JPS59184293A - Treatment of low grade coal - Google Patents

Treatment of low grade coal

Info

Publication number
JPS59184293A
JPS59184293A JP5948583A JP5948583A JPS59184293A JP S59184293 A JPS59184293 A JP S59184293A JP 5948583 A JP5948583 A JP 5948583A JP 5948583 A JP5948583 A JP 5948583A JP S59184293 A JPS59184293 A JP S59184293A
Authority
JP
Japan
Prior art keywords
coal
dehydrated
carbonized
char
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5948583A
Other languages
Japanese (ja)
Other versions
JPH0113758B2 (en
Inventor
Hayamizu Ito
伊東 速水
Kozo Nagai
永易 弘三
Takao Kamei
亀井 隆雄
Keiichi Komai
啓一 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP5948583A priority Critical patent/JPS59184293A/en
Publication of JPS59184293A publication Critical patent/JPS59184293A/en
Publication of JPH0113758B2 publication Critical patent/JPH0113758B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To prepare dehydrated coal in briquet at a low cost, by crushing and classifying low grade coal, mixing dehydrated coal obtained by non-evaporative heating of granulated coal with a heavy tar obtained by dry distillation of surplus dust coal and forming the mixture into briquets. CONSTITUTION:Low grade coal is fed into a crushing and classifying unit 1 and granulated coal is separated from surplus dust coal. The granulated coal is introduced into a non-evaporative heating and dehydrating device 4 for non evaporative heating and dehydration to produce dehydrated coal, while the surplus dust coal is led into a dry sidtillation devie 6 for distillation into dry distillation gas, light tar, heavy tar, dry distillation char, etc. The heavy tar is mixed with the dehydrated coal and the mixture is formed in a briquetting unit 7 to produce dehydrated coal in briquets. Organic components contained in waste water of dehydration can be removed by adsorption by brining the waste water into contact with the dry distillation char.

Description

【発明の詳細な説明】 末完[v−1に、褐炭、亜炭、亜#′渦炭など石炭化度
が1氏く、水分と揮発分を多く含有する低品位炭の処理
方法に関するものである。
[Detailed Description of the Invention] This invention relates to a method for treating low-grade coal that has a degree of coalification of 1 degree higher than V-1, such as lignite, lignite, and sub-#' eddy coal, and contains a large amount of moisture and volatile matter. be.

低品位炭、たとえば褐炭は租界的に美大な埋蔵量分有し
ているにもががわらず、高水分、高揮発分で強い活性が
あるため、一部が山元で利用されているπ過ぎない。−
例として濠州産の褐炭1d60%以上の水分を含有し、
これをそのまま燃料として用いると、輸送効率、熱効率
が著しく低くなる1゜これらの褐炭を利用するには山元
にて予め脱水処理し、水分を20%以下程度に低減させ
る必要がある。
Although low-grade coal, such as lignite, has large reserves in the concession area, it has high moisture content, high volatile content, and strong activity, so some of it is used in the mountains. do not have. −
For example, lignite from Taizhou contains more than 60% moisture,
If this coal is used as a fuel as it is, the transport efficiency and thermal efficiency will be significantly lower.1 In order to use these brown coals, it is necessary to dehydrate them in advance at the base of the mountain to reduce the water content to about 20% or less.

従来、このための脱水方法としては、気流乾燥法などの
熱ガスなどを用いて含有水分を蒸発させる方法が−あつ
77−oシかしながら、この蒸発11Vj水法でに、乾
燥の1際、蒸発潜熱として多大な熱量を供給しなければ
ならず、コスト的にきわめて不利であり、また脱水製品
が微粉である場合は、発塵−自然発火、炭塵曝光などの
問題があるので、褐炭などの脱水・乾燥には適さないも
のである。
Conventionally, as a dehydration method for this purpose, there has been a method of evaporating the contained water using hot gas such as flash drying, but this evaporation water method has been used in the first step of drying. , a large amount of heat must be supplied as the latent heat of vaporization, which is extremely disadvantageous in terms of cost, and if the dehydrated product is a fine powder, there are problems such as dust generation - spontaneous combustion and exposure to coal dust. It is not suitable for dehydration and drying.

これに対して7ライスナー法などで知られる非蒸発加熱
脱水方法は、原料褐炭をオートクレーブに充填し、飽和
水蒸気ま斤は熱水′f;r−導入して直接加熱加圧し、
非蒸発算囲気下で褐炭中の水分を表面張力の低下、官能
基の分解なとの機に:aにより脱水するものであり、蒸
発5潜熱による煕@損失がなく効率よく脱水することが
できる。しかしこの方法においては、予報の廃水を発生
するーブ】において、原料褐炭の破砕分級時ま7!tI
riハンドリングの過程に微粉炭が派生する。この微粉
炭は非蒸発脱水に適さない余剰法である。すなわち飽和
水蒸気または熱水による褐炭の非蒸発加熱脱水技術は、
塊状褐炭に適しているものの5〜l Q M7JI以下
の粉末褐炭に対(−では処理が難しい。逆π塊状炭があ
まり粗大になると、加熱に長時間′ff冴し処理効率が
悪くなる。そのため非蒸発加熱脱水に供する原炭は、通
常、前処理として粒度調整される。このとき余’ALU
微粉炭が派生する。。この他にも採炭時やハンドリング
時π破壊さ几微粉炭の発生は免れない、分級πより5〜
l 5 Q ’rrrrrr程度の烙粒炭から分離され
た余剰微粉炭は、従来は通気乾燥などの乾燥技術により
別途脱水して製品炭とするか、または脱水せずにそのま
11Nとにてボイラに供給1高圧水蒸気−1kは熱水を
発生させて非蒸発加熱脱水用の加熱水蒸気諒捷たは熱水
源としている。また非蒸発脱水により得られた脱水炭は
、水分や有機物が除かれた多孔賀状となっているので一
嵩密度が小さく、輸送費が高くつくなどの不利な点がに
づ斤。
On the other hand, in the non-evaporative heating dehydration method known as the 7 Reissner method, raw lignite is charged into an autoclave, and saturated steam is directly heated and pressurized by introducing hot water into it.
The moisture in the lignite is dehydrated under non-evaporation ambient air by lowering the surface tension and decomposing the functional groups.It can be dehydrated efficiently without loss due to the latent heat of evaporation. . However, in this method, the raw material lignite is crushed and classified in the tube that generates the predicted wastewater. tI
Pulverized coal is derived during the RI handling process. This pulverized coal is a surplus method that is not suitable for non-evaporative dehydration. In other words, non-evaporative heating dehydration technology for lignite using saturated steam or hot water is
Although it is suitable for lumpy lignite, it is difficult to treat powdered lignite below 5-l Q M7JI (-).If the inverted π lumpy coal becomes too coarse, it will take a long time to heat, resulting in poor processing efficiency. Raw coal to be subjected to non-evaporative heating and dehydration is usually subjected to particle size adjustment as a pretreatment.
Pulverized coal is derived. . In addition, it is inevitable that pulverized coal will be generated due to π destruction during coal mining and handling.
Excess pulverized coal separated from granular coal of about l 5 Q'rrrrrr is conventionally dehydrated separately using drying techniques such as ventilation drying to produce product coal, or directly boiled at 11N without dehydration. The high-pressure steam 1k supplied to the system generates hot water and serves as a heated steam source or hot water source for non-evaporative heating and dehydration. In addition, dehydrated coal obtained by non-evaporative dehydration has disadvantages such as low bulk density and high transportation costs because it is porous with water and organic matter removed.

末完Fjl″II″i上記の諸点に鑑みなされkもので
、褐炭、亜炭、亜瀝青炭などの低品位炭を破砕分級して
整粒炭と余剰微粉炭とに分離し、略粒炭を非蒸発加熱脱
水して脱水炭を得るとともに一余剰微粉炭を乾留し乾留
ガス・軽質タール、重質タール−乾留チャーに分離し、
重質タール全曲記法氷炭と混合しに後、プリゲット化し
て、製品ブリケラI・脱水炭とする低品位炭の処理方法
の提供を1三1的とするものである。
This method was developed in view of the above points, and is a method of crushing and classifying low-grade coal such as lignite, lignite, and sub-bituminous coal to separate it into sized coal and excess pulverized coal. Dehydrated coal is obtained by evaporation heating and dehydration, and the excess pulverized coal is carbonized to separate it into carbonized gas/light tar and heavy tar/carbonized char.
The object of the present invention is to provide a method for processing low-grade coal, which is mixed with heavy tar and glacial coal, and then pregetted to produce Brichera I dehydrated coal.

捷介木発明は、乾留チャーと非蒸発脱水により生じ斤脱
水廃水とを接触させて廃水中の有機成分を成層させ−C
除去する低品位炭の処理方法の提供?1目的とじでいる
The Keisukeki invention involves bringing carbonized char into contact with dehydrated wastewater produced by non-evaporative dehydration to stratify the organic components in the wastewater.
Providing a treatment method for low-rank coal to be removed? 1 purpose is binding.

さらに末完り4id−乾留チャーと男−蒸発脱水πより
生じた脱水廃水とを接触させて廃水中の有機成分を吸着
させて除去した後、吸着処丹水を固液分離して離水乾留
チャーと上澄液とfO離12、前、水乾留チャーを前記
乾留カス・1隆質タールとともπ燃焼させて非蒸発脱水
工程の熱源の一部とする低品位炭の処理方法の提供を目
的としている。
Furthermore, the organic components in the wastewater are adsorbed and removed by bringing the final 4id-carbonized char into contact with the dehydrated wastewater produced by the evaporative dehydration π, and then the adsorption-treated tansui is separated into solid-liquid to form a water-synapsing carbonized char. The purpose of the present invention is to provide a method for treating low-rank coal, in which the supernatant liquid and fO separation 12, 1,000 ml of water carbonized char is π-combusted with the carbonized scum and 1 ridged tar to serve as part of the heat source for the non-evaporative dehydration step. It is said that

非蒸発脱水方法においては、前述のように原料褐炭より
の脱水水分および加熱用の熱水、水蒸気の凝縮水分がj
廃水として排出される。この廃水は褐炭微粒の混入−褐
炭からの紳々の成分の溶込みにより100’OOp’p
’m程度のS S (fiJra固体1tACOD C
化学的酸素Win)、7000 p pm程度のB 0
1) (生物学的酸素留求刊)を含み、I) Hに3〜
5である。このような高SS−高COL)、高BOD値
を示す廃水を自然水系に放流するVCに、放?t 6G
 K何等かの浄化処理ケ施して耕;水規制値を満足する
ようにしなければならない。
In the non-evaporative dehydration method, as mentioned above, the dehydrated water from raw lignite, hot water for heating, and condensed water from steam are
Discharged as wastewater. This wastewater is mixed with lignite fine grains, and due to the dissolution of various components from lignite, the wastewater reaches 100'OOp'p.
'm S S (fiJra solid 1t ACOD C
Chemical oxygen Win), B 0 around 7000 ppm
1) Contains (biological oxygen distillation publication), I) 3 to H
It is 5. Should wastewater with such high SS-high COL) and high BOD values be discharged into a VC system that discharges it into a natural water system? t 6G
K: Some kind of purification treatment must be applied before cultivation; water regulations must be met.

汚染濃度の比較的高い1兇水の処〃11に一般的に適用
される技術としては、重力沈降、濾過などの物理的処理
、凝集沈殿などの化学的処理、活性汚泥法、回転p−を
抜法、散水P床法、充填床法および嫌気的処理法などを
利用する生物J学的処理がある。
Techniques commonly applied to the treatment of 1 liter of water with a relatively high concentration of contaminants include physical treatments such as gravity sedimentation and filtration, chemical treatments such as coagulation and sedimentation, activated sludge method, and rotational p-treatment. There are biological treatments that utilize extraction methods, sprinkled bed methods, packed bed methods, and anaerobic treatment methods.

しかし自記の褐炭非蒸発加熱脱水の1髭水に対して物理
的処理によりjツ6水中に含捷れる多量のssを除去す
るVCは、SSが微細なため工業的には遠心分離によら
ねばならないが、処即後の清澄水のC0D= BODは
依然として高い値を示し、二次処J!11が不可欠であ
る。また凝集沈殿処世によって娠即すれば、廃水中のS
Sの殆どすべて、COD、BODの50%以上を捕集で
きる反曲、添加しなければならな−凝集剤昂が非常に多
くなり−との斤め費用が嵩み、ま斤発生するスラッジ梠
°も多く処分負担がかかるという問題があった。さらπ
成層処理は、従来高度処理として微焔成分の除去に高価
な粒状および粉状活性炭を使用1して行なわiしている
が、高濃度廃水にけ1及着容−h1と所要絹の関係や、
fl」生の必留から高価な活性炭を使用することは不適
と判断される。
However, in VC, which removes a large amount of SS contained in water by physical treatment of lignite non-evaporative heating dehydrated water, industrially it must be done by centrifugation because the SS is fine. However, the C0D = BOD of clear water immediately after treatment still shows a high value, and the secondary treatment J! 11 is essential. In addition, if the S content in wastewater is accelerated by coagulation and sedimentation,
Almost all of the S, COD, and BOD must be added to the sludge trap, which can collect more than 50% of the COD and BOD. There was also the problem that there was a large amount of waste and the burden of disposal was high. Sarapi
Stratification treatment has conventionally been carried out as an advanced treatment using expensive granular or powdered activated carbon1 to remove minute flame components. ,
It is judged that it is inappropriate to use expensive activated carbon because of the raw residue.

このように、褐炭非蒸発脱水廃水は重金用やシアンなど
のイq毒物質がきわめて少ない反面−廃水絶対量が多く
、SS、COD、BODの濃度が高いため、通常の処理
方法およびその組合せでは、運転コストとりわけ添加す
る薬剤コストが高くなり、戻水処理コストの負担増から
一非蒸発脱水方法の優位性が失なわれ、安価なエネルギ
ー源と1−ての製品炭を供給できないという問題がある
In this way, lignite non-evaporative dehydrated wastewater has extremely low levels of heavy metals and iq-toxic substances such as cyanide, but on the other hand, the absolute amount of wastewater is large and the concentrations of SS, COD, and BOD are high, so it cannot be treated with normal treatment methods or their combinations. The non-evaporative dehydration method loses its superiority due to the increased operating cost, especially the cost of added chemicals, and the increased burden of return water treatment costs, leading to the problem of not being able to supply a cheap energy source and a single product charcoal. be.

第2の発明および第3の発8rlは、余剰微粉炭を乾留
して得られる乾留チャーを、前記廃水に接触させ、乾留
チャーの持つ優れた吸名能を利用してh′c水中のCO
Dなどを除去することを秘′改としている。
The second invention and the third invention 8rl bring the carbonized char obtained by carbonizing excess pulverized coal into contact with the waste water, and utilize the excellent absorption ability of the carbonized char to reduce CO in the h'c water.
The secret is to remove elements such as D.

以下−木兄F114を図面f基ついて説明する。第1図
に木兄り」の方法の一例を示している。原炭はフンベア
などの搬送手段により破砕分級装置6゛lの一次ふるい
2に投入され、χ1γ径150M程度以」二の粗大粒に
クランシャ3にて゛破砕されて中小1位とともに二次ふ
るい4π投入され−ここで非蒸発加熱脱水π適する5〜
150・、(m程度の粒径の整粒炭と粒径571rM程
度以下の微粉炭とに分前される。整粒炭はオートクレー
ブなどからなる非蒸発加熱脱水装置5に装填され、斤と
えば250℃の温度で、この温度に相当する圧力の飽和
水蒸気ま斤は熱水により°脱水処理され、斤とえば水分
65%程度の原炭は水分20%程度まで脱水され、脱水
炭として収り出される。この処理の結果として、非蒸発
加熱脱水装置a5からは、−例として原炭l・lcg当
り褐炭からの脱水分056 tcgと加熱源である水蒸
気からの凝縮水など028〜0.451c(jとの合計
約lん7弱が廃水として排出される。この1充水にBO
D7000 p p m程度−COD l 0000’
p pm程度−5SIO000ppm程度、pH3〜5
程度である。
Hereinafter, the Kinoi F114 will be explained with reference to the drawing f. Figure 1 shows an example of the Kienori method. The raw coal is fed into the primary sieve 2 of a 6-liter crushing and classifying device using a conveyor such as a humbair, and is crushed by a crusher 3 into coarse particles with a χ1γ diameter of about 150M or larger, which are then fed into a secondary sieve 4π together with the small and medium particles. - where non-evaporative heating dehydration π suitable 5 ~
The granulated coal is divided into granulated coal with a particle size of about 150 m and pulverized coal with a particle size of about 571 rM or less.The sized coal is loaded into a non-evaporative heating dehydration device 5 consisting of an autoclave, etc. At a temperature of 250°C, a loaf of saturated steam at a pressure equivalent to this temperature is dehydrated with hot water. For example, a loaf of raw coal with a moisture content of about 65% is dehydrated to a moisture content of about 20%, and is stored as dehydrated coal. As a result of this treatment, from the non-evaporative heating dehydration device a5, - for example, 0.56 tcg of dehydration from lignite and 0.28 to 0.451 tcg of condensed water from steam, which is a heating source, per 1.lcg of raw coal. (A total of about 7 liters of water is discharged as wastewater.
Approximately D7000 p p m - COD l 0000'
p pm approx.-5SIO approx. 000 ppm, pH 3-5
That's about it.

余剰微粉炭は乾留装置6に送られて乾留さn、卓乞1眉
カス・I経質タール、ア肛買タール、卓乞督イチャーの
各成分に分離さ几る。曲記法氷炭姐水分やイ」機物が除
か几で多孔賀状となっているので4’j+密度がきわめ
て小さい。このため脱水炭と乾留fより得た匂柔質ター
ルとを混合・ブリケット装置f577に導入し混合−ブ
リケット化して、+?、: ’IFs度の大きい製品ブ
リケット脱水炭を得る。すなわち、改質タールをブリケ
ット化助剤として使用し御名孔質状の脱水炭の多孔ケ埋
め、かつ〕くインターとしで便用する。
The surplus pulverized coal is sent to a carbonization device 6 where it is carbonized and separated into the following components: carbon dioxide, carbon dioxide tar, carbon dioxide tar, and carbon dioxide. The notation is ``ice coal'', and the density is extremely small because the machine is removed and porous. For this purpose, the dehydrated coal and the fragrant tar obtained from the carbonization f are introduced into a mixing/briquetting device f577, mixed and briquette-ized, and then mixed and briquette-ized. : 'Obtain the product briquette dehydrated coal with a large degree of IFs. That is, the modified tar is used as a briquetting aid to fill the pores of the porous dehydrated coal, and is also used as an interlayer.

一方、乾留チャーと前記脱水雇水とを接触槽8πおいて
混合接触させ一院水中の溶解有機成分を乾留チャーに、
吸着させfv後、分4f、槽10で離水乾留チャーと」
二澄液とに分離し、」二澄液を二次処理装置へ、掲1f
水乾幀チャーとhfl記乾昭ガス・軽質タールとをボイ
ラなどの燃焼装置11へ送り燃焼させて、非蒸発脱水装
置50熱詠の一部とする。乾留ナヤーは微粉炭そのまま
に比べt9fi水中のイ1械物を1吸堝I−る能力がき
わめて大きく、少−1i4の添力l」で吸ギ1除去のし
]的を達成することができる。したかつC接触槽8およ
び分離槽10での其何が減少し、15g水処JJj後の
乾’Mlチャーに水切り性が良好であるという利点があ
る。1klfl(1,水乾旨イチャーにE吃IYlガス
・軽′訝タールとの混合燃焼により御名:J1の熱が回
収でき非蒸発加熱脱水口1の熱源として不]効利jII
できろ− 以下、末完81:I者らが行なっに試隙例について脱[
!I]する。ヤルーン微粉炭を840 ”Cの窒素ガス
中で1時j1ガ乾留して乾留チャーをf4)−この乾留
チャーとヤルーン整粒炭うボ脱水屍水(COD1170
p p m )とを4Orpmで2時間攪拌混合し、ろ
紙分用1いてろ過し、ろ液とスラッジとに分前、し斤。
On the other hand, the carbonized char and the dehydrated water are brought into contact with each other in a contact tank 8π, and the dissolved organic components in the water are converted into the carbonized char,
After adsorption fv, 4f min, dry distillation char in tank 10.
The second clear liquid is separated into two clear liquids, and the second clear liquid is sent to the secondary treatment equipment.
The water-dried char and the HFL-described gas/light tar are sent to a combustion device 11 such as a boiler and burned, and become part of the non-evaporative dehydration device 50. Compared to pulverized coal as it is, carbonized coal has a much greater ability to remove particles in t9fi water per suction pot, and can achieve the target of removing suction pots with a small addition of 1i4. . There is an advantage that the amount of water in the C contact tank 8 and the separation tank 10 is reduced, and the dry Ml char after 15g water treatment has good drainage properties. 1klfl (1, Heat of J1 can be recovered by mixed combustion with E-IYl gas and light tar after drying with water, making it useless as a heat source for non-evaporative heating dehydration port 1)
You can do it - The following is a summary of the examples of trial and error that people have done.
! I] do it. Yaroon pulverized coal is carbonized in nitrogen gas at 840"C for 1 hour to produce carbonized char (f4) - This carbonization char and Yaroon sized coal are combined with dehydrated dead water (COD1170).
p p m ) were stirred and mixed at 4 rpm for 2 hours, filtered through a filter paper, and separated into the filtrate and sludge.

スラッジの水分h1は36.1%であり、添加乾留チャ
ー濃度とろ液の(、ODi!劇との関係は第2図の又1
くであった。
The water content h1 of the sludge is 36.1%, and the relationship between the added carbonized char concentration and the filtrate (ODi!
It was close.

1斤内径45717Ilのステンレススチール製1の反
応的・内に、ヤルーン微粉炭を充填し、窒素ガスを31
/ m i nで流して900’Cに1時間加熱して乾
留しく−oこの1k)果−卓乞Wイチャーを01gチャ
ー/ダ原炭(全水分70%)の収率で得るCとができた
A stainless steel reactor with an inner diameter of 45,717 Il was filled with yarn pulverized coal, and nitrogen gas was added to
/ min and heated to 900'C for 1 hour and carbonized to obtain this 1k) fruit charcoal with a yield of 01g char/da raw coal (total moisture 70%). did it.

以」二脱り」したように、末完IJ11は褐炭などの低
重(1’r、炭を非蒸発脱水処3i1する1怜f発生す
る余剰微粉炭をきわめてイ」効に利用するものであり、
底品位炭を低コスl−で処世することができるという効
果分有しCいる。
As described above, the final IJ11 is an extremely effective way to utilize the excess pulverized coal generated by non-evaporative dehydration of lignite and other low-weight pulverized coal. can be,
It has the effect of being able to dispose of bottom-grade coal at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は末完り4の方法を実施する装置の一例を示す系
統的説E!l−1図、第2図はヤルーン炭乾留チャーに
よる廃水の吸着試験結果を示すグラフである。
FIG. 1 shows a systematic explanation of an example of a device for carrying out the method of End 4! Figures 1-1 and 2 are graphs showing the results of a wastewater adsorption test using Yarun charcoal carbonization char.

Claims (1)

【特許請求の範囲】 1 低品位炭を破砕分級して略粒炭と余剰微粉炭とに分
離し、烙粒炭を非蒸発加熱脱水して脱氷炭分前るととも
に、余剰微粉炭を乾留し乾留ガス・軽質クール、重質ク
ール、乾留チャーに分幽し、月1質タールをIJfi記
脱水記法混合した後、ブリケント化し″C製品ブリケッ
ト脱水炭とすることを特徴とする低品位炭の処理方法。 2 低品位炭を破砕分級して略粒炭と余剰微粉炭とに分
離し、整粒炭をす(蒸発加熱脱水して脱水炭を得るとと
もに一余刊微粒炭?乾留し乾留カス・軽質タール、軍資
タールー乾留チャーに分離1−5乾留チヤーと非蒸発脱
水により生じた脱水1充水とを接触させてJ’16水中
のイ〕1成分を:lB、名させて除去し、重質タールを
01(記法氷炭と混合し斤後−プリケット化して製品グ
リケント脱氷炭とすること′ft特徴とする低品位炭の
処理方法。 3 氏品位炭を破砕分級して整粒・炭と余剰微粉炭とに
分離し一整粒炭を非蒸発加熱脱水して脱氷炭を得るとと
もに、余剰微粉炭を乾留し乾留ガス・軽質タール、■、
重質クール乾留チャーに分離し、乾留チャーと非蒸発脱
水によ多生し斤脱水廃水とを接触させてj充水中の有機
成分全吸着させて1余去12斤後、吸着処i1!水を固
i夜分削して髄、水乾留チャーと上澄水とに分離し、離
水乾留チャーを前記乾留ガス・1條質タールとともに燃
・焼させて非蒸発脱水工程の熱源の一部とし、一方、重
質クールをrJQ記脱記法氷炭合した後、ブリケント化
して製品ブリケント脱水炭とすることjX−’+、’i
、徴とする低品位炭の処理方法、
[Scope of Claims] 1. Low-rank coal is crushed and classified into approximately granular coal and surplus pulverized coal, and the charcoal is heated and dehydrated without evaporation to produce deicing coal, and the surplus pulverized coal is carbonized. A low-grade coal characterized in that it is divided into carbonized gas, light cool, heavy cool, and carbonized char, and then mixed with IJfi dehydration method of first grade tar, and then converted into briquettes to make ``C product briquette dehydrated coal.'' Processing method. 2. Low-grade coal is crushed and classified into roughly granular coal and surplus pulverized coal, and sized coal is produced (evaporation heating and dehydration is performed to obtain dehydrated coal, and at the same time, carbonization is performed to obtain carbonized scum.・Contact the light tar, military taru carbonization char with the separation 1-5 carbonization char and the dehydrated 1 water produced by non-evaporative dehydration to remove component A] 1 in J'16 water as :lB. A method for processing low-grade coal characterized by mixing heavy tar with 01 (notation number 01) glacial coal and making it into priquettes to produce the product Grikent deicing coal.・Separate charcoal and surplus pulverized coal, and obtain deicing coal by non-evaporative heating and dehydration of the granulated coal, and carbonize the surplus pulverized coal to produce carbonized gas/light tar.
Separate into heavy cool carbonized char, bring the carbonized char into contact with dehydrated wastewater produced by non-evaporative dehydration to adsorb all of the organic components in the charged water, and after 12 kg, adsorption treatment i1! The water is pulverized to solidify and separated into pith, carbonized water char, and supernatant water, and the carbonized water char is combusted together with the carbonized gas and 100% tar to be used as part of the heat source for the non-evaporative dehydration process. , On the other hand, after combining the heavy coal with rJQ glacial coal, it is converted into briquent to produce the product briquent dehydrated coal jX-'+,'i
, a method for processing low-rank coal with characteristics,
JP5948583A 1983-04-04 1983-04-04 Treatment of low grade coal Granted JPS59184293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5948583A JPS59184293A (en) 1983-04-04 1983-04-04 Treatment of low grade coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5948583A JPS59184293A (en) 1983-04-04 1983-04-04 Treatment of low grade coal

Publications (2)

Publication Number Publication Date
JPS59184293A true JPS59184293A (en) 1984-10-19
JPH0113758B2 JPH0113758B2 (en) 1989-03-08

Family

ID=13114646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5948583A Granted JPS59184293A (en) 1983-04-04 1983-04-04 Treatment of low grade coal

Country Status (1)

Country Link
JP (1) JPS59184293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007783A1 (en) * 2003-07-18 2005-01-27 K.E.M. Corporation Method for dewatering water-containing coal
WO2012137956A1 (en) * 2011-04-06 2012-10-11 株式会社神戸製鋼所 Solid fuel molding method
US8556998B2 (en) 2004-09-16 2013-10-15 Yukuo Katayama Method for dewatering a water-containing combustible solid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007783A1 (en) * 2003-07-18 2005-01-27 K.E.M. Corporation Method for dewatering water-containing coal
AU2004257052B2 (en) * 2003-07-18 2009-11-26 K.E.M. Corporation Method for dewatering water-containing coal
US8557004B2 (en) 2003-07-18 2013-10-15 Yukuo Katayama Method for dewatering water-containing coal
US8556998B2 (en) 2004-09-16 2013-10-15 Yukuo Katayama Method for dewatering a water-containing combustible solid
WO2012137956A1 (en) * 2011-04-06 2012-10-11 株式会社神戸製鋼所 Solid fuel molding method

Also Published As

Publication number Publication date
JPH0113758B2 (en) 1989-03-08

Similar Documents

Publication Publication Date Title
JP6997612B2 (en) Activated carbon of biological origin and how to make and use it
Rashidi et al. A review on recent technological advancement in the activated carbon production from oil palm wastes
US10947122B2 (en) Method for the production of low ash activated charcoal
US4632731A (en) Carbonization and dewatering process
Van Hien et al. Effectiveness of different biochar in aqueous zinc removal: Correlation with physicochemical characteristics
US4486959A (en) Process for the thermal dewatering of young coals
WO2008022561A1 (en) A filtration and adsorption material used in water treatment and the preparation thereof
US4403996A (en) Method of processing low rank coal
JPS59184293A (en) Treatment of low grade coal
Basaleh et al. Utilization of municipal organic solid waste for production of activated carbon in Saudi Arabia
JPH0154113B2 (en)
WO2008022562A1 (en) A regeneration method for filtering and adsorbing material used in water treatment
Choudhary et al. From wild thornbush to high-performance activated carbon using a novel integrated furnace–microwave activation
Kosimovna et al. USE OF ACTIVATED CARBON FOR WASTEWATER TREATMENT
KR101016873B1 (en) Coating material for coal, modified coal, process for the production of coating material for coal, and process for production of modified coal
JPH07233384A (en) Thermally modified coal, its production and apparatus for production
JPS59184297A (en) Treatment of waste water removed from low grade coal
GB2145732A (en) Process for making aqueous transportable fuel slurry from carbonaceous materials
JP2011111529A (en) Ignition-resistant coal and method for producing the same
Al Rawi et al. A Review About Preparation and Properties of Biochar and Application Fields in the Environment
KR810001822B1 (en) Process for the preparation of pwdered charcoal
JPH1046163A (en) Production of highly concentrated porous coal slurry
RU2114783C1 (en) Method of producing activated carbon
JPS60220186A (en) Treatment of waste water dehydrated from low grade coal
JPH0117440B2 (en)