JPS59185804A - Gas turbine - Google Patents

Gas turbine

Info

Publication number
JPS59185804A
JPS59185804A JP6092583A JP6092583A JPS59185804A JP S59185804 A JPS59185804 A JP S59185804A JP 6092583 A JP6092583 A JP 6092583A JP 6092583 A JP6092583 A JP 6092583A JP S59185804 A JPS59185804 A JP S59185804A
Authority
JP
Japan
Prior art keywords
support ring
heat insulating
insulating member
blades
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6092583A
Other languages
Japanese (ja)
Inventor
Kenji Isobe
磯部 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6092583A priority Critical patent/JPS59185804A/en
Publication of JPS59185804A publication Critical patent/JPS59185804A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To absorb thermal expansion and shrinkage by fixing the inner peripheral end of a stator blade made of ceramic to an inner side support ring through a heat insulating member which is in surface contact with said end and also fixing the outer peripheral end to the outside support ring through a heat insulating member in surface contact with said end and a plate spring. CONSTITUTION:The inner peripheral end of a turbine stator blade 8 made of ceramic material is fixed to an inner side support ring 22 through a heat insulating member 21 which is in surface contact with said end, while the outer peripheral end of said blade is fixed to an outside support ring 12 through a heat insulating member 35 in surface contact with said end and a plate spring 36. Since the stator blade 8 is supported in a manner as abovementioned, even if the blade is expanded or shrunk in the directions of the depth and the height due to change of the temperature, both can be absorbed by elastic operation of the plate spring 36 and sliding surface operation of the surface contact.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービンに係り、特にタービンの翼をセ
ラミック材で形成したものにおいて静翼の支持構造を改
良したガスタービンに関するー。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine, and more particularly to a gas turbine in which the supporting structure of the stator vane is improved in a turbine whose blades are formed of a ceramic material.

〔発明の背景技術とその問題点〕[Background technology of the invention and its problems]

ガスタービンは、通常、1つの軸に圧縮機と  −ター
ビンとを連結し、圧縮機で圧縮された高圧空気で燃焼器
内の圧力を高め、この状態で燃焼器内に燃料を噴射して
燃焼させ、この燃焼によって生じた高温、高圧のガスを
タービンに導いて膨張させることによシ回転動力を得る
ように構成されている。圧縮機は、案内翼と回転翼とを
軸方向に交互に配列して構成され、1だ、タービンも静
翼と動翼とを軸方向に交互に配列して構成されている。
A gas turbine usually has a compressor and a turbine connected to one shaft, uses high-pressure air compressed by the compressor to increase the pressure in the combustor, and in this state fuel is injected into the combustor to perform combustion. The high-temperature, high-pressure gas produced by this combustion is guided to a turbine and expanded, thereby generating rotary power. A compressor is constructed by alternately arranging guide vanes and rotor blades in the axial direction, and a turbine is also constructed by arranging stator vanes and rotor blades alternately in the axial direction.

ところで、上記のようなガスタービンにおいて、出力効
率を高めるにはタービンの入口における燃焼ガスの温度
を高めることが最も有効であると云われている。しかし
、タービンの入口ガス温度は、タービンの翼を構成する
材料の耐熱強度あるいは高温酸化腐食特性等によって制
限される。したがって、通常は、翼を冷却流体′で強制
冷却することによってタービンの入口ガス温度を高める
方式が採用されている。
By the way, in the above gas turbine, it is said that the most effective way to increase the output efficiency is to increase the temperature of the combustion gas at the inlet of the turbine. However, the inlet gas temperature of the turbine is limited by the heat resistance strength or high-temperature oxidation/corrosion characteristics of the materials constituting the turbine blades. Therefore, a method is usually adopted in which the temperature of the turbine inlet gas is increased by forcibly cooling the blades with a cooling fluid.

しかしながら、翼を冷却流体によって強制冷却する方式
にあっては、確かに翼の温度上昇をある程度抑えること
ができる反面、翼を強制冷却しているのでガス温度の低
下も免れ得す、したがって、タービンの入口ガス温度を
高めたことによる効果がそれ程得られない問題があった
However, with the method of forcedly cooling the blades with cooling fluid, while it is possible to suppress the temperature rise of the blades to some extent, on the other hand, since the blades are forcedly cooled, it is possible to avoid a drop in gas temperature. There was a problem in that the effect of increasing the inlet gas temperature was not so great.

そこで、最近では上記のような不具合を解消するために
、タービンの翼を高温高強度材料である、たとえばSi
3N4等のセラミックで形成することが試みられている
。上述したセラミック材は、たとえば1400℃程度の
温度下においても安定で、かつ機械的強度性も低下しな
い。したがって、耐熱金属材で翼を形成した場合とは違
って、翼を冷却しなくても、タービンの入口ガス温度を
高めることができ、出力効率を飛躍的に向上させ得る。
Recently, in order to eliminate the above-mentioned problems, turbine blades are made of high-temperature, high-strength materials, such as Si.
Attempts have been made to use ceramics such as 3N4. The above-mentioned ceramic material is stable even at a temperature of about 1400° C., and its mechanical strength does not decrease. Therefore, unlike the case where the blades are formed of a heat-resistant metal material, the temperature of the turbine inlet gas can be increased without cooling the blades, and the output efficiency can be dramatically improved.

7しかして、上記のように翼をセラミック材で形成した
場合であっても何らかの手段で、動翼は回転軸に、また
静翼は、いわゆるケーシングに固定しなければならない
ことに変りない。この場合、セラミック材で翼を形成し
たことによる利点を引き出すためにガス温度が十分高め
られるので翼を支持する部材に熱的な影響を与えないよ
うに支持する必要がある。また、負荷変動等によるガス
温度の変化値も通常の場合よシ大きいので、この変化に
伴5なう翼の伸縮を何らかの手段で吸収し、翼に過大な
熱応力が加わるのを防止することも重要である。さらに
は、製作や組立の面も勿論考慮する必要がある。
7. However, even if the blades are made of ceramic material as described above, the rotor blades must be fixed to the rotating shaft and the stationary blades must be fixed to the so-called casing by some means. In this case, the gas temperature is sufficiently raised to take advantage of the benefits of forming the blades using a ceramic material, so it is necessary to support the blades so as not to have a thermal effect on the members that support them. In addition, since changes in gas temperature due to load fluctuations are larger than normal, it is necessary to absorb the expansion and contraction of the blades due to these changes by some means to prevent excessive thermal stress from being applied to the blades. It is also important. Furthermore, it is also necessary to consider manufacturing and assembly aspects.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、タービンの翼をセラミック材で
形成したものにおいて、その静翼を、製作性および組立
性良く、しかも支持部材に熱的に影響を与えること々く
、そのうえ温度変化に伴なう翼の伸縮を良好に吸収し得
る状態で支持できる支持機構を備え、もって出力効率の
向上化実現に寄与できるガスタービンを提供することに
ある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a turbine blade made of a ceramic material, which is easy to manufacture and assemble, and which also has a supporting member. Provides a gas turbine that is equipped with a support mechanism that can support the blades in a state that can effectively absorb the expansion and contraction of the blades due to temperature changes, thereby contributing to the improvement of output efficiency. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明は、′セラミック材で形成された静翼の回転軸側
に位置する端部を、この端部に曲面接触する断熱部材を
介して内側支持リングに固定し、上記静翼の反回転軸側
に位置する端部を、この端部に曲面接触する断熱部材お
よび上記断熱部材に回転軸側方向の押圧力を付与する板
バネおよび上記板バネの押圧力を調整可能に回転軸と直
交する方向に進退自在に設けられたボルトを介して外側
支持リングに固定する支持機構を設けたことを特徴とし
ている。
According to the present invention, an end portion of a stator vane formed of a ceramic material located on the rotation axis side is fixed to an inner support ring via a heat insulating member that contacts the end portion with a curved surface, and A heat insulating member having a curved surface contact with the end, a leaf spring that applies a pressing force in the direction of the rotating shaft to the heat insulating member, and a leaf spring that is orthogonal to the rotating shaft so that the pressing force of the leaf spring can be adjusted. It is characterized by providing a support mechanism that is fixed to the outer support ring via a bolt that is provided so as to be able to move forward and backward in the direction.

〔発明の効果〕〔Effect of the invention〕

上記のように静翼の回転軸に対して直交する方向の両端
部をそれぞれ断熱部材を介して内側支持リングおよび外
側支持リングに支持させるようにしている。高温のガス
は、静翼の周面に沿って流れるので静翼そのものは高温
に加熱される。しかし、その両端部が断熱部材を介して
支持されているので内側支持リングおよび外側支持リン
グはそれ程加熱されない。したがって、これらが熱的な
影響を受けるのを防止できる。
As described above, both ends of the stator vane in the direction orthogonal to the rotation axis are supported by the inner support ring and the outer support ring, respectively, via the heat insulating members. Since the high-temperature gas flows along the circumferential surface of the stator blade, the stator blade itself is heated to a high temperature. However, since both ends thereof are supported via a heat insulating member, the inner support ring and the outer support ring are not heated to a large extent. Therefore, these can be prevented from being affected by heat.

また、静翼の両端部は、この両端部に曲面接触する断熱
部材を介して支持されておシ、しかもるので、板バネの
弾性作用と曲面接触による位置保持機能を保持したまま
でのすベシ面作用とが相俟ってガス温厚が変化したとき
に生じる静翼の伸縮量全速やかに吸収することができ、
この結果、温度変化時に静翼に過大な熱応力が加わって
静翼が破壊する現象の発生を防止することができる。ま
た、前記関係にボルトを設けているので、このボルトの
締め量の設定で静翼の取付けおよび分解を行なうことが
でき、したがって、各要素の製作は勿論のこと組立の容
易化を図ることができる′。
In addition, both ends of the stationary vane are supported via heat insulating members that contact curved surfaces with both ends, and the blade maintains its position holding function due to the elastic action of the leaf spring and the contact with curved surfaces. Combined with the bevel surface action, it is possible to quickly absorb the full amount of expansion and contraction of the stationary blades that occurs when the gas temperature changes.
As a result, it is possible to prevent the occurrence of a phenomenon in which the stator blades are destroyed due to excessive thermal stress being applied to the stator blades when the temperature changes. In addition, since bolts are provided in the above-mentioned relationship, the stationary blades can be installed and disassembled by setting the tightening amount of the bolts, which simplifies not only the production of each element but also the assembly. can'.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明を適用したガスタービンの全体を概略
的に示すものである。すなわち、図中1は筒状のケーシ
ングを示し、このケーシング1内には回転軸2が回転自
在に装着されている。そして、ケーシング1内の両端に
は圧縮機旦とタービンエとが配置されておシ、これらの
中間には燃焼器5が配置されている。圧縮機互はケーシ
ング1の内面に固定された案内翼6と回転軸2に固定さ
れた回転翼7とを軸方向に交互に配列した軸流鳳に構成
されている。
FIG. 1 schematically shows the entire gas turbine to which the present invention is applied. That is, numeral 1 in the figure indicates a cylindrical casing, and a rotary shaft 2 is rotatably mounted within this casing 1. A compressor and a turbine are arranged at both ends of the casing 1, and a combustor 5 is arranged between them. The compressor is constructed of an axial flow type in which guide vanes 6 fixed to the inner surface of the casing 1 and rotary vanes 7 fixed to the rotary shaft 2 are alternately arranged in the axial direction.

一方、タービンLもケーシング1に固定された静lL8
と回転軸2に固定された動翼9とを軸方向に交互に配列
した軸流型に構成されている。
On the other hand, the turbine L is also fixed to the casing 1.
The rotor blades 9 and rotor blades 9 fixed to the rotating shaft 2 are arranged alternately in the axial direction.

静翼8は5i5N4等のセラミック材で形成されている
。そして、動翼9は公知の支持機構によって回転軸2に
支持されておシ、また静翼8は第2図に示す支持機構し
によって、たとえはケーシングの一部を兼用する外側支
持リング12に支持されている。
The stationary blade 8 is made of a ceramic material such as 5i5N4. The rotor blades 9 are supported by the rotating shaft 2 by a known support mechanism, and the stationary blades 8 are supported by the support mechanism shown in FIG. Supported.

支持機構Lノは、大きく分けて静翼8の回転軸側に位置
する端部を支持する要素13と、反回転軸側に位置する
端部を支持する要素14とで構成されておシ、これら各
要素13.14と静翼8とが次のように組合わせられて
上記静翼8が支持されている。すなわち、静翼8は、先
に述べたようにセラミック材で第3図および第4図に示
すように全体として公知の楓形に形成されたものである
が、その両端部、つまシ回転軸側端部Aと反回転軸側端
部Bとは厚み方向は勿論のことキャンバ線方向に亘って
も丸みを帯びた滑らかな曲面に形成されている。そして
、上記の滑らかな曲面部分を介して要素13と要素14
とで支持されている。
The support mechanism L is roughly divided into an element 13 that supports the end portion of the stationary blade 8 located on the rotation axis side, and an element 14 that supports the end portion located on the opposite rotation axis side. These elements 13, 14 and the stationary blade 8 are combined in the following manner to support the stationary blade 8. That is, as mentioned above, the stationary blade 8 is made of ceramic material and is formed in the known maple shape as a whole as shown in FIGS. The side end A and the end B on the opposite rotation axis side are formed into rounded and smooth curved surfaces not only in the thickness direction but also in the camber line direction. Then, element 13 and element 14 are connected via the above-mentioned smooth curved surface portion.
It is supported by

要素13は、静翼8の端部Aに嵌合する滑らかな曲面凹
部15を備えた、たとえばセラミック材製の耐熱材16
、セラミック・ファイノ々等で形成された高断熱材17
、同じくセラミック材製の耐熱材18、高断熱材19、
耐熱材20を上記項に嵌め合い状態に積層してなる断熱
部材21を金属材製の内側支持リング22に固定したも
のとなっている。すなわち、内側支持リング22の軸方
向の一端部外周面には環状突起23が形成されておシ、
また、これに対応する耐熱材20の端部には上記環状突
起23に嵌合し得る切欠部24が形成されている。そし
て、上記切欠部24と環状突起23とを嵌合させている
状態で上記耐熱材20の前記切欠部24が設けられてい
る端部とは反対側に位置する端面に押えリング25を当
てがい、この押えリング25を内側支持リング22の他
端部端面にボルト26で固定することによって断熱部材
2ノを内側支持リング22に固定するようにしている。
The element 13 is a heat-resistant material 16 made of, for example, a ceramic material and provided with a smoothly curved recess 15 that fits into the end A of the stationary blade 8.
Highly insulating material 17 made of ceramic, phyno, etc.
, a heat-resistant material 18, a high heat-insulating material 19, also made of ceramic material,
A heat insulating member 21 formed by laminating a heat-resistant material 20 in a fitted state as described above is fixed to an inner support ring 22 made of a metal material. That is, an annular projection 23 is formed on the outer peripheral surface of one end in the axial direction of the inner support ring 22.
Furthermore, a notch 24 that can fit into the annular projection 23 is formed at the corresponding end of the heat-resistant material 20 . Then, while the notch 24 and the annular protrusion 23 are fitted together, a presser ring 25 is applied to the end face of the heat-resistant material 20 located on the opposite side to the end where the notch 24 is provided. By fixing this presser ring 25 to the other end face of the inner support ring 22 with a bolt 26, the heat insulating member 2 is fixed to the inner support ring 22.

しかして、前記外側支持リング12は、軸方向の一端部
によって互いに連結された外筒部27と内筒部28とか
らなる二重筒状に形成されておシ、上記内筒部28と静
翼8の端部Bとの間に要素14が配置されている。
Thus, the outer support ring 12 is formed into a double cylinder shape consisting of an outer cylinder part 27 and an inner cylinder part 28 that are connected to each other by one end in the axial direction. An element 14 is arranged between the end B of the wing 8.

要素14は、静翼8の端部Bに嵌合する滑らかな曲面凹
部29を備えたミたとえばセラミック材製の耐熱材30
.セラミック・ファイバ等で形成された高断熱材31、
同じ(セラミック材製の耐熱材32、高断熱材33、耐
熱材34を上記順に嵌め合い状態に積層してなる断熱部
 −材35の外面に板バネ36および押え板32を上記
順に当てかうとともに上記押え板32の外面を前記内筒
部28に設けられたネジ孔に回転軸2と直交する方向に
進退自在に挿着されたボルト38a、38bで押圧する
ことによって静翼8の端部Bを外側支持リング12に対
して支持させる構成となっている。なお、要素14の軸
方向の位置規制は外筒部27の内面にボルト39によっ
て固定された押えリング40と、外側支持リング12に
内側に向けて突設された環状突部41と耐熱材34との
間に介挿されたスペーサ42とによって行なわれている
。tfcs図では、1つの静翼8を支持する支持機構し
か示していないが、実際には、要素13.14が各静翼
8に対応して周方向に配置されている。
The element 14 includes a heat-resistant member 30 made of a ceramic material, for example, and has a smoothly curved recess 29 that fits into the end B of the stationary blade 8.
.. Highly insulating material 31 made of ceramic fiber, etc.
The same (heat-insulating member made of a heat-resistant material 32, a high-insulating material 33, and a heat-resistant material 34 made of ceramic materials are laminated in the above-mentioned order in a fitted state) -A leaf spring 36 and a presser plate 32 are applied to the outer surface of the material 35 in the above-mentioned order, and By pressing the outer surface of the presser plate 32 with bolts 38a and 38b inserted into screw holes provided in the inner cylindrical portion 28 so as to be movable forward and backward in a direction perpendicular to the rotating shaft 2, the end B of the stator blade 8 is pressed. is configured to be supported by the outer support ring 12.The axial position of the element 14 is restricted by a retaining ring 40 fixed to the inner surface of the outer cylinder part 27 with bolts 39 and by the outer support ring 12. This is done by a spacer 42 inserted between an annular protrusion 41 that protrudes inward and a heat-resistant material 34.The TFCS diagram only shows a support mechanism that supports one stationary blade 8. However, in reality, elements 13 , 14 are arranged circumferentially corresponding to each stationary vane 8 .

このような構成であると、静翼8の両端部A。With such a configuration, both ends A of the stationary blade 8.

Bが断熱部材21.35を介して内側支持リング22お
よび外側支持リング12に支持されているので、静翼8
から内、外支持リング22゜12に伝わる熱量を十分少
なくすることができる。したがって、内、外支持リング
22.12に冷却機構を格別に設けなくても、これらを
高熱から保護することができる。すなわち、翼をセラミ
ック材で形成しガス温度を高めたときに起こシ易い翼支
持材への熱的々影響を緩和させることができる。また、
静翼8の端部A、Bは断熱部材21.35に対して曲面
接触しておシ、また、板バネ36は回転軸側への押圧力
を作用させているので、ガス温度の急激な変化によって
静翼8が厚み方向、高さ方向およびキャンバ線方向に伸
縮しても、この伸縮は板バネ360弾性作用と曲面接触
のすベシ面作用とによって吸収される。したがって、こ
のようなときに起こり易い静翼8の熱応力破壊を防止す
ることができる。また、押えリング25.40を取υ外
した状態でボルト38a、38bを緩めれば簡単に分解
することができ、また上記とは逆の操作で簡単に組立る
ことかできる。さらに、寸法精度の高い、いわゆる部品
を必要としていないので映作−も容易であシ、結局、前
述した効果が得られることになる。
Since B is supported by the inner support ring 22 and the outer support ring 12 via the heat insulating member 21.35, the stator blade 8
The amount of heat transmitted to the inner and outer support rings 22.degree. 12 can be sufficiently reduced. Therefore, it is possible to protect the inner and outer support rings 22.12 from high heat without having to provide a special cooling mechanism for the inner and outer support rings 22.12. That is, it is possible to alleviate the thermal influence on the blade support material that tends to occur when the blade is formed of a ceramic material and the gas temperature is increased. Also,
The ends A and B of the stationary blade 8 are in curved contact with the heat insulating member 21.35, and the leaf spring 36 exerts a pressing force on the rotating shaft side, so that sudden changes in gas temperature can be prevented. Even if the stationary blade 8 expands and contracts in the thickness direction, height direction, and camber line direction due to the change, this expansion and contraction is absorbed by the elastic action of the leaf spring 360 and the surface action of the curved surface contact. Therefore, it is possible to prevent the stator blade 8 from being damaged by thermal stress, which is likely to occur in such a case. Further, it can be easily disassembled by loosening the bolts 38a and 38b with the retainer rings 25, 40 removed, and can be easily assembled by performing the operations in reverse to the above. Furthermore, since it does not require so-called parts with high dimensional accuracy, it is easy to make movies, and the above-mentioned effects can be obtained.

なお、本発明は、上述した実施例に限定されるものでは
ない。たとえば静翼として、第5図に示すように内部を
中空にし熱応力集中を緩和させたセラミック材製の静翼
8aを用いるようにしてもよい。また、断熱部材の積層
数も特に限定されるものではない。また、板バネとして
、複数層に積層された重ね板バネを使用できることは勿
論である。
Note that the present invention is not limited to the embodiments described above. For example, as shown in FIG. 5, a stator blade 8a made of a ceramic material and having a hollow interior to relieve concentration of thermal stress may be used as the stator blade. Furthermore, the number of laminated heat insulating members is not particularly limited. Further, as the leaf spring, it is of course possible to use a stacked leaf spring having a plurality of layers laminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るガスタービンの模式的
構成図、第2図は同ガスタービンの要部の概略縦断面図
、第3図は同ガスタービンの静翼だけを取り出して示す
斜視図、第4図は第2図におけるE−E線に沿って切断
し矢印方向にみた静翼横断面図、第5図は静翼の変形例
を示す横断面図である。 2・・・回転軸、L・・・タービン、8・・・静翼、9
・・・動翼、12・・・外側支持リング、21.35・
・・断熱部材、22・・・内側支持リング、36・・・
板・々ネ、38a、38b−・−gルト。 出願人  工業技術院長 石 坂 誠 −第1図 第2図
Fig. 1 is a schematic configuration diagram of a gas turbine according to an embodiment of the present invention, Fig. 2 is a schematic longitudinal sectional view of the main parts of the gas turbine, and Fig. 3 is a diagram showing only the stationary blades of the gas turbine. FIG. 4 is a cross-sectional view of the stator blade taken along the line EE in FIG. 2 and viewed in the direction of the arrow, and FIG. 5 is a cross-sectional view showing a modified example of the stator blade. 2...Rotating shaft, L...Turbine, 8...Stator blade, 9
... Moving blade, 12... Outer support ring, 21.35.
...Insulating member, 22...Inner support ring, 36...
Boards, etc., 38a, 38b--Gruto. Applicant Makoto Ishizaka, Director General of the Agency of Industrial Science and Technology - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] タービンの翼をセラミック材で形成してなるガスタービ
ンにおいて、前記タービンの静翼は、上記静翼の回転軸
側に位置する端部が上記端部に曲面接触する断熱部材を
介して内側支持リングに固定され、上記静翼の反回転軸
側に位置する端部が上記端部に曲面接触する断熱部材お
よび上記断熱部材に回転軸側方向の押圧力を付与する板
バネおよび上記板バネの押圧力を調整可能に回転軸と直
交する方向に進退自在に設けられたボルトを介して外側
支持リングに固定されてなることを特徴とするガスター
ビン。
In a gas turbine in which the blades of the turbine are formed of a ceramic material, the stator blades of the turbine are arranged such that an end portion of the stator blade located on the rotating shaft side is connected to an inner support ring via a heat insulating member having a curved surface contact with the end portion. a heat insulating member fixed to the stator vane, the end of which is located on the opposite side of the rotational shaft to be in curved contact with the end; a leaf spring that applies a pressing force in the direction toward the rotational shaft to the heat insulating member; and a pressing force of the leaf spring. A gas turbine is fixed to an outer support ring via a bolt provided to be movable in a direction orthogonal to a rotating shaft so as to be able to adjust pressure.
JP6092583A 1983-04-08 1983-04-08 Gas turbine Pending JPS59185804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092583A JPS59185804A (en) 1983-04-08 1983-04-08 Gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092583A JPS59185804A (en) 1983-04-08 1983-04-08 Gas turbine

Publications (1)

Publication Number Publication Date
JPS59185804A true JPS59185804A (en) 1984-10-22

Family

ID=13156445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092583A Pending JPS59185804A (en) 1983-04-08 1983-04-08 Gas turbine

Country Status (1)

Country Link
JP (1) JPS59185804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241903A (en) * 1985-08-20 1987-02-23 Mitsubishi Heavy Ind Ltd Stationary blade for gas turbine
FR2636373A1 (en) * 1988-09-09 1990-03-16 Mtu Muenchen Gmbh DEVICE FOR ATTACHING ENVELOPED CROWN IN GAS TURBINES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108110A (en) * 1975-02-21 1976-09-25 Westinghouse Electric Corp
JPS5575506A (en) * 1978-12-01 1980-06-06 Westinghouse Electric Corp Support construction of ceramic elements for fixing gas turbine engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108110A (en) * 1975-02-21 1976-09-25 Westinghouse Electric Corp
JPS5575506A (en) * 1978-12-01 1980-06-06 Westinghouse Electric Corp Support construction of ceramic elements for fixing gas turbine engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241903A (en) * 1985-08-20 1987-02-23 Mitsubishi Heavy Ind Ltd Stationary blade for gas turbine
FR2636373A1 (en) * 1988-09-09 1990-03-16 Mtu Muenchen Gmbh DEVICE FOR ATTACHING ENVELOPED CROWN IN GAS TURBINES

Similar Documents

Publication Publication Date Title
US6733233B2 (en) Attachment of a ceramic shroud in a metal housing
US6406256B1 (en) Device and method for the controlled setting of the gap between the stator arrangement and rotor arrangement of a turbomachine
US8210799B1 (en) Bi-metallic strip seal for a turbine shroud
JP2008232149A (en) Composite material for turbine support structure
US3910716A (en) Gas turbine inlet vane structure utilizing a stable ceramic spherical interface arrangement
RU2622458C2 (en) Turbine assembly, turbine and method of turbine components support
JP2004183653A (en) Exhaust gas turbine housing
US20110103939A1 (en) Turbine rotor blade tip and shroud clearance control
US9291269B2 (en) Intershaft seal
JP2015505588A (en) Stator component with segmented inner ring for turbomachines
JP2007533894A (en) Improved leakage control in gas turbine engines.
US5116158A (en) High temperature turbine engine structure
JPH05113136A (en) Ceramic gas turbine
US5279031A (en) High temperature turbine engine structure
US5074749A (en) Turbine stator for a turbojet, and method of manufacture
JPS59185804A (en) Gas turbine
US5031400A (en) High temperature turbine engine structure
JPH1172002A (en) Connection part of frictional connection and form connection rotating components
DK1792055T3 (en) PROTECTION DEVICE FOR A TURBINE STATOR
JP2017180684A (en) Foil bearing and turbo machine
US5228284A (en) High temperature turbine engine structure
JP2004316509A (en) Sealing structure of turbine casing
JPH10103011A (en) Gas turbine shroud device
RU2769410C1 (en) Thrust assembly of turbomachine
JP2717352B2 (en) Scroll support structure for ceramic gas turbine