JPS59185725A - Production of grain-oriented electrical steel sheet having excellent magnetic characteristic - Google Patents

Production of grain-oriented electrical steel sheet having excellent magnetic characteristic

Info

Publication number
JPS59185725A
JPS59185725A JP58061432A JP6143283A JPS59185725A JP S59185725 A JPS59185725 A JP S59185725A JP 58061432 A JP58061432 A JP 58061432A JP 6143283 A JP6143283 A JP 6143283A JP S59185725 A JPS59185725 A JP S59185725A
Authority
JP
Japan
Prior art keywords
annealing
oxygen content
steel sheet
electrical steel
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58061432A
Other languages
Japanese (ja)
Other versions
JPS6315967B2 (en
Inventor
Shozaburo Nakajima
中島 正三郎
Toshiya Wada
和田 敏哉
Yoshitaka Hiromae
広前 義孝
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58061432A priority Critical patent/JPS59185725A/en
Publication of JPS59185725A publication Critical patent/JPS59185725A/en
Publication of JPS6315967B2 publication Critical patent/JPS6315967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Abstract

PURPOSE:To produce a grain-oriented electrical steel sheet having an excellent magnetic characteristic by controlling the oxygen content in a steel sheet formed by hot rolling, annealing, cold rolling and decarburization annealing of a silicon steel slab to a specific content then subjecting the sheet to high temp. finish annealing. CONSTITUTION:A silicon steel slab contg. 0.02-0.12% C, 2.5-4.0% Si, 0.03- 0.20% Mn, 0.01-0.05% S, 0.01-0.05% solAl and 0.004-0.012% N or contg. further <=1.5% in total of 1 or >=2 kinds among Cu, Sn, Cr, Ni, Mo, V, B is hot rolled to a plate material and is subjected to annealing and a quick cooling treatment prior to final cold rolling and thereafter the plate material is subjected to final cold rolling under high rolling-down at >=80% draft. The rolled material is then subjected to decarburization annealing and high temp. annealing by a temp. elevation in an H2 atmosphere contg. N2, by which a grain-oriented electrical steel sheet is produced. The oxygen content in the steel sheet after the decarburization annealing is controlled to the range shown by the formulas (1)-(2), by which the magnetic characteristic of the electrical steel sheet is improved.

Description

【発明の詳細な説明】 本発明は磁気特性の優れた一方向性電磁鋼板の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a unidirectional electrical steel sheet with excellent magnetic properties.

一方向性電磁鋼板は軟磁性材料として主にトランスその
他の電気機器の鉄心材料として使用されるもので磁気特
性として励磁特性と鉄損特性が良好でなくてはならない
。良好な磁気特性を得るためには磁化容易軸である(0
01)軸を圧延方向に高度に揃える事が重要である。又
板厚、結晶粒度、固有抵抗、表面被膜等も磁気特性に犬
き々影9 f及ぼす。
Unidirectional electrical steel sheets are soft magnetic materials that are mainly used as core materials for transformers and other electrical equipment, and must have good magnetic properties in terms of excitation properties and iron loss properties. In order to obtain good magnetic properties, the axis of easy magnetization (0
01) It is important to align the axes highly in the rolling direction. In addition, plate thickness, crystal grain size, specific resistance, surface coating, etc. have a significant influence on magnetic properties.

方向性についてはAAN 、 MnS kインヒビター
として利用した強圧下最終冷延に%徴とする方法により
大巾に向上し、現在では磁束密度が理論値の96%程度
のもの迄製造される様になって来た。
The directionality has been greatly improved by the method of using AAN and MnS as inhibitors in the final cold rolling under heavy reduction, and now products with magnetic flux density of about 96% of the theoretical value are manufactured. I came.

これに伴って鉄損は大巾に向上して来た。Along with this, iron loss has improved significantly.

一方近年エネルギー価格の高騰を反映しトランスメーカ
ーは省エネルギー型トランス用材料として低鉄損素材へ
の指向を一段と強めている。低鉄損素材としてアモルフ
ァスや6.5 % St鋼等の開発も進められているが
トランス用の商用材料として使用される迄にはなお解決
すべき問題が多く残っている。
On the other hand, reflecting the rise in energy prices in recent years, transformer manufacturers are increasingly turning to low core loss materials as materials for energy-saving transformers. Amorphous and 6.5% St steel are being developed as low iron loss materials, but many problems still remain to be solved before they can be used as commercial materials for transformers.

本発明者らは低鉄損素材に対する時代の要請に応えるべ
く一方向性電磁鋼板の低鉄損化につき種種研究を重ねて
来た。その結果、At、Nを含む珪素鋼スラブを熱延し
、最終冷延を行う前に焼鈍と急冷処理を行い、圧下率8
01ル上の強圧下最終冷延全行い、脱炭焼鈍を行い、引
続きN2を含むH2雰囲気中で昇温して高温仕上焼鈍を
行う一方向性L」磁鋼板の製造において、脱炭焼鈍後の
鋼板の酸素含有量を一定範囲に制御する事によって、鉄
損が著しく改善されることを見出した。
The inventors of the present invention have repeatedly conducted various studies on reducing the iron loss of unidirectional electrical steel sheets in order to meet the needs of the times for low iron loss materials. As a result, a silicon steel slab containing At and N was hot rolled, annealed and rapidly cooled before final cold rolling, and a rolling reduction of 8
After decarburization annealing in the production of unidirectional L'' magnetic steel sheets, the final cold rolling is carried out under strong pressure on 01 L, followed by decarburization annealing, followed by high temperature finish annealing by raising the temperature in an H2 atmosphere containing N2. It has been found that iron loss can be significantly improved by controlling the oxygen content of steel sheets within a certain range.

以下に本発明について詳細に説明する。まず実験データ
に基いて述べる。
The present invention will be explained in detail below. First, we will discuss based on experimental data.

C:0.075%、St : 3.25 %、Mn:0
.070係、S:0.024%、酸可溶ht (以下5
otAtと記す):0.026%、N : 0.008
5 %、Cu:0.08係、Sn:0.12%を含む珪
素鍔スラブを高温スラブ加熱し、熱間圧延し、2.30
%厚の熱延板とし、この熱延板に焼鈍を施し、焼鈍後急
冷を施し、しかる後に0.225Y、、 0.260%
、0.285%の3種類の厚みに冷延した。冷延板の脱
炭焼鈍において、焼鈍温度全840℃とし、焼鈍雰囲気
を湿潤水素雰囲気とし、雰囲気の露点と焼鈍時間を種種
に変更し、大略400 PPM〜1000 PPMの範
囲で酸素含有量の異なる脱炭焼鈍板を得た。ちなみにホ
ットコイルの酸素含有量は約20 PPMであったO これ等の脱炭焼鈍板にMgOi主とする焼鈍分離剤を塗
布し、引続きH275%、 N225%の雰囲気中で2
0℃/hrの割合で1200℃迄昇温し、しかる後H2
雰囲気中で20時間仕上焼鈍を施した。
C: 0.075%, St: 3.25%, Mn: 0
.. 070, S: 0.024%, acid soluble HT (hereinafter 5
otAt): 0.026%, N: 0.008
5%, Cu: 0.08%, Sn: 0.12% by high temperature slab heating and hot rolling.
% thickness, this hot rolled sheet is annealed, then rapidly cooled after annealing, and then 0.225Y, 0.260%.
, 0.285%. In the decarburization annealing of cold-rolled sheets, the annealing temperature was 840°C in total, the annealing atmosphere was a wet hydrogen atmosphere, the dew point of the atmosphere and the annealing time were varied, and the oxygen content was varied in the range of approximately 400 PPM to 1000 PPM. A decarburized annealed plate was obtained. Incidentally, the oxygen content of the hot coil was about 20 PPM. These decarburized annealed plates were coated with an annealing separator mainly composed of MgOi, and then heated in an atmosphere of 75% H2 and 25% N2.
The temperature was raised to 1200°C at a rate of 0°C/hr, and then H2
Finish annealing was performed in an atmosphere for 20 hours.

焼鈍後焼鈍分離剤を除去し、表面グラス質被膜を観察し
た。表面グラス質被膜は何れも良好であった。しかる後
、磁気特性を測定−し、表面グラス質被膜を除去し、製
品のマクロ組織を観察した。鉄損の測定、マクロ組織観
察結果を11図に示す。
After annealing, the annealing separator was removed and the surface glass film was observed. The glassy surface coatings were all good. Thereafter, the magnetic properties were measured, the surface glass film was removed, and the macrostructure of the product was observed. Figure 11 shows the results of iron loss measurement and macrostructure observation.

第1図において横軸は脱炭板の酸素含有°量であり、縦
軸は製品の鉄損値(Wl 7/sG )である。すなわ
ち酸素含有量と鉄損値との間には密接な関係があり、鉄
イ値を最良とする最適酸素含有量が存在することが判明
した。@適酸素含有量は材料の厚みによって異る値を示
し、冷延厚みO:225%。
In FIG. 1, the horizontal axis is the oxygen content of the decarburized plate, and the vertical axis is the iron loss value (Wl 7/sG ) of the product. In other words, it has been found that there is a close relationship between the oxygen content and the iron loss value, and that there is an optimum oxygen content that makes the iron loss value the best. @The appropriate oxygen content shows different values depending on the thickness of the material, cold rolling thickness O: 225%.

0.260九、0.285%における最適酸素含有量は
各々略々7’50PPM、、 650 PPM 、 6
00 PPMであった0 又第1図における○印、X印は製品マクロ観察結果を示
す。○印は二次再結晶良好、X印は二次再結晶不良を意
味する。7・ 第1図の酸素含有量と鉄損値を示すカーブ上に訃いてA
 1.’ HA 2  r A 3け二次再結晶不良が
発生する臨界点である。B 1  + B 2 1 B
 3点は二次再結晶が良好で鉄損が最良値に対し10%
増の点であるo al  +a2  +a3及びbt 
 、bz  +ba点は鉄損が最良値に対し5係増の点
である。以壬の各点を横軸に板厚、縦軸に酸素含有量の
座標上にプロットすると第2図の如くなる。
The optimal oxygen content at 0.260% and 0.285% is approximately 7'50 PPM, 650 PPM, and 6, respectively.
00 PPM was 0. In addition, the O and X marks in FIG. 1 indicate the results of macroscopic observation of the product. The mark ○ means good secondary recrystallization, and the mark X means poor secondary recrystallization. 7. A on the curve showing the oxygen content and iron loss value in Figure 1.
1. ' HA 2 r A 3 This is the critical point where secondary recrystallization defects occur. B 1 + B 2 1 B
3 points have good secondary recrystallization and iron loss is 10% of the best value.
The points of increase o al +a2 +a3 and bt
, bz +ba point is a point where the iron loss increases by a factor of 5 with respect to the best value. If each point is plotted on a coordinate system with the board thickness on the horizontal axis and the oxygen content on the vertical axis, the result will be as shown in Figure 2.

第2図から明らかなように魚群(AI r A2 + 
A3 ) I(Bl   、  B 2  +B3  
 )+(al   +aZ   ya3   )+(b
I 、b、、+t)3 )はそれぞれ略々直線I、I[
As is clear from Figure 2, the fish school (AI r A2 +
A3) I(Bl, B2 +B3
)+(al +aZ ya3)+(b
I, b, , +t)3) are approximately straight lines I, I[
.

I[[、IV上にプロットされる。すなわち、EW線1
 。
I[[, is plotted on IV. That is, EW line 1
.

■に挾まれる領域においては、二次再結晶が良好で且つ
鉄損値が量良値の10%増ゆ下の良好値となる。更に直
線111.IVで挾まれる領域においては鉄損値が最良
値の5係増以下の祢めて良好な値となる。
In the region between (2), the secondary recrystallization is good and the iron loss value is 10% higher than the good quantity value and becomes a good value. Further straight line 111. In the region between IV, the iron loss value becomes a very good value, which is less than the 5th factor increase of the best value.

X=鋼板の厚み(′X)、Y=脱炭板の酸素含有量(P
PM)として、直線1.IIで挾まれる領域は次式%式
% (1) 直線■、■で挾まれる領域は次式で表わされる。
X = Thickness of steel plate ('X), Y = Oxygen content of decarburized plate (P
PM), the straight line 1. The area sandwiched by II is expressed by the following formula % Formula % (1) The area sandwiched by straight lines ■ and ■ is expressed by the following formula.

−2500X+1213<Y≦−2500X+1363
 ・・・(2)本発明はこの知見に基づいて構成された
ものであって、その要旨とするところは、C:0.02
〜0.12%、St : 2.5〜4.0 %、Mn:
0.03〜0、20 % 、 S : 0.01〜0.
05 % 、 actAto、 O1〜0.05%、N
:0.004〜0012チを含み、必要に応じて更にC
u + Sn + Cr 、 Ni + Mo r V
-2500X+1213<Y≦-2500X+1363
...(2) The present invention is constructed based on this knowledge, and its gist is that C: 0.02
~0.12%, St: 2.5~4.0%, Mn:
0.03-0, 20%, S: 0.01-0.
05%, actAto, O1~0.05%, N
: Contains 0.004~0012C, and further C if necessary.
u + Sn + Cr, Ni + Mor V
.

Bのうち1釉または2種以上合計で15%却下含む珪素
鋼スラブを熱延し、最終冷延を行う前に焼鈍と1急冷処
理全行い、圧下率80係以上の強圧下最終冷延を行い、
脱炭焼鈍を行い、引続きN2を含むN2雰囲気で昇温す
る高温仕上N’7鈍を行う一方向性電磁鋼板の製造にお
いて、良好な磁気特性を得るために、最終冷延板厚に対
し、脱炭板の酸素含有量を上記(1)式の範囲に、更に
望ましくは上記(2)式の範囲に制御することを特徴と
する特許すぐれた一方向性電磁鋼板の製造方法にある。
A silicon steel slab containing a total of 15% rejection of one or more of B glazes is hot-rolled, and before the final cold rolling, annealing and one rapid cooling treatment are performed, and the final cold rolling is performed with a strong reduction of 80 factors or more. conduct,
In the production of unidirectional electrical steel sheets that undergo decarburization annealing and then high-temperature finish N'7 annealing in which the temperature is raised in an N2 atmosphere containing N2, in order to obtain good magnetic properties, the final cold rolled sheet thickness is The present invention provides an excellent patented method for manufacturing grain-oriented electrical steel sheets, which is characterized in that the oxygen content of the decarburized plate is controlled within the range of the above formula (1), more preferably within the range of the above formula (2).

本発明はALN i主たるインヒビターとして活用した
高磁束密度一方向性電磁鋼板に適用するものである。熱
間圧延と最終冷延前の焼鈍及び急冷処理により、均一、
微細に析出したA7Jは高温仕上焼鈍のN2を含むN2
雰囲気中での昇温過程において、通常の一次再結晶粒の
成長を抑制し、集積度の高い(110)(001 )力
位の二次再結晶の発現、成長に寄与するものと考えられ
る。AtNとの関連における二次再結晶機構の定量的、
理論的解明については、なお今後の研究を待たなければ
ならないが、AtNFi高温仕上焼鈍の昇温過程におい
てN2とN2とからなる雰囲気の影響を受けながら、微
妙に変化しつつ、インヒビター効果を発揮し、しかる後
凝集過程を経て、最終的には分解し[N)分は地鉄外に
放出されるものと考えられる。
The present invention is applied to a high magnetic flux density unidirectional electrical steel sheet utilized as a main inhibitor of ALNi. Uniform,
The finely precipitated A7J is N2 containing N2 from high-temperature finish annealing.
It is thought that during the temperature raising process in the atmosphere, the growth of normal primary recrystallized grains is suppressed, and it contributes to the development and growth of secondary recrystallization of the (110) (001) force potential with a high degree of integration. Quantitative secondary recrystallization mechanism in the context of AtN,
Theoretical elucidation will have to wait for future research, but it appears that during the temperature rising process of AtNFi high-temperature finish annealing, the inhibitor effect is exerted while being influenced by the atmosphere consisting of N2 and N2. After that, it is thought that through the agglomeration process, it will eventually decompose and the [N] component will be released outside the steel base.

本発明にかかわる成分系の一方向性電磁鋼板の場合、脱
炭焼鈍板の酸素分はその大部分がSi+At+Fe等と
の酸化物として表面層部に存在する。この表面酸化層は
高温仕上焼鈍の昇温過程において鋼板の内質部とN2と
N2とからなる雰囲気の間の一鍾の壁となり、鋼板と雰
囲気の反応に少なからぬ影響を及ぼすものと考えられる
In the case of the unidirectional electrical steel sheet of the composition according to the present invention, most of the oxygen content in the decarburized annealed sheet exists in the surface layer portion as an oxide of Si+At+Fe and the like. This surface oxidation layer becomes a wall between the internal part of the steel sheet and the atmosphere consisting of N2 and N2 during the temperature rising process of high-temperature finish annealing, and is thought to have a considerable influence on the reaction between the steel sheet and the atmosphere. .

第1図の■,@,θに相当する製品試料(以下試料■,
@,θと呼ぶ)のマクロ組織を第4図に示す。この第4
図から明らかなように試料■では細粒が認められ、試料
@,θは100チニ次再結晶していた。まだ試料@にく
らべ、試料θは結晶粒の大きさはほぼ同じであったが、
結晶粒界菊が単調で粒型が丸っこい傾向が認められた。
Product samples corresponding to ■, @, and θ in Figure 1 (hereinafter samples ■,
Fig. 4 shows the macrostructure of the ferrite (referred to as @, θ). This fourth
As is clear from the figure, fine grains were observed in sample ①, and samples @ and θ were recrystallized to the 100th order of magnitude. Compared to sample @, the size of crystal grains in sample θ was almost the same, but
It was observed that the grain boundaries were monotonous and the grain shape tended to be round.

第1表に試料■,@,OのG束密度B1o値を示す。こ
の表から、磁束密度B1oも試料@がすぐれていること
が認められる。
Table 1 shows the G flux density B1o values of samples ■, @, and O. From this table, it is recognized that sample @ is also superior in magnetic flux density B1o.

第  1  表 試料■は細粒金倉むため全体としての方向性が悪く鉄損
が不良となったと考えられる。試料θでは100係二次
再結晶していたが、(110)[001 ]方位の集積
度が試料@より劣って2i・リ、その分だけ鉄損が不良
になったと考えられる。
Sample ■ in Table 1 is considered to have poor iron loss due to poor overall directionality due to the inclusion of fine grain gold. Although sample θ underwent 100-coefficient secondary recrystallization, it is thought that the degree of integration of the (110)[001] orientation was inferior to that of sample @ by 2i·li, and the iron loss was correspondingly poor.

次に上記二次再結晶状況の差異の1,{R因を検討すべ
く第1図、■,@,θの点に近似の脱炭焼鈍板を別途作
成し、焼鈍分離剤を塗布しN2 7 5 % 十N22
5%の雰囲気中で20℃/hrの昇温速度で加熱し、9
00℃及び1000℃に達した時の材相0AtNを分析
した。分析結果を第3図に示す。第3図から明らかなよ
うに脱炭板の酸素含有量により高温仕上焼鈍中のAtN
が変化していることが判明した。脱炭板の酸素含有量と
高温仕上焼鈍中のAtNの増加の関係については、はっ
きりしたことは分らないが、おそらく酸素含有量の多い
場合、表面酸化層がややポーラスになシ高温仕上焼鈍昇
温中での雰囲気から鋼板への窒素吸収が多くなシ、At
N増加の傾向を示すものであろう。
Next, in order to examine the cause of the difference in the secondary recrystallization situation mentioned above, a decarburized annealed plate similar to the points ■, @, and θ in Fig. 1 was prepared separately, and an annealing separator was applied to it. 7 5% 10N22
Heating at a heating rate of 20°C/hr in a 5% atmosphere,
The material phase 0AtN when the temperature reached 00°C and 1000°C was analyzed. The analysis results are shown in Figure 3. As is clear from Fig. 3, AtN during high-temperature finish annealing is affected by the oxygen content of the decarburized plate.
was found to be changing. Although the relationship between the oxygen content of the decarburized plate and the increase in AtN during high-temperature finish annealing is not clear, it is likely that when the oxygen content is high, the surface oxide layer becomes slightly porous and the increase in high-temperature finish annealing increases. A large amount of nitrogen is absorbed into the steel plate from the atmosphere in a warm environment, At
This probably indicates a tendency for N to increase.

v上のことから、脱炭板の酸素含有量が適量の場合(試
料@の場合)高温仕上焼鈍の昇温途中での雰囲気からの
窒素の吸収が適量となり、インヒビターとしてのAtN
が最も効果的に作用し、(110)[001:]方位の
集積度の高い二次再結晶が得られるが、酸素含有量が適
量より少ない場合(試料■の場合)高温仕上焼鈍の昇温
途中での窒素吸収が不足し、AtNのインヒビター効果
が不足し、通常の一次再結晶粒の粒成長が進み細粒とな
るものと考えられる。酸素含有量が適量より多い場合(
試料θの場合)、高温仕上焼鈍の昇温途中での窒素吸収
が多(A7Nも増加することは上に述べたが、これが方
向性のやや劣る二次再結晶の原因かどうかについてはな
お不明−Cある。
From the above, when the oxygen content of the decarburized plate is appropriate (in the case of sample @), the amount of nitrogen absorbed from the atmosphere during the temperature rise during high-temperature finish annealing is appropriate, and AtN as an inhibitor.
works most effectively, and secondary recrystallization with a high degree of accumulation of (110)[001:] orientations is obtained, but if the oxygen content is less than the appropriate amount (in the case of sample ■), the temperature increase during high-temperature finish annealing is It is thought that nitrogen absorption during the process is insufficient, the inhibitor effect of AtN is insufficient, and the normal primary recrystallized grains progress to grow and become fine grains. If the oxygen content is higher than the appropriate amount (
In the case of sample θ), there is a large amount of nitrogen absorption during the temperature rise during high-temperature finish annealing (it was mentioned above that A7N also increases, but it is still unclear whether this is the cause of secondary recrystallization with slightly poor directionality). -There is C.

又脱炭板の酸素含有量の二次再結晶への影響は上記の如
く高温仕上焼鈍の昇温途中におけるAtNの変化による
もののほかに鋼板の表面層近くの酸化物そのものによる
影響も考えられる。しかし、このメカニズムについて今
後の仙究に待た々ければならない。
Further, the influence of the oxygen content of the decarburized sheet on the secondary recrystallization is not only due to the change in AtN during the heating during high-temperature finish annealing as described above, but also due to the oxide itself near the surface layer of the steel sheet. However, we will have to wait for further research into this mechanism.

次に成分範囲を定めた理由について述べる。Cは0.0
2%未満の場合、二次再結晶が不良となり0.12%を
超えると脱炭性、磁気特性の点から好1しくない。Si
は2.5係未滴では良好な鉄損が得られず、4チを超え
ると冷延4生が著しく劣化する。
Next, we will discuss the reasons for determining the component ranges. C is 0.0
If it is less than 2%, secondary recrystallization will be poor, and if it exceeds 0.12%, it will be unfavorable in terms of decarburization and magnetic properties. Si
A good iron loss cannot be obtained when the steel is less than 2.5 inches, and when it exceeds 4 inches, the cold-rolled steel deteriorates significantly.

Mn及びSはMnSを形成させるために必要な元素であ
り、適切なインヒビター効果を得るだめのMnの適量は
0.03〜020ヂであシ好葦しくけ0.05係〜0.
15%である。Sは0.01係未満では十分なインヒビ
ター効果が得られず、005係を超すと純化焼鈍での脱
硫が困難とな如好ましくない。
Mn and S are elements necessary to form MnS, and the appropriate amount of Mn to obtain a suitable inhibitor effect is 0.03 to 0.20 degrees, and preferably 0.05 to 0.00 degrees.
It is 15%. If S is less than 0.01, a sufficient inhibitor effect cannot be obtained, and if it exceeds 0.05, desulfurization during purification annealing becomes difficult, which is not preferable.

5oLAtは0.01%未満では、十分なAtN効果が
得られず、O,O’5%を超えると二次再結晶が不安定
となる。Nは00004%未満では十分なAtN効果が
得られず0.012 ’Jを超えるとブリスターが発生
する。
When 5oLAt is less than 0.01%, a sufficient AtN effect cannot be obtained, and when O and O' exceed 5%, secondary recrystallization becomes unstable. If N is less than 00004%, a sufficient AtN effect cannot be obtained, and if it exceeds 0.012'J, blisters will occur.

さらに必要に応じて上記元素の他にCu g Sn +
Cr r Ni p Mo r V r Bの如くイン
ヒビターとしての効果が公知である元素を単体で或いは
化合物の形で一種又は二種以上含んでも差しつかえない
Furthermore, if necessary, in addition to the above elements, Cu g Sn +
One or more elements known to have inhibitory effects, such as Cr r Nip Mor V r B, may be included alone or in the form of a compound.

このときの合計の含有量の上限は1.5係である。The upper limit of the total content at this time is 1.5 parts.

この上限を超えた場合には冷延性、脱炭性が劣化する。If this upper limit is exceeded, cold rolling properties and decarburization properties will deteriorate.

各元素の含有量の上限値はCu + Sn 、 Cr 
、 NirMo + Vについては0.3条、Bについ
ては0.01係である。各元素について上限値を超えた
場合は、熱延性、酸洗性、冷延性、脱炭性吋が劣化し作
業性が悪くなる。
The upper limit of the content of each element is Cu + Sn, Cr
, for NirMo + V, it is section 0.3, and for B, it is section 0.01. When the upper limit values for each element are exceeded, hot-rollability, pickling properties, cold-rollability, and decarburization properties deteriorate, resulting in poor workability.

前記成分からなる珪素鋼スラブは所定温度に加熱され、
熱延され、最終冷延を行う前に焼鈍と急冷処理を施され
る。これらはA、!N i主たるインヒビターとする一
方向性電磁鋼板の公知の条件が採用される。
A silicon steel slab made of the above components is heated to a predetermined temperature,
It is hot rolled and subjected to annealing and quenching treatments before final cold rolling. These are A! Known conditions for grain-oriented electrical steel sheets with Ni as the main inhibitor are employed.

最終冷延においては圧下率80係シ上の強圧下冷延され
るが、これは圧下率が低いとすぐれた磁気特性が得られ
々いためである。
In the final cold rolling, strong reduction cold rolling is carried out at a rolling reduction of 80. This is because it is difficult to obtain excellent magnetic properties if the rolling reduction is low.

次いで脱炭焼鈍されるが、ここで前述の如く鋼板の酸素
含有量が鋼板の板厚との関係によ逆制御される。この制
御は焼鈍雰囲気の露点、焼鈍時間、雰囲気ガスの組成を
変えることにより行なわれる。例えば、露点I′i5 
’O〜75℃、焼鈍時間は1〜6分である。その後、焼
鈍分離剤を塗布し乾燥し、仕上焼鈍される。
The steel sheet is then subjected to decarburization annealing, where the oxygen content of the steel sheet is inversely controlled in relation to the thickness of the steel sheet, as described above. This control is performed by changing the dew point of the annealing atmosphere, the annealing time, and the composition of the atmospheric gas. For example, dew point I'i5
'O~75°C, annealing time is 1~6 minutes. After that, an annealing separator is applied, dried, and finish annealed.

ところで一方向性定礎鋼板の脱炭板の酸素目付量全規制
する技術が従来いくつか開示されている。
By the way, several techniques have been disclosed to completely regulate the oxygen basis weight of a decarburized plate of a unidirectional foundation steel plate.

これらはいずれも絶縁被膜の形成に関するものであり、
本発明とは異なる。
These are all related to the formation of an insulating film,
This is different from the present invention.

例えば特開昭55−65367号公報記載の発明はフォ
ルステライト絶縁被膜の形成法に関するもので、Fe 
* Co r Nir Cr + Zn + Mg r
 Mn yAtの1種以上を含む硝酸塩水溶液を塗布し
て、脱炭焼鈍し、′酸素目付量示1.0〜2,097m
2の主としてS r O2とファヤライトからなる酸化
皮膜を形成して、次いで焼鈍分離剤を塗布し、仕上焼鈍
してフォルステライト絶縁被膜を改善するものである0
これは脱炭焼鈍に先んじて硫酸塩水溶液を塗布すること
を前提としたフォルステライト絶縁被ル4の改善に関す
る技術であシ、グラス質被膜のもともと良好な、ktN
”fインヒビターとして活用する一方向性電磁鋼板の鉄
損改善法にかかわる本発明とは、基本的考え方を異にし
ている・ 又特開昭55−110726号公報記載の発明はインヒ
ビターとしてsbl含む高磁束密度一方向性珪素鋼板の
絶縁被膜形成方法に関するものであって、脱炭焼鈍で酸
素目付量をO17〜2.8 g/m2としfc鋼板に、
MgO系の焼鈍分離剤を塗布し、800〜920℃の特
定温度で不活性の中性ガスを入れて長時間焼鈍すること
からなる、グラス質被膜の改善に関する技術であり、s
b2含有せず800〜920℃の温一度範囲の長時間二
次再結晶焼鈍を要せず且つグラス質被膜のもともと良好
な、AtNをインヒビターとして活用する一方向性電磁
鋼板の鉄損改善法に関する本発明とは基本的考えを異に
している。
For example, the invention described in JP-A-55-65367 relates to a method for forming a forsterite insulating film.
* Cor Nir Cr + Zn + Mg r
A nitrate aqueous solution containing one or more types of Mn yAt is applied and decarburized annealed to give an oxygen basis weight of 1.0 to 2,097 m.
2, an oxide film mainly consisting of SrO2 and fayalite is formed, then an annealing separator is applied, and a final annealing is performed to improve the forsterite insulating film.
This is a technology for improving the forsterite insulation coating 4, which is based on applying a sulfate aqueous solution prior to decarburization annealing.
``The basic idea is different from the present invention, which concerns a method for improving iron loss of unidirectional electrical steel sheets used as f-inhibitors.In addition, the invention described in JP-A-55-110726 uses high This relates to a method for forming an insulating film on a magnetic flux density unidirectional silicon steel sheet, in which the oxygen basis weight is set to O17 to 2.8 g/m2 by decarburization annealing to an FC steel sheet,
This is a technology for improving glassy coatings, which consists of applying an MgO-based annealing separator and annealing for a long time at a specific temperature of 800 to 920°C by introducing an inert neutral gas.
Concerning a method for improving iron loss of a unidirectional electrical steel sheet that does not contain b2, does not require long-term secondary recrystallization annealing at a temperature range of 800 to 920°C, and has an inherently good glassy coating, and utilizes AtN as an inhibitor. The basic idea is different from the present invention.

さらに特開昭56−72178号公報記載の発明はフォ
ルステライト絶縁被膜の形成方法として、焼鈍分離剤を
塗布して仕上焼鈍するさい、サブスケール中の酸素目付
量と焼鈍分離剤の塗布量に特定の量的関係をもたせて、
フォルステライト絶縁被膜の改善をはかることを狙いと
した技術であり、グラス質被膜のもともと良好なAtN
をインヒビターとして活用する一方向性電磁鋼板の鉄損
改善にかかわる本発明とは基本的考え方を異にしている
Furthermore, the invention described in JP-A No. 56-72178 is a method for forming a forsterite insulating film, and when an annealing separator is applied and final annealing is performed, the amount of oxygen permeable in the subscale and the applied amount of the annealing separator are specified. With the quantitative relationship of
This technology aims to improve the forsterite insulating film, and it is a technology that aims to improve the forsterite insulating film.
The basic idea is different from that of the present invention, which is concerned with improving the iron loss of unidirectional electrical steel sheets using the present invention as an inhibitor.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例I C:0.060%、Si :3.00%、Mn : 0
.085係、S:0.025係、5otAt: 0.0
28係、N:0.0080%及びその他微量不可避元素
を含む珪素鋼スラブを23%厚の熱延板に仕上げ、この
熱延板k1130℃で4分間焼鈍し、焼鈍後急冷し、し
かる後に冷延厚み0.260’X 、 0.285%に
冷延した。得られた冷延板を湿潤水素雰囲気の露点と焼
鈍時間を変更し850℃で脱炭焼鈍した。脱炭懺鈍後M
gOを主とする焼鈍分離剤を塗布し、H75%、’N2
25%の雰囲気中で25℃/hrの割合いで1200℃
迄列温し、その後H2雰囲気中で2,0時間の純化焼鈍
を施した。製品の磁気特性は次の通りであった。
Example I C: 0.060%, Si: 3.00%, Mn: 0
.. 085 section, S: 0.025 section, 5otAt: 0.0
Section 28, a silicon steel slab containing N: 0.0080% and other trace amounts of unavoidable elements is finished into a 23% thick hot-rolled plate, and this hot-rolled plate is annealed at 1130°C for 4 minutes, rapidly cooled after annealing, and then cooled. It was cold rolled to a rolling thickness of 0.260'X and 0.285%. The obtained cold-rolled sheets were decarburized and annealed at 850° C. while changing the dew point of the wet hydrogen atmosphere and the annealing time. After decarburization and dulling M
Apply an annealing separator mainly containing gO, H75%, 'N2
1200℃ at a rate of 25℃/hr in a 25% atmosphere
After that, purification annealing was performed for 2.0 hours in an H2 atmosphere. The magnetic properties of the product were as follows.

冷延板厚み 脱炭板の酸素 W1715oB1o   
 備考(Mn)  含有量(PFM)  (W#)  
(T)   ○印:本発明0.260    460 
  1.18 1.86〃670   0.98 1.
95    0tt        740   1.
01  1.93    0tt        83
0    1.10  1.880.285    4
00   1.20 1.84p        47
0    1.05  1.94    0tt   
     600   0.99 1.96    0
//         780    1.12  1
.87実施例2 C:0.074%、Si:3.25%、Mn : 0,
075係、 S:0.025 係、 5otA1.  
:  0.0 2 6 壬、 N :0.0083% 
 、  Cu:0.08%  、  Sn  二 0.
12%  及びその他年可避微量元素を含む珪素像スラ
ブを2.3%厚の熱延板に仕上げ、熱延i’11120
℃で4分間焼鈍し焼鈍後急冷し、しかる後に冷延厚み0
225%、0.260%に冷延した。得られた冷延板を
湿潤水素雰囲気の霧点を変え840℃で4分間脱炭焼鈍
した。脱炭焼純後MgO?主とする焼鈍分離剤を塗布し
、N280 % 、 N220%の雰囲気中で20℃/
hrの割合いで1200℃まで昇温し、その後H2W囲
気中で20時間の純化焼鈍を施した。製品の磁気特性は
次の通りであった。
Cold rolled plate thickness Oxygen of decarburized plate W1715oB1o
Notes (Mn) Content (PFM) (W#)
(T) ○ mark: Invention 0.260 460
1.18 1.86〃670 0.98 1.
95 0tt 740 1.
01 1.93 0tt 83
0 1.10 1.880.285 4
00 1.20 1.84p 47
0 1.05 1.94 0tt
600 0.99 1.96 0
// 780 1.12 1
.. 87 Example 2 C: 0.074%, Si: 3.25%, Mn: 0,
075 section, S: 0.025 section, 5otA1.
: 0.0 2 6 壬, N : 0.0083%
, Cu:0.08%, Sn20.
A silicon image slab containing 12% and other trace elements is finished into a 2.3% thick hot rolled plate and hot rolled i'11120
Annealed at ℃ for 4 minutes, rapidly cooled after annealing, and then cold-rolled to a thickness of 0.
It was cold rolled to 225% and 0.260%. The obtained cold-rolled sheet was decarburized and annealed at 840° C. for 4 minutes in a wet hydrogen atmosphere with different fog points. MgO after decarburization and sintering? The main annealing separator was applied and heated at 20℃/in an atmosphere of 80% N2 and 220% N2.
The temperature was raised to 1200° C. at a rate of 200° C., and then purification annealing was performed in an H2W atmosphere for 20 hours. The magnetic properties of the product were as follows.

0.225 500   1.15  1.851/ 
   660   0.88  1.94 0、l’ 
   750   0,84  1.95 0p、、 
   890   0.96  1.900.260 
470   1.13  1.871/    640
   0.94  1.95 0/l    750 
  1.02  1.92 0//    870  
 1.08  1.89
0.225 500 1.15 1.851/
660 0.88 1.94 0, l'
750 0,84 1.95 0p,,
890 0.96 1.900.260
470 1.13 1.871/ 640
0.94 1.95 0/l 750
1.02 1.92 0// 870
1.08 1.89

【図面の簡単な説明】[Brief explanation of drawings]

第1区は脱炭板の酸素含有ダ・による鉄損W、7/、。 と、マクロ組織の測定結果を示す図、第2図は前記第1
図に基づき本発明における板厚と脱炭板の酸紫含翁量の
関係を示す図、第3図は高温仕上焼鈍の昇温途中でのA
tNの変化を示すIII 、p 4図は試料のマクロ組
織を示す図である。 第2 図 □独房(m/m) 第 3 図 ¥4兇メ赳オ反      9θθ         
 lθθθ逼度 (0C) 第4図 (イ) 第1頁の続き 0発 明 者 田中収 北九州市へ幡東区枝光1−1− 1新日本製鐵株式會社生産技術 研究所内
The first section is the iron loss W, 7/, due to the oxygen content of the decarburized plate. Figure 2 is a diagram showing the measurement results of the macrostructure.
Figure 3 shows the relationship between the plate thickness and the acid purple content of the decarburized plate in the present invention based on the figure.
Figure III, p. 4 showing the change in tN is a diagram showing the macrostructure of the sample. Figure 2 □ Solitary confinement (m/m) Figure 3 ¥4 meters 9θθ
lθθθ Tightness (0C) Figure 4 (a) Continued from page 1 0 Inventor: Osamu Tanaka To Kitakyushu City, Nippon Steel Corporation Production Technology Laboratory, 1-1-1 Edamitsu, Hatto-ku

Claims (3)

【特許請求の範囲】[Claims] (1)  C: 0.02〜0.12%、Si:2.5
〜480%、Mn : 0.03〜0.20 %、S 
: 0.01〜0.05 %、酸可溶At:0.01〜
0.05%、N:0.004〜0.012%ffi含み
、残部Fe及び微量の不可避元素を含む珪素鋼スラブを
熱延し、最終冷延全行う前に焼鈍と急冷処理を行い、圧
下率80%以上の強圧下最終冷延を行い、脱炭焼鈍を行
い、引続きN2を含むH2雰囲気中で昇温する高温仕上
焼鈍を行う一方向性電磁鋼板の製造において、脱炭焼鈍
後の伴i板の酸素含有量を次式で与えられる範囲に制御
する事を特徴とする特許 磁鋼板の製造方法。 −2 5 0 0X+1 1 6 3<Y≦−2500
X+1413但し、X−鋼板の板厚(X)、Y一鋼板の
酸素含有量(PPM)。
(1) C: 0.02-0.12%, Si: 2.5
~480%, Mn: 0.03~0.20%, S
: 0.01~0.05%, acid soluble At: 0.01~
0.05%, N: 0.004 to 0.012% ffi, the balance Fe and trace amounts of unavoidable elements are hot-rolled, and before the final cold rolling, annealing and quenching treatment are performed, followed by rolling. In the production of unidirectional electrical steel sheets, which are subjected to final cold rolling under strong reduction of 80% or more, decarburized annealing, and then high-temperature finishing annealing in which the temperature is raised in an H2 atmosphere containing N2, A method for manufacturing a patented magnetic steel sheet characterized by controlling the oxygen content of the i-sheet within the range given by the following formula. -2 5 0 0X+1 1 6 3<Y≦-2500
X+1413 However, X-thickness of the steel plate (X), Y-oxygen content of the steel plate (PPM).
(2)C:0.02〜0.1 2%、St:2.5〜4
.0 チ、Mn  :  0.0  3〜0.2  0
  %、S:0.01 〜005%、酸可溶At:0.
01〜0,05係、N:0.04〜0、012%’e含
み、さらにCu + Sn + Cr r NirMo
 、 V 、 Bの1種壕たけ2i71j上を合計で1
.5条以下を含む珪素銅スラブを熱延し、最終冷延全行
う前に焼鈍と急冷処理を行い、圧下tx80%J;1上
の強圧下最終冷延を行い、脱炭焼鈍を行い、引続きN2
を含むH2雰囲気中で外温する高温仕上焼鈍を行う一方
向性電磁鋼板のFA 造において、脱炭g.E鈍後の銅
板の酸素含有量全次式で与えられる範囲に制御する事を
特徴とするω気持性の優t,た一方向性電磁鋼板の製造
方法。 一2500X+1 163<:Y<−2500X+14
1’3但し、X−銀板の板厚(几)、Y−銅板の酸素含
有ダ: (PPM)。
(2) C: 0.02-0.1 2%, St: 2.5-4
.. 0 Chi, Mn: 0.0 3~0.2 0
%, S: 0.01-005%, acid-soluble At: 0.
01-0,05 ratio, N: 0.04-0, 012%'e included, and further Cu + Sn + Cr r NirMo
, V , B type 1 trench 2i71j top is 1 in total
.. A silicon-copper slab containing 5 strips or less is hot rolled, annealed and quenched before the final cold rolling, final cold rolled with a strong reduction of tx80% J; 1, followed by decarburization annealing. N2
In the FA construction of grain-oriented electrical steel sheets, which undergoes high-temperature finish annealing externally in a H2 atmosphere containing decarburization g. A method for producing a grain-oriented electrical steel sheet with excellent ω-feelability, characterized by controlling the oxygen content of a copper sheet after E-blurring to a range given by a total order equation. -2500X+1 163<:Y<-2500X+14
1'3 However, X - the thickness of the silver plate (in ), Y - the oxygen content of the copper plate: (PPM).
(3)脱炭焼鈍後の鋼板の酸素含有量を次式で示フー範
囲とする特許請求の範囲第1項記載の方法。 −2500X+1213<Y<−2500X+1363
(4)脱炭焼鈍後の≦6,゛閏板の酸素含刹伊を次式で
示す範囲とする特許請求の範囲第2項記載の方法。 −z5oox+1zx3<y<−2soox+1363
(3) The method according to claim 1, wherein the oxygen content of the steel sheet after decarburization annealing is within the range expressed by the following formula. -2500X+1213<Y<-2500X+1363
(4) The method according to claim 2, wherein the oxygen content of the intercalary plate after decarburization annealing is ≦6. -z5oox+1zx3<y<-2soox+1363
JP58061432A 1983-04-07 1983-04-07 Production of grain-oriented electrical steel sheet having excellent magnetic characteristic Granted JPS59185725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58061432A JPS59185725A (en) 1983-04-07 1983-04-07 Production of grain-oriented electrical steel sheet having excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58061432A JPS59185725A (en) 1983-04-07 1983-04-07 Production of grain-oriented electrical steel sheet having excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
JPS59185725A true JPS59185725A (en) 1984-10-22
JPS6315967B2 JPS6315967B2 (en) 1988-04-07

Family

ID=13170897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58061432A Granted JPS59185725A (en) 1983-04-07 1983-04-07 Production of grain-oriented electrical steel sheet having excellent magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS59185725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453136A (en) * 1991-12-26 1995-09-26 Pohang Iron & Steel Co., Ltd. Process for manufacturing high magnetic flux density grain oriented electrical steel sheet having superior magnetic properties
JPWO2020149332A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488703U (en) * 1971-06-10 1973-01-31
JPS48101317A (en) * 1972-04-05 1973-12-20
JPS4929409U (en) * 1972-06-19 1974-03-13
JPS5672178A (en) * 1979-11-13 1981-06-16 Kawasaki Steel Corp Formation of forsterite insulating film of directional silicon steel plate
JPS5747830A (en) * 1980-09-01 1982-03-18 Nippon Steel Corp Production of unidirectional electrical steel plate of superior watt loss
JPS5823414A (en) * 1981-08-05 1983-02-12 Nippon Steel Corp Unidirectional electromagnetic steel plate with superior iron loss and high magnetic flux density and manufacture therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS488703U (en) * 1971-06-10 1973-01-31
JPS48101317A (en) * 1972-04-05 1973-12-20
JPS4929409U (en) * 1972-06-19 1974-03-13
JPS5672178A (en) * 1979-11-13 1981-06-16 Kawasaki Steel Corp Formation of forsterite insulating film of directional silicon steel plate
JPS5747830A (en) * 1980-09-01 1982-03-18 Nippon Steel Corp Production of unidirectional electrical steel plate of superior watt loss
JPS5823414A (en) * 1981-08-05 1983-02-12 Nippon Steel Corp Unidirectional electromagnetic steel plate with superior iron loss and high magnetic flux density and manufacture therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453136A (en) * 1991-12-26 1995-09-26 Pohang Iron & Steel Co., Ltd. Process for manufacturing high magnetic flux density grain oriented electrical steel sheet having superior magnetic properties
JPWO2020149332A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS6315967B2 (en) 1988-04-07

Similar Documents

Publication Publication Date Title
KR100596115B1 (en) Method for producing grain-oriented silicon steel plate with mirror surface
EP2025767B2 (en) Process for producing grain-oriented electrical steel sheet with high magnetic flux density
JPS6296616A (en) Manufacture of grain oriented electrical sheet superior in iron loss
GB2167439A (en) Process for producing a grain-oriented electrical steel sheet having a low watt loss
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
CN114867872A (en) Oriented electrical steel sheet and method for manufacturing the same
US11685962B2 (en) Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JPS6059045A (en) Grain-oriented silicon steel sheet having small iron loss value and its production
JP7063032B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS59185725A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic
WO2017111432A1 (en) Oriented electrical steel sheet and manufacturing method therefor
JP2599069B2 (en) Method for manufacturing high magnetic flux density grain-oriented electrical steel sheet with excellent glass coating properties and good magnetic properties
JPS61119620A (en) Annealing method of silicon steel strip by vertical continuous annealing furnace
JPH02125815A (en) Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic
JPH02305921A (en) Production of grain-oriented steel sheet having excellent magnetic characteristic
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JPS60177132A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic and high magnetic flux density
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JPS63162814A (en) Manufacture of thin grain-oriented silicon steel sheet minimal in iron loss deterioration
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH02209426A (en) Production of thin grain-oriented silicon sheet with high magnetic flux density excellent in magnetic property of product by single-stage cold rolling method
JPS60218426A (en) Manufacture of grain-oriented electrical steel sheet having low iron loss and high magnetic flux density
JPS6250528B2 (en)
JPH02282422A (en) Production of high-flux-density thin grain-oriented magnetic steel sheet
JPH02433B2 (en)