device of FIG. 1. 1... Turbine control device, 2... Steam control valve, 3...
...First bleed air control valve, 4...Second air bleed control valve, 5...
- High pressure turbine, 6... Intermediate pressure turbine, 7... Low pressure turbine, 8... Generator, 9... Speed sensor, 10
, 11...pressure sensor, 12, 17, 20.23...
- Deviation calculator, 13... Speed control section, 14... Load setting device, 15... Adder, 16... First bleed pressure setting device, 18... First bleed air control section, 19 ...Second bleed pressure setting device, 21...Second bleed air control section, 22...Minimum power generation mode selection switch, 24...Minimum power generation control section, 2
5...Distribution ratio calculation unit, 26.27.28...Pulp controller. Figure 1 Figure 2 Rotation

Claims (1)

【特許請求の範囲】[Claims] (1)速度負荷制御と柚、気制御とを互いに非干渉に行
なうタービン制御装置において、速度設定信号と実速度
信号との偏差に応じた速度制御指令信号を出力する手段
と、速度制御指令信号に負荷設定信号を加えて負荷制御
指令信号を出力する手段と、抽気圧力設定信号と実抽気
圧信号との偏差に応じた抽気制御指令信号を出力する手
段と、前記負荷制御指令信号と前記抽気制御指令信号と
を配分比演算し、蒸気加減弁開度指令信号、抽気加減弁
開度指令信号を出力する手段と、これら指令信号に応じ
て実際に蒸気加減弁開度、抽気加減弁開度を制御する手
段と、発電最小運転時に最終段抽気加減弁の開度設定信
号と実開度信号との偏差に応じた負荷設定信号を出力す
る手段とを具備することを特徴とするタービン制御装置
。 (2、特許請求の範囲第1項記載において、抽気タービ
ンは1個乃至複数個の抽気加減弁を備えていることを特
徴とするタービン制御装置。
(1) In a turbine control device that performs speed load control and control without interfering with each other, means for outputting a speed control command signal according to a deviation between a speed setting signal and an actual speed signal, and a speed control command signal means for outputting a load control command signal by adding a load setting signal to the bleed air; means for outputting a bleed air control command signal according to a deviation between the bleed air pressure setting signal and the actual bleed air pressure signal; A means for calculating the distribution ratio of the control command signal and outputting a steam control valve opening command signal and a bleed control valve opening command signal, and a means for actually controlling the steam control valve opening and the bleed control valve opening according to these command signals. and means for outputting a load setting signal according to the deviation between the opening degree setting signal and the actual opening degree signal of the final stage bleed air control valve during minimum power generation operation. . (2. The turbine control device according to claim 1, wherein the extraction turbine is equipped with one or more extraction control valves.
JP6002083A 1983-04-07 1983-04-07 Turbine control device Pending JPS59185806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6002083A JPS59185806A (en) 1983-04-07 1983-04-07 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6002083A JPS59185806A (en) 1983-04-07 1983-04-07 Turbine control device

Publications (1)

Publication Number Publication Date
JPS59185806A true JPS59185806A (en) 1984-10-22

Family

ID=13129957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6002083A Pending JPS59185806A (en) 1983-04-07 1983-04-07 Turbine control device

Country Status (1)

Country Link
JP (1) JPS59185806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329301A (en) * 1999-05-19 2000-11-30 Toshiba Corp Vapor pressure controller for vapor supply installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329301A (en) * 1999-05-19 2000-11-30 Toshiba Corp Vapor pressure controller for vapor supply installation

Similar Documents

Publication Publication Date Title
JP4191563B2 (en) Compressor control method
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
JPS59185806A (en) Turbine control device
JPS627363B2 (en)
JPS585409A (en) Method of controlling regulating valve for pressure- change operation
JPS5926842B2 (en) Boiler feed water flow rate control method
JPH0331882B2 (en)
JPS5946373A (en) Controller for speed of water wheel
JPS6123365B2 (en)
JPH05272361A (en) Load controller of combined-cycle power generating plant
JP2509612B2 (en) Bypass controller
STOICESCU et al. Automated Multi-Reference Control for Centrifugal Compressor
JPH03267512A (en) Steam turbine controller
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPS62131798A (en) Generator apparatus
JPS6350608A (en) Control process for non-interference flow inside turbine
JPH01318705A (en) Control device for mixed pressure turbine
JPS6039845B2 (en) Nuclear turbine pressure control device
JPS58105306A (en) Water supply controller
CN118011786A (en) Decoupling control method for electric load and double heat extraction load of cogeneration turbine unit
JPH03241206A (en) Water supplying control device
CN118274313A (en) Intelligent adjustment and distribution control system and method for steam temperature of generator set
JPS5815683B2 (en) Boiler pump turbine
JPH01257704A (en) Load controller for single shaft type compound cycle generating plant and method therefor
JPS5818506A (en) Method of controlling operation of boiler turbine under variable pressure