JPS59183990A - Electron beam welding method - Google Patents

Electron beam welding method

Info

Publication number
JPS59183990A
JPS59183990A JP5794083A JP5794083A JPS59183990A JP S59183990 A JPS59183990 A JP S59183990A JP 5794083 A JP5794083 A JP 5794083A JP 5794083 A JP5794083 A JP 5794083A JP S59183990 A JPS59183990 A JP S59183990A
Authority
JP
Japan
Prior art keywords
electron beam
beam welding
welding
weld metal
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5794083A
Other languages
Japanese (ja)
Inventor
Kanji Katada
堅田 寛治
Hiroshi Murai
弘 村井
Akio Iwasaki
章夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP5794083A priority Critical patent/JPS59183990A/en
Publication of JPS59183990A publication Critical patent/JPS59183990A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/0073Seam welding with interposition of particular material to facilitate connecting the parts, e.g. using a filler

Abstract

PURPOSE:To decrease accumulation of low melting impurities in a bead and to prevent welding crack in the stage of applying electron beam welding to a steel material of carbon steel, etc. by adding Ti into the weld metal. CONSTITUTION:Powder or granules 5 of Ti or Ti alloy are put into a groove 4 provided on the weld line 3 in the upper part of joint faces 1 of a steel material contg. >=0.2wt% carbon, and the Ti is melted by slight beam current. Prescribed penetration is thereafter performed by a normal current beam. If the regular current beam is irradiated without melting the Ti in this state, the Ti powder or granules 5 are scattered by the flow of the metallic vapor and the penetration of the Ti in the weld metal is not possible. There are a method of adding the Ti by using powder and granules, a method of welding perliminarily the Ti on the joint surfaces and a method of adding the same in the form of a filler wire as the method of adding the Ti.

Description

【発明の詳細な説明】 詳しくは、低合金鋼、炭素鋼などの鋼材を電子ビーム溶
接するときに発生する溶接割れを防止した電子ビーム溶
接法に関する。
DETAILED DESCRIPTION OF THE INVENTION Specifically, the present invention relates to an electron beam welding method that prevents weld cracks that occur when steel materials such as low alloy steel and carbon steel are electron beam welded.

低合金鋼、炭素鋼などを電子ビーム溶接すると、第1図
に示すような溶接割れを生じ易い。
When low alloy steel, carbon steel, etc. are electron beam welded, weld cracks as shown in FIG. 1 are likely to occur.

このような溶接割れには、大別して凝固割れa(第1図
(イ)参照)と低温割れb(第1図(向参照)があり、
両者に共通した主要な原因は、溶融、凝固過程でピード
中央部に集積した低融点の不純物Cである。すなわち、
母材中のS成分が多いと硫化鉄( I’tS )などを
生じ、これが低融点(988℃)の共晶を作り、鋼の結
晶粒界に集まって粒相互の固着を妨げる。従って、そこ
に収縮引張応力が作用すると粒界割れを生ずる(第1図
(7l#照)。また、このような凝固割れを生じ乞い場
合でも、不純物が集積し固着力の低下したビード中央部
に、冷却時に鋼中の水素d(残留拡散性水素)が集まり
、畑らに固着力を低下するため低温割れを生ずる(第1
図(B)参照)。
These types of weld cracks can be roughly divided into solidification cracks a (see Figure 1 (a)) and cold cracks b (see Figure 1 (see side)).
The main cause common to both is the low melting point impurity C that accumulates in the center of the pead during the melting and solidification process. That is,
When the base metal contains a large amount of S, iron sulfide (I'tS) is produced, which forms a eutectic with a low melting point (988°C), gathers at the grain boundaries of steel, and prevents grains from adhering to each other. Therefore, if shrinkage tensile stress acts there, grain boundary cracks will occur (see Figure 1 (see #7l).Also, even if such solidification cracks occur, the central part of the bead where impurities have accumulated and the adhesion strength has decreased During cooling, hydrogen d (residual diffusible hydrogen) in the steel collects and reduces the adhesion force, causing cold cracking (first
(See figure (B)).

ところで、電子ビーム溶接では、一般的に、表面ビード
幅に比べて溶込み深さが大きく、かつ冷却が速いため、
ビード内部の中央部に不純物が集積し易い。また、目ハ
ズレを防止するうえで、ビード内部の溶融幅もある程度
大きいことが望ましい。このため、溶融金属を少なくし
て低融点不純物の量を少なくすることは困難である。
By the way, in electron beam welding, the penetration depth is generally larger than the surface bead width, and cooling is rapid.
Impurities tend to accumulate in the center of the bead. Furthermore, in order to prevent misalignment, it is desirable that the melting width inside the bead be large to some extent. Therefore, it is difficult to reduce the amount of low melting point impurities by reducing the amount of molten metal.

以上のようなことがら、低合金鋼、炭素鋼で特に厚板の
部品においては、電子ビーム溶接の適用は困難であった
For these reasons, it has been difficult to apply electron beam welding to parts made of low-alloy steel or carbon steel, especially thick plates.

本発明は、前記の事情に鑑みなされたものであり、その
目的とするところは、低合金鋼、炭素鋼などの鋼材、特
に厚板の部品を電子ビーム溶接するときに発生する溶接
割れを防止すること、すなわち前記したような溶接割れ
もなく良好に溶接できる電子ビーム溶接法を提供するこ
とにある。
The present invention was made in view of the above circumstances, and its purpose is to prevent weld cracks that occur when electron beam welding steel materials such as low alloy steel and carbon steel, especially thick plate parts. That is, an object of the present invention is to provide an electron beam welding method that can perform satisfactory welding without the above-mentioned weld cracks.

ところで、溶接割れの原因は、前記したように、ビード
中央部の粒界に集誼する低融点不純物にある。そこで、
低融点不純物を形成する源であるSを高い温度で固定す
れば問題は解決する。
By the way, as mentioned above, the cause of weld cracking is low melting point impurities that gather at the grain boundaries in the center of the bead. Therefore,
The problem can be solved by fixing S, which is a source of low melting point impurities, at a high temperature.

本発明者らは、このような見地において鋭意研究を行な
った結果、溶接金属中にTi、を添加すれば、T1はS
との親和力が強いためT15を形成し、またこのTlS
の融点は2000℃でおり鉄鋼の凝固温度よりも高いの
でSを高温度で固定でき、溶接割れを防ぐことができる
ことを見い出し、本発明を完成するに至ったものである
The inventors of the present invention have conducted intensive research from this viewpoint and have found that if Ti is added to the weld metal, T1 can be reduced to S.
It forms T15 because of its strong affinity with
The melting point of S is 2000°C, which is higher than the solidification temperature of steel, so it was discovered that S can be fixed at a high temperature and weld cracking could be prevented, leading to the completion of the present invention.

すなわち、本発明に係る電子ビーム溶接法は、炭素量0
2係以上の低合金鋼、炭素鋼等の鋼材を電子ビーム溶接
するに除して、1゛iまたはT1合金が溶接部位に存在
した状態で行ない、溶接金属中にT1を添加せしめるこ
とを特彼とするものである。
That is, the electron beam welding method according to the present invention has a carbon content of 0.
In addition to electron beam welding of steel materials such as low-alloy steels and carbon steels with a modulus of 2 or higher, it is special to carry out electron beam welding in the presence of 1゛i or T1 alloy in the welding area, and to add T1 to the weld metal. It's what you do with him.

ここで、T1を溶接金属中に添710 (固溶)させる
方法としては、1“1またはT1合金の粉末を用いて添
力0はせる方法、接合面に予め溶射しておく方法、フィ
ラワイヤとして添加する方法など種々考えられる。また
、T1合金を使用する場合には、後述するところから明
らかなように、溶接金属中のTif&と浴接割れとの間
には関係が認められるので、溶接金属中に充分な量の7
’iが添加きれるように、7゛iの重量係が50以上の
T1合金を使用することが好ましい。
Here, methods for adding T1 into the weld metal (solid solution) include a method in which 1"1 or T1 alloy powder is used to create a zero loading, a method in which it is thermally sprayed on the joint surface in advance, and a method in which T1 is added as a filler wire. There are various methods of adding Tif& to the weld metal.In addition, when using T1 alloy, there is a relationship between Tif& in the weld metal and bath weld cracking, as will be explained later. Enough amount of 7 inside
It is preferable to use a T1 alloy having a weight coefficient of 7'i of 50 or more so that 'i can be added.

以下に、本発明の電子ビーム溶接法を適用した具体例を
示して、本発明の効果について詳細に説明する。なお、
T1の添加方法は、粉末を用いて添加はせる方法、接合
面に予め溶射しておく方法、及びフィラヮイヤとして添
加する方法のいずれの方法においても原理的には同じで
あるが、以下の実施例では粉末を用いて添加てせる方法
を用いた。
Hereinafter, the effects of the present invention will be explained in detail by showing specific examples to which the electron beam welding method of the present invention is applied. In addition,
The method of adding T1 is basically the same whether it is added using a powder, sprayed on the joint surface in advance, or added as a filler, but the following examples are used to add T1. In this case, we used a method of adding powder.

実施例 本発明の電子ビーム溶接法を適用(7た部品     
□(HD+200ギヤ)の断面形状を第2図に示す。H
D + 200 キー’rハSIVCM 7120 H
K材−T’あり、浸炭後電子ビーム溶接するため、接合
面1と上面2は防炭処理を行ない、ざらに3咽の切削加
工を実施した。
Example Applying the electron beam welding method of the present invention (7 parts)
The cross-sectional shape of □ (HD+200 gear) is shown in Figure 2. H
D + 200 key 'rha SIVCM 7120 H
K material-T' was used, and in order to perform electron beam welding after carburizing, the joint surface 1 and upper surface 2 were treated with anti-carburization treatment and roughly cut into three corners.

一方、BD120oギヤの接合面I上部の溶接線3上に
は、第3図に示すような溝4を設け、該溝4に11粒5
を入れておく。溝4の形状は、F x H= 2x 4
であシ、また添加T1としては下記第1表に示す成分の
品名:フェロチタンTFT −1を用いた。
On the other hand, a groove 4 as shown in FIG.
Put it in. The shape of the groove 4 is F x H = 2x 4
In addition, as addition T1, ferrotitanium TFT-1, which was a component shown in Table 1 below, was used.

第1表添加T1の化学成分(重41 このような状態で、接合部での低温割れ防止のため15
0℃の予熱(テンパ一温度以下)を行なったのち、電子
ビーム溶接を行なった。
Table 1 Chemical composition of addition T1 (weight 41) In such a condition, 15
After preheating to 0° C. (below the tempering temperature), electron beam welding was performed.

なお、比較のために、第4図に示すように何ら溝を設け
ずに、従って11粒を添加しない電子ビーム溶接をも併
せて行なった。
For comparison, electron beam welding was also carried out without providing any grooves and therefore without adding 11 grains, as shown in FIG.

電子ビーム溶接の適正1准工法の工程図を第5図に示す
。但し、施工時間は、25んVタイプの電子ビーム溶接
装置を用いた場合の値であり、他のタイプの装置を用い
る場合にはそれに応じた適正施工時間を設定すればよい
Figure 5 shows a process diagram of the first suitable method of electron beam welding. However, the construction time is the value when a 25 V type electron beam welding device is used, and when using other types of equipment, the appropriate construction time may be set accordingly.

なお、本発明の方法に係るT1添加法により電子ビーム
溶接を行なう場合には、接合面1上部の溶接線3上に設
けた溝4に7゛1粒5を入れておき、微小ビーム電流に
よ、Q Ti溶融(アロイング)をしておき、その後本
電流ビームで所定の溶込みを行なった。T1溶融力しに
直接本電流ビームを照射すると、ビームホールから出る
金属蒸気流によf) Ti粉末が飛散し、1゛1を溶接
金属中に溶は込咬すことができなくなる。従って、T1
を予め溶融するためのビーム条件が重畳である。
In addition, when performing electron beam welding by the T1 addition method according to the method of the present invention, 7゛1 grain 5 is placed in the groove 4 provided on the welding line 3 on the upper part of the joint surface 1, and the minute beam current is applied. After the Q Ti was melted (alloyed), the current beam was used to perform the specified penetration. If the main current beam is directly irradiated to increase the T1 melting force, the Ti powder will be scattered by the metal vapor flow coming out of the beam hole, making it impossible to melt 1゛1 into the weld metal. Therefore, T1
The beam conditions for pre-melting are superimposed.

電子ビーム溶接の適正条件を下記に示す。The appropriate conditions for electron beam welding are shown below.

電子ビーム溶接条件: 但し、上記電子ビーム溶接の適正条件も、25nl’g
電子ビーム溶接装置を用いた放7合の値であり、他のタ
イプの装置を用いる場合にはそれに応じた適正条件を設
定すればよい。
Electron beam welding conditions: However, the appropriate conditions for the above electron beam welding are 25nl'g.
This is the value for the 7-coupled beam using an electron beam welding device, and if other types of devices are used, appropriate conditions may be set accordingly.

サイクルタイムは、30分/個であるが、第5図に示す
l及びBの工程を平行して行なうことにより、18分/
個まで短縮可能である。
The cycle time is 30 minutes/piece, but by performing steps 1 and B shown in Figure 5 in parallel, it can be reduced to 18 minutes/piece.
It is possible to shorten the number to .

前記条件で電子ビーム溶接したときの溶接部断面の写真
ケ第6図に示す。第6図(湧が本発明の11添加法によ
って電子ビーム溶接した場合、第6図(功はT1添力口
なしで電子ビーム浴醸した場合を示す。7“1添加なし
の場合にはビード中央部で檄しい凝固割れが生じている
が(第6図(劫参照)、T1添加法で電子ビーム溶接し
たものは割れが生じていない。
FIG. 6 shows a photograph of a cross section of the welded part when electron beam welding was performed under the above conditions. Figure 6 shows the case of electron beam welding using the 11 additive method of the present invention; Figure 6 shows the case of electron beam welding without the T1 additive; Although a noticeable solidification crack occurs in the center (see Fig. 6), no crack occurs in the specimens that were electron beam welded using the T1 addition method.

このように、電子ビーム浴接に際して、溶接金属中にT
iを添加することによって、溶接割れのない健全カピー
ドの形成が可能となる。
In this way, during electron beam bath welding, T
By adding i, it becomes possible to form a sound cupid without weld cracks.

また、Ti添加の場合とT1添加なしの場合の溶接金属
部の顕微鏡組織写真を撮影して観察したところ、Tj、
添加なしの場合はビード中央部へ向けて発達した粒状晶
がのびており、ビード中央部でぶつかVあっているのが
観察された。これに対し、T1を添加したものは微細な
組織となっており、顕著な粒状晶のビード中央部でのぶ
つかりは認められなかった。このことから、Ti添加法
では、溶接金属部の凝固形態が変化しており、その結果
、ビード中央部における低融点不純物の集積が少なくな
っているとaaIされる。
In addition, when we took and observed microscopic photographs of the weld metal parts with Ti addition and without T1 addition, we found that Tj,
In the case of no addition, it was observed that the developed granular crystals extended toward the center of the bead and collided with each other at the center of the bead. On the other hand, the material to which T1 was added had a fine structure, and no significant collision of granular crystals at the center of the bead was observed. From this, it can be concluded that in the Ti addition method, the solidification form of the weld metal part changes, and as a result, the accumulation of low melting point impurities in the bead center is reduced.

オた、本発明のTi添加法により電子ビーム溶接した醇
接金属部のTiの分布状況を、EPMAにより調査した
結果を第7図に示す。第7図から、T1がほぼ均一に分
布していることが解る。
Additionally, FIG. 7 shows the results of an EPMA investigation of the distribution of Ti in the welded metal parts that were electron beam welded using the Ti addition method of the present invention. From FIG. 7, it can be seen that T1 is almost uniformly distributed.

以上の結果、特に厚板炭素鋼に電子ビーム溶接を適用す
る場合、本発明に係るT1添加法は割れ防止に非常に有
効であると言える。
As a result of the above, it can be said that the T1 addition method according to the present invention is very effective in preventing cracking, especially when electron beam welding is applied to thick carbon steel plates.

次に、T1添加溝形状、7”ilとそのときの溶接金属
中のTi@分との関係を調べた。その結果を下記第2表
に示す。なお、溝形状2Cとは、第8図に示す如く面取
りを行なった開先形状である。また、/162〜7Iの
溝形状は第3図に示す形状であり、WxHQサイズで示
す。
Next, we investigated the relationship between the T1 addition groove shape, 7"il, and the Ti @ content in the weld metal at that time. The results are shown in Table 2 below. Note that the groove shape 2C is The groove shape is chamfered as shown in FIG. 3. The groove shape of /162 to 7I is the shape shown in FIG. 3, and is shown in WxHQ size.

(以下余白) 第2表−溝形状と溶接金属中のTi量の関係性) 溶接
材: SNCM 7I20H,に材、円板ハメ込みテス
ト %2個、 各4断面調歪、 成分測定;カントバックによる。
(Leaving space below) Table 2 - Relationship between groove shape and Ti content in weld metal) Welding material: SNCM 7I20H, material, disk fitting test %2 pieces, each 4 cross-sectional adjustment strain, component measurement; cant back by.

第2表に示す結果から明らかなように、溝形状2c(面
取t))の場合には、Ti溶融が充分に行なわれず、溶
接金属中のT1ff1.もO,l 5 ’Jと小さい。
As is clear from the results shown in Table 2, in the case of groove shape 2c (chamfered t)), sufficient Ti melting is not performed, and T1ff1. is also small, O,l 5 'J.

このとき、溶接部には若干の割れが見られた。ただ、T
1の効果は認められる。
At this time, some cracks were observed in the welded area. However, T
The effect of item 1 is recognized.

溝形状がlX212X2.2X71の場合には、いずれ
も割れは見られなかった。ただ、2×2の溝形状の場合
は浴接金属中のTi量がやや少ない。従って、T1添加
溝は、浴込み深さ11oyreで溶接する場合、1×2
か2X/Iの形状が好
No cracks were observed in any case where the groove shape was 1X212X2.2X71. However, in the case of a 2×2 groove shape, the amount of Ti in the bath weld metal is somewhat small. Therefore, when welding with a bathing depth of 11 oyre, the T1 addition groove is 1×2
I like the shape of 2X/I.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図の(4及び(肋は溶接割れの概略説明図であり、
第1図(4は凝固割れ、第1図(劫は低温割れの場合を
示し、第2図は実施例で電子ビーム浴接を適用した部品
の断面図、第3図は本発明の方法を適用した場合のTi
添加溝形状を示す電子ビーム照射部(第2図X部)の拡
大断面図、第4図は従来法の電子ビーム溶接における電
子ビーム照射部(第2図X部)の拡大断面図、第5図は
本発明の電子ビーム溶接法の適正施工法の工程図、第6
図の(A及び(勾は電子ビーム溶接したときの溶接部の
金属組織の断面写真であり、第6図(涌は本発明方法に
よって電子ビーム溶接した場合、第6図(T3)は従来
法によシミ子ビーム溶接した場合を示し、第7図は本発
明の方法によシミ子ビーム溶接した溶接金属部のTiの
分布状況を示すグラフである。第8図は他の添加溝形状
の拡大断面図である。 1は接合部、3は溶接線、4は溝、5は11粒。 箇 1 図 第2図 箆 5 図 第 6 戸−一 l−二 π\\\悼入V+ (A) ×XぺX−鴇 (11)
(4 and () in Figure 1 are schematic explanatory diagrams of weld cracks,
Figure 1 (4 shows the case of solidification cracking, Figure 1 (Kalpa) shows the case of cold cracking, Figure 2 is a cross-sectional view of a part to which electron beam bath welding was applied in an example, and Figure 3 shows the case of the method of the present invention. Ti when applied
Figure 4 is an enlarged cross-sectional view of the electron beam irradiation part (X section in Figure 2) showing the additive groove shape. The figure is a process diagram of the appropriate construction method of the electron beam welding method of the present invention, No. 6
In the figure, (A and () are cross-sectional photographs of the metal structure of the welded part when electron beam welding is performed. Fig. 7 is a graph showing the distribution of Ti in the weld metal part welded by the simulator beam welding by the method of the present invention. This is an enlarged cross-sectional view. 1 is a joint, 3 is a weld line, 4 is a groove, and 5 is 11 grains. A) ×XpeX-Toki (11)

Claims (1)

【特許請求の範囲】 1 炭素量02係以上の鋼材を電子ビーム溶接するに際
して、T1またはTi合金が溶接部位に存在した状態で
行ない、溶接金属中にT1を添加せしめることを特徴と
する電子ビーム溶接法。 2 接合面上部の溶接線上に溝を設け、該溝に7’i粒
を入れてT1溶融したのち、電子ビーム溶接して溶接金
属中にTi−を添加せしめることを特徴とする特許請求
の範囲第1項に記載の電子ビーム溶接法。 3  Ti−$たはT1合金の溶射により接合面にTi
を付着した後、電子ビーム溶接して溶接金属中に1”1
を添加せしめることを特徴とする特許請求の範囲第1項
に記載の電子ビーム溶接法。 4  TiまたはT1合金のフイラワイヤにより電子ビ
ーム溶接時に溶接金属中にTiを添刀口せしめることを
特徴とする特許請求の範囲第1項に記載の電子ビーム溶
接法。
[Scope of Claims] 1. Electron beam welding of steel materials with a carbon content of 02 or more is carried out with T1 or a Ti alloy present in the welding area, and T1 is added to the weld metal. Welding method. 2. Claims characterized in that a groove is provided on the weld line at the upper part of the joint surface, 7'i grains are placed in the groove and T1 melted, and then Ti- is added to the weld metal by electron beam welding. The electron beam welding method according to item 1. 3 Ti is applied to the joint surface by thermal spraying of Ti-$ or T1 alloy.
After adhering, electron beam welding is performed to form a 1”1
The electron beam welding method according to claim 1, characterized in that: is added. 4. The electron beam welding method according to claim 1, wherein Ti is added to the weld metal during electron beam welding using a filler wire made of Ti or T1 alloy.
JP5794083A 1983-04-04 1983-04-04 Electron beam welding method Pending JPS59183990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5794083A JPS59183990A (en) 1983-04-04 1983-04-04 Electron beam welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5794083A JPS59183990A (en) 1983-04-04 1983-04-04 Electron beam welding method

Publications (1)

Publication Number Publication Date
JPS59183990A true JPS59183990A (en) 1984-10-19

Family

ID=13070027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5794083A Pending JPS59183990A (en) 1983-04-04 1983-04-04 Electron beam welding method

Country Status (1)

Country Link
JP (1) JPS59183990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475188A (en) * 1987-09-16 1989-03-20 Ishikawajima Harima Heavy Ind Electron beam welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120647A (en) * 1977-03-31 1978-10-21 Hitachi Ltd Welding method for electron beam of high carbon steel material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120647A (en) * 1977-03-31 1978-10-21 Hitachi Ltd Welding method for electron beam of high carbon steel material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475188A (en) * 1987-09-16 1989-03-20 Ishikawajima Harima Heavy Ind Electron beam welding method

Similar Documents

Publication Publication Date Title
US3957194A (en) Liquid interface diffusion method of bonding titanium and/or titanium alloy structure
US5678753A (en) Welding for spheroidal graphic cast iron material
JPS59183990A (en) Electron beam welding method
US3339269A (en) Method of bonding
JPS60106691A (en) Alloy for brazing
WO2018186385A1 (en) Cylindrical sputtering target, and production method therefor
US3894678A (en) Method of bonding sintered iron articles
JPS6245020B2 (en)
US3196537A (en) Method and composition for welding cast iron
JPH0543773B2 (en)
JP3671544B2 (en) Laser welding method
KR101480768B1 (en) Laser tailor-welded blanks for hot press forming steel with AlSi coated layer on the surface
JPS6120397B2 (en)
JPS5890385A (en) Manufacture of composite wear resistance member
Bobzin et al. Influence of the Titanium Inoculation on the Melting Behavior and Microstructure of Ni 620/X38CrMoV5‐1 Brazing Joints
US20240011138A1 (en) Method for manufacturing tailor welded blank using steel sheet for hot pressing having al-fe-based intermetallic alloy layer
JPS59589B2 (en) Manufacturing method of clad plate
KR102310275B1 (en) Brazing assembly and method for preventing surface oxidation
JPS6349381A (en) Insert material for diffused joining
JPH01111855A (en) Method for padding to cast-iron member
JPH0221912B2 (en)
JPS62127108A (en) Composite roll for rolling
JPH0475789A (en) Welded joint
DE1752401B2 (en) USE OF AUSTENITIC NICKEL BASE ELECTRODES FOR ARC REPAIR COLD WELDING OF DEFECTS IN STEEL CASTING PARTS
US4465224A (en) Method of reducing microfissuring in welds having an austenitic stainless steel alloy base metal