JPS59184831A - Electrostatic capacity type pressure detector - Google Patents

Electrostatic capacity type pressure detector

Info

Publication number
JPS59184831A
JPS59184831A JP5927983A JP5927983A JPS59184831A JP S59184831 A JPS59184831 A JP S59184831A JP 5927983 A JP5927983 A JP 5927983A JP 5927983 A JP5927983 A JP 5927983A JP S59184831 A JPS59184831 A JP S59184831A
Authority
JP
Japan
Prior art keywords
sensor
pressure
sensor diaphragm
thick
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5927983A
Other languages
Japanese (ja)
Inventor
Satoshi Shimada
智 嶋田
Hiroji Kawakami
寛児 川上
Shigeyuki Kobori
小堀 重幸
Akio Yasukawa
彰夫 保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5927983A priority Critical patent/JPS59184831A/en
Publication of JPS59184831A publication Critical patent/JPS59184831A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0618Overload protection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To raise the overload pressure resistance of a sensor diaphragm by constituting a thickness of a thin movable part of the sensor diaphragm of an electrostatic capacity type pressure detector so that the part which is close to a thick fixed part of the outside circumference is larger. CONSTITUTION:A thick ridge 12C is provided on a thin movable part 12B of a sensor diaphragm 12. The thin movable part 12B of the sensor diaphragm 12 is pressed against a sensor base 18 as shown by a dotted line by an overload pressure P. In that case, the ridge 12C provided near a thick fixed part 12A is also brought into contact with the sensor base 18. In this case, excessive deformation of the boundary surface of the thick fixed part 12A and the thin movable part 12B is suppressed, therefore, the overload pressure resistance is raised. When a position of the annular ridge 12C is set to b/a=0.5, it is most effective. The smaller a gap G is, the larger the pressure resistance becomes.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、圧力、差圧を静電容量の変化として検出する
静電容量式圧力検出器に係り、特にシリコンのセンサダ
イアフラムを用いた静電容量式圧力検出器に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a capacitive pressure sensor that detects pressure and differential pressure as changes in capacitance, and particularly relates to a capacitive pressure sensor that detects pressure and differential pressure as changes in capacitance. Regarding capacitive pressure detectors.

−〔発明の背景〕 静電容量式圧力検出器のセンサダイアフラムにシリコン
を用いたものは、例えば特開昭55−16228号公報
に開示されている。
- [Background of the Invention] A capacitive pressure sensor using silicon as a sensor diaphragm is disclosed in, for example, Japanese Patent Application Laid-open No. 16228/1983.

センサダイアフラムは、圧力に応動する可動電極の役割
を有しており、センサ台に設けられた固定電極との間に
所定の隙間を介して設置される。
The sensor diaphragm has the role of a movable electrode that responds to pressure, and is installed with a predetermined gap between it and a fixed electrode provided on the sensor stand.

従来、この隙間はセンサ台を球面加工するこ)により確
保されてきたが、セラミックス等の絶縁物の球面加工で
あるため製作性に優れたものとは言えない。これに対し
、センサダイアプラムをシリコンとすると、シリコンは
エツチング等による加工性に優れているため、センサダ
イアフラムにエツチングによって凹部を形成させて隙間
を確保でき、製作性を格段に向上させることができる。
Conventionally, this gap has been secured by machining the sensor stand into a spherical surface, but since this involves machining an insulating material such as ceramic into a spherical surface, it cannot be said to be excellent in manufacturability. On the other hand, if the sensor diaphragm is made of silicon, silicon has excellent machinability through etching, etc., so it is possible to form a recessed part in the sensor diaphragm by etching and secure a gap, which greatly improves manufacturing efficiency. .

、しかるに、シリコンのセンサダイアフラムは、鉄−ニ
ッケル合金等の金属のセンサダイアフラムに比較して過
負荷耐圧が低いという欠点を有している。このため、比
紋的低い圧力では使用可能(例えばIMPH程度までは
隙間を小さくすることKより対処できるが)であるが、
工業用計測の検出器として用いるには10MPH以上の
過負荷耐圧が要求され、過負荷耐圧の向上を計る必要が
ある。
However, silicon sensor diaphragms have a drawback of having a lower overload withstand voltage than metal sensor diaphragms such as iron-nickel alloys. For this reason, it can be used at comparatively low pressures (for example, it can be handled by reducing the gap up to about IMPH), but
To be used as a detector for industrial measurement, an overload withstand voltage of 10 MPH or more is required, and it is necessary to improve the overload withstand voltage.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、過
負荷耐圧に優れた静電容量式圧力検出器を提供するにあ
る。7 〔発明の概要〕 センサダイアフラムには、その中央にエツチング等によ
って四部が形成され外周の厚肉固定部と中央の薄肉可動
部とに分離されている。かかるセンサダイアフラムに過
負荷圧力が作用すると、中央の薄肉可動部がセンサ台に
当接するが、この際薄肉可動部と厚肉固定部との境界面
に大きな集中応力が生じ、過負荷耐圧の向上の妨げとな
っている。このため本発明は、薄肉可動部の肉厚を外周
の方が大きくなる、例えば外周部分にリッジ等を形成し
、境界面に大きな集中応力が生じる前に、リッジをセン
サ台に当接させ、境界面にそれ以上の応力を作用させな
いようにしたものであるっ〔発明の実施例〕 以下、本発明の一実施例を図面に基づいて説明する。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a capacitive pressure sensor with excellent overload resistance. 7 [Summary of the Invention] The sensor diaphragm has four parts formed at its center by etching or the like, and is separated into a thick fixed part on the outer periphery and a thin movable part in the center. When overload pressure acts on such a sensor diaphragm, the thin movable part in the center comes into contact with the sensor stand, but at this time, a large concentrated stress is generated at the interface between the thin movable part and the thick fixed part, improving overload resistance. It is a hindrance to For this reason, the present invention makes the wall thickness of the thin movable part larger at the outer periphery, for example, by forming a ridge or the like on the outer periphery, and before a large concentrated stress is generated at the interface, the ridge is brought into contact with the sensor stand. [Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described based on the drawings.

第1図は静電容量式圧力検出器の全体構造断面図を示す
もので、10は受圧部本体、12はシリコン単結晶から
なるセンサダイアフラム、14はセンサダイアフラム1
2から出力を取出すリード線、16は外部へ電気信号を
取出す気密端子、18.2(1:その周辺部でセンサダ
イアフラム12を挾持する如くセンサダイアフラム12
に気密に接着される硼珪酸塩ガラス等の絶縁材料からな
るセンナ台であり、接着としては静電接合法あるいはA
 ll −Si共晶の合金接合法が用いられるっ22は
センサ台18.20の周りに構成した外室で、2個の外
部シールダイアフラム24,26と受圧部本体10との
間には封入油が#たされている。28.30はセンサ台
18.20の平面部に蒸着した電極で、センサ台18,
20の中央部に設けた導圧路32.34の内面に設けた
金属被膜36.38、および受圧部本体1oの一部に設
けた気密端子40.42の金属パイプ44.46を通じ
てリート−線48.50に接続されているう気密端子4
0.42の金属パイプ44.46はセンサ台18,20
の導圧路32,34と嵌合され、低温ろうKより接着さ
れ、電極2−8 、30との電気的導通および気密が保
持されている。
FIG. 1 shows a cross-sectional view of the overall structure of a capacitive pressure sensor, in which 10 is the pressure receiving part main body, 12 is a sensor diaphragm made of silicon single crystal, and 14 is a sensor diaphragm 1.
2 is a lead wire that takes out an output, 16 is an airtight terminal that takes out an electric signal to the outside, 18.2 (1: The sensor diaphragm 12 is held in its periphery so as to sandwich the sensor diaphragm 12.
The senna base is made of an insulating material such as borosilicate glass, which is airtightly bonded to the
ll -Si eutectic alloy bonding method is used. 22 is an outer chamber constructed around the sensor stand 18, 20, and between the two outer seal diaphragms 24, 26 and the pressure receiving part main body 10 is sealed oil. # is included. 28.30 is an electrode deposited on the flat surface of the sensor stand 18.20;
The Riet wire is passed through the metal coating 36.38 provided on the inner surface of the pressure conduction path 32.34 provided at the center of the pressure receiving section 20, and the metal pipe 44.46 of the airtight terminal 40.42 provided on a part of the pressure receiving section main body 1o. Airtight terminal 4 connected to 48.50
0.42 metal pipes 44 and 46 are sensor stands 18 and 20
The electrodes 2-8 and 30 are fitted with pressure guide paths 32 and 34 and bonded using low-temperature solder K to maintain electrical continuity and airtightness with the electrodes 2-8 and 30.

受圧部本体lOの外側にはセンサ台18.20を押える
押え板52.54Ky−ルダイアフラム56.5i9が
設けられ、外周近くで周状に気密溶接され、センサダイ
アフラム12との間に封入油が封入された第1.第2の
受圧室60.62を形成している。64.66は受圧部
本体1oを挾持するフランジで、中央部に導圧口68,
70が設けられている。
A holding plate 52.54 Ky-ru diaphragm 56.5i9 for holding down the sensor stand 18.20 is provided on the outside of the pressure-receiving part main body 10, and is hermetically welded circumferentially near the outer periphery, so that sealed oil is kept between it and the sensor diaphragm 12. Enclosed 1st. A second pressure receiving chamber 60,62 is formed. Reference numerals 64 and 66 are flanges that clamp the pressure receiving part main body 1o, and a pressure guiding port 68,
70 are provided.

センサダイアフラム12は第2図に示すように、外周の
厚肉固定部12Aと中央の薄肉可動部12Bとから構成
され、薄肉可動部12Bの外周近くにリング状のリッジ
12Cが形成されている。このような形状のセンサダイ
アフラム12は、シリコンの場合であればホトリソグラ
フの技術によりエツチングで高精度に加工することがで
き、また金属材料の場合はプレス等でも可能である。セ
ンサ台18.20は厚肉固定部12Aと静電接合され、
薄肉可動部12Bとの間に第1.第2の測定室72.7
4が形成される。センサダイアフラムJ2とセンサ台1
8.20の材質は、センサ台の熱膨張係数の方が大きく
なるようなものを選定し、静電接合後センサダイアフラ
ムに熱膨張s数の差による張力が加わるようにするのが
好ましい。
As shown in FIG. 2, the sensor diaphragm 12 is composed of a thick fixed part 12A on the outer periphery and a thin movable part 12B in the center, and a ring-shaped ridge 12C is formed near the outer periphery of the thin movable part 12B. The sensor diaphragm 12 having such a shape can be fabricated with high precision by etching using photolithography technology if it is made of silicon, or by pressing or the like if it is made of metal. The sensor stand 18.20 is electrostatically bonded to the thick-walled fixing part 12A,
The first. Second measurement chamber 72.7
4 is formed. Sensor diaphragm J2 and sensor stand 1
8.20 is preferably selected such that the coefficient of thermal expansion is larger than that of the sensor stand, so that tension due to the difference in thermal expansion s number is applied to the sensor diaphragm after electrostatic bonding.

以上の構成なので次のように動作する。導圧口68.7
0から導かれる流一体圧は、シールダイアフラム56,
58封入液を介して、センサダイアフラム12に作用し
、差圧によってセンサダイアフラム12が一方に変位す
る。この結果、可動電極であるセンサダイアフラム12
と一方の電極との容量は減少し、他方の電極との間の容
量は増加する。これらの電気信号はリード線48,50
゜気密端子16を通じて外部へ差動容量変化として取出
される また、第2図に示すように、センサダイアフラム12に
過負荷圧力が作用すると、センサダイアフラム12の薄
肉可動部12Bは点線で示すようにセンサ台18に押し
付けられる。その際厚肉固足部12Aの近傍に設けたリ
ッジ12Cもセンサ台18に轟接し、厚肉固定部12A
と薄肉可動部12Bの境界面の過度の変形が押えられる
。この結果、境界面に加えられる応力が緩和され、更に
大きな過負荷圧力に耐えることができる。センサダイア
フラム12の過負荷耐圧は、第3図に示すように隙間G
の大きさにも関係している。、Aはリッジを有していな
い場合、Bはリッジを設けた場合を示すもので、隙間G
を小さくすることにより耐圧を向上することができるが
、リッジを設けることにより更に耐圧向上が図られてい
る。、、また、リッジの位置によっても異なり、中間部
が最も効果的である。
With the above configuration, it works as follows. Pressure guiding port 68.7
The fluid pressure derived from 0 is the seal diaphragm 56,
58 acts on the sensor diaphragm 12 via the sealed liquid, and the sensor diaphragm 12 is displaced to one side due to the differential pressure. As a result, the sensor diaphragm 12, which is a movable electrode,
The capacitance between and one electrode decreases, and the capacitance between and the other electrode increases. These electrical signals are transmitted through lead wires 48 and 50.
° As shown in FIG. 2, when overload pressure acts on the sensor diaphragm 12, the thin movable portion 12B of the sensor diaphragm 12 changes as shown by the dotted line. It is pressed against the sensor stand 18. At this time, the ridge 12C provided near the thick fixed leg part 12A also comes into contact with the sensor stand 18, and the thick fixed part 12A
Excessive deformation of the interface between the thin-walled movable portion 12B and the thin-walled movable portion 12B is suppressed. As a result, the stress applied to the interface is alleviated, and a larger overload pressure can be withstood. The overload pressure of the sensor diaphragm 12 is determined by the gap G as shown in FIG.
It is also related to the size of , A shows the case without a ridge, B shows the case with a ridge, and the gap G
Although the breakdown voltage can be improved by reducing the ridge, the breakdown voltage is further improved by providing a ridge. ,,It also depends on the position of the ridge, with the middle part being the most effective.

前述のように圧力検出器は導圧口68.70から100
 Kg/lriに近い高静圧が導かれ、両者の差圧はI
 K9/ cF7!に満たない小さいもので、第1測定
室72と第2測定室74の封入油は1ooK9/crI
Kに近い圧力となる。センサ台18.20の外周部が大
気圧にさらされる構造ではこの圧力センサ台18.20
を径方向に変形させ、センサダイアフラム12の張力を
変化させ圧力による変形のし易さく感度)を変調すると
いう悪影響が出る。このため、シールダイアフラム56
,58の外径方向に外部シールダイアフラム24 、2
6 ktt、’/”jセンサ台18.20および受圧部
本体10との間に外室22を設け、ここに封入油を満た
すこと((より、センナ台18,20とノリコンのセン
サダイアフラム12の全体に同じ静圧を加える構造とし
、センサの不均一な変形を防止している。また、センサ
ダイアフラム12とセンサ台18.20の剛性率はほと
んど同じ+i’Thもつ故、高静圧下での変形は一切発
生せず、容量変化への悪影響もない。
As mentioned above, the pressure sensor is connected to the pressure inlet 68.70 to 100
A high static pressure close to Kg/lri is introduced, and the differential pressure between the two is I
K9/cF7! The sealed oil in the first measurement chamber 72 and second measurement chamber 74 is 1ooK9/crI.
The pressure is close to K. In a structure where the outer periphery of the sensor stand 18.20 is exposed to atmospheric pressure, this pressure sensor stand 18.20
The sensor diaphragm 12 is deformed in the radial direction, and the tension of the sensor diaphragm 12 is changed, which has the adverse effect of modulating the ease of deformation due to pressure (sensitivity). For this reason, the seal diaphragm 56
, 58 in the outer diameter direction of the outer seal diaphragms 24 , 2
6 ktt, '/"j An outer chamber 22 is provided between the sensor stand 18, 20 and the pressure receiving part main body 10, and this is filled with sealed oil. The structure applies the same static pressure to the entire sensor to prevent uneven deformation of the sensor.Also, since the sensor diaphragm 12 and the sensor stand 18.20 have almost the same rigidity +i'Th, they can be easily applied under high static pressure. No deformation occurs and there is no negative effect on capacitance changes.

さらに周囲温度が変化してもセンサダイア7ツム12と
センサ台18.20の熱膨張がほとんど同じなので熱変
形が発生せず容量変化への悪影響がない。
Further, even if the ambient temperature changes, the thermal expansion of the sensor diameter 7 and the sensor base 18, 20 are almost the same, so thermal deformation does not occur and there is no adverse effect on the capacitance change.

第4図(イ)〜(へ)はセンサダイアフラムの他の例を
示すもので、(イ)はリング状のリッジを2重で、しか
も内側のリッジの肉厚を小さくしたものである。
FIGS. 4(A) to 4(F) show other examples of sensor diaphragms, and FIG. 4(A) has double ring-shaped ridges, and the thickness of the inner ridge is reduced.

(ロ)はリッジを複数個に分割したもの、e9は円形状
の突起部を複数個設けたもの、に)は放射状に細長い台
形状の肉厚部を設けたもので、いずれも周方向への伸び
を与え圧力への追従性を向上することができる。(ホ)
は薄肉可動部を肉厚固定部に向って段階的に肉厚にした
もの、(へ)は更に連続的に肉厚にした例を示している
(b) has a ridge divided into multiple parts, e9 has a plurality of circular protrusions, and (b) has a radially elongated trapezoidal thick part, all of which extend in the circumferential direction. It is possible to give elongation and improve followability to pressure. (E)
1 shows an example in which the thin movable part is made thicker in stages toward the thicker fixed part, and (f) shows an example in which the thickness is further increased continuously.

第5図は、一方の流体が大気で、大気圧との差を測定す
る圧力検出器に本発明を適用した場合を示すものであろ
う構成は第1図に示した圧力検出器の片側半分に該当す
るもので詳細説明は省略するが、異なる点は導圧路32
を介してセンサダイアフラム12とセンサ台18との間
の測定室72に大気圧が導入されており、センサダイア
フラム12はこの大気圧と測定流体圧Pとの差圧を検出
するものである。導圧口32をなくし測定室72内を真
空にすれば真空計を構成することができる。
Figure 5 shows a case where the present invention is applied to a pressure detector that measures the difference between atmospheric pressure and atmospheric pressure, with one fluid being the atmosphere.The configuration is one half of the pressure detector shown in Figure 1. Although the detailed explanation is omitted because it corresponds to
Atmospheric pressure is introduced into the measurement chamber 72 between the sensor diaphragm 12 and the sensor stand 18 via the sensor diaphragm 12, and the sensor diaphragm 12 detects the differential pressure between this atmospheric pressure and the measured fluid pressure P. A vacuum gauge can be constructed by eliminating the pressure guiding port 32 and creating a vacuum inside the measurement chamber 72.

〔発明の効果〕〔Effect of the invention〕

以上本発明によればセンサダイアフラムの薄肉町動部の
肉厚を外周の厚肉固定部に近い方が大きくなるように構
成することにより、センサダイアフラムに過負荷圧力が
作用した時の薄肉可動部と、厚肉固定部との境界面への
応力を緩和することができ、センサダイアフラムの過負
荷耐圧を向上させることができる。
As described above, according to the present invention, by configuring the wall thickness of the thin-walled movable portion of the sensor diaphragm to be larger near the thick-walled fixed portion on the outer periphery, when overload pressure is applied to the sensor diaphragm, the thin-walled movable portion This makes it possible to alleviate stress on the interface with the thick-walled fixing part, and improve the overload withstand pressure of the sensor diaphragm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例になる静電容量式圧力検出器
の全体構造断面図、第2図はセンサダイアフラムの部分
詳細図、第3図はセンサダイアフラムの耐圧と隙間との
関係を示す図、第4図はセンサダイアフラムの他の例を
示す図、第5図は他の圧力検出器に適用した場合の断面
図である。 12・・・センサダイアフラム、12人・・・厚肉固定
部、12B・・・薄肉町動部、12C・・・リッジ、1
8゜¥ 1 図 72図 4m (二l 星4図 (4) r口ノ (ハノ
Fig. 1 is a cross-sectional view of the overall structure of a capacitive pressure sensor according to an embodiment of the present invention, Fig. 2 is a partial detailed view of the sensor diaphragm, and Fig. 3 shows the relationship between the withstand pressure and clearance of the sensor diaphragm. FIG. 4 is a diagram showing another example of the sensor diaphragm, and FIG. 5 is a sectional view when applied to another pressure detector. 12...Sensor diaphragm, 12...Thick wall fixed part, 12B...Thin wall moving part, 12C...Ridge, 1
8゜¥ 1 Figure 72 Figure 4m (2l star 4 figure (4) r mouth (hano)

Claims (1)

【特許請求の範囲】[Claims] 1、薄肉可動部とその周囲の厚肉固定部からなるセンサ
ダイアフラム、前記厚肉固定部に接合され前記薄肉可動
部との間に隙間を形成する絶縁物からなるセンサ台、こ
のセンサ台の前記薄肉可動部に対向する面に設けられた
電極とを備え、前記薄肉可動部の肉厚を前記厚肉固定部
に近い方が大きくなるように形成したことを特徴とする
静電容量式圧力検出器。
1. A sensor diaphragm consisting of a thin movable part and a thick fixed part surrounding it; a sensor stand made of an insulator joined to the thick fixed part and forming a gap between it and the thin movable part; an electrode provided on a surface facing the thin-walled movable section, and the capacitance-type pressure detection is characterized in that the wall thickness of the thin-walled movable section is formed to be larger near the thick-walled fixed section. vessel.
JP5927983A 1983-04-06 1983-04-06 Electrostatic capacity type pressure detector Pending JPS59184831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5927983A JPS59184831A (en) 1983-04-06 1983-04-06 Electrostatic capacity type pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5927983A JPS59184831A (en) 1983-04-06 1983-04-06 Electrostatic capacity type pressure detector

Publications (1)

Publication Number Publication Date
JPS59184831A true JPS59184831A (en) 1984-10-20

Family

ID=13108785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5927983A Pending JPS59184831A (en) 1983-04-06 1983-04-06 Electrostatic capacity type pressure detector

Country Status (1)

Country Link
JP (1) JPS59184831A (en)

Similar Documents

Publication Publication Date Title
US4120206A (en) Differential pressure sensor capsule with low acceleration sensitivity
US4168518A (en) Capacitor transducer
US4527428A (en) Semiconductor pressure transducer
JPS5855732A (en) Electrostatic capacity type pressure sensor
JPS641733B2 (en)
KR20070035498A (en) Pressure sensor
JPH01307632A (en) Variable capacitance measuring device
JPH0425735A (en) Semicondcutor diaphragm for measuring pressure and differential pressure
JP5889540B2 (en) Pressure sensor
JPS59125032A (en) Differential pressure measuring device
JPS6061637A (en) Composite function type differential pressure sensor
EP0080186B1 (en) Semiconductor pressure transducer
JP3260721B2 (en) Diaphragm vacuum gauge
JPS59184831A (en) Electrostatic capacity type pressure detector
JPH10148593A (en) Pressure sensor and capacitance-type pressure sensor chip
JP2017072384A (en) Pressure sensor
JPS63196081A (en) Semiconductor-type pressure detector
JP5718140B2 (en) Pressure sensor
JPS59217126A (en) Absolute-pressure type semiconductor pressure transducer element
WO2021049328A1 (en) Pressure sensor element
JPS58221135A (en) Silicon diaphragm type pressure sensor
JP3105087B2 (en) Differential pressure detector
JPS63243830A (en) Semiconductor pressure detector
JPS5844324A (en) Electrostatic capacity type pressure transducer
JPH04113239A (en) Composite function type sensor