JPS5918394A - Heat transfer pipe for recovering heat of cokes lifting pipe - Google Patents

Heat transfer pipe for recovering heat of cokes lifting pipe

Info

Publication number
JPS5918394A
JPS5918394A JP12824782A JP12824782A JPS5918394A JP S5918394 A JPS5918394 A JP S5918394A JP 12824782 A JP12824782 A JP 12824782A JP 12824782 A JP12824782 A JP 12824782A JP S5918394 A JPS5918394 A JP S5918394A
Authority
JP
Japan
Prior art keywords
heat transfer
pipe
heat
silicon carbide
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12824782A
Other languages
Japanese (ja)
Inventor
Yuzo Otsuki
大槻 雄三
Osamu Takamori
修 高森
Naoki Tsutsui
直樹 筒井
Takemi Kawaguchi
川口 健美
Kazuo Kawamura
和夫 川村
Isamu Koike
小池 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Crucible Co Ltd
Nippon Steel Corp
Nippon Rutsubo KK
Original Assignee
Nippon Crucible Co Ltd
Nippon Steel Corp
Nippon Rutsubo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co Ltd, Nippon Steel Corp, Nippon Rutsubo KK filed Critical Nippon Crucible Co Ltd
Priority to JP12824782A priority Critical patent/JPS5918394A/en
Publication of JPS5918394A publication Critical patent/JPS5918394A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B27/00Arrangements for withdrawal of the distillation gases
    • C10B27/06Conduit details, e.g. valves

Abstract

PURPOSE:To improve the coefficient of thermal conductivity of a heat transfer pipe by a method wherein a heat transfer pipe is formed of silicon carbide utilizing lining as aggregate and carbon powder, metallic silicon powder as bonding agent. CONSTITUTION:A cokes oven gas 1 is introduced from a carbonizing chamber 2 to a header pipe 4 through a cokes lifting pipe 3 while heating medium circulates in a heat transfer pipe 7 arranged halfway up the pipe 3 and a heat exchanger 8 externally provided by means of a circulating pump 5 and a circulating pipe 6. The heat transfer pipe 7 is made of a heat transfer jacket 10 circulating the heat transfer medium 9 and a lining material 12 connected to the inner wall of the jacket 10 through the intermediary of silicon carbide mortar 11. The lining material made of silicon carbide, carbon powder and metallic silicon powder may realize high coefficient of thermal conductivity.

Description

【発明の詳細な説明】 本発明はコークス炉上昇管におけるコークス炉発生ガス
(以下コークス炉j5スという)顕熱を有効に熱回収す
るため、該上昇管内壁に配設する伝熱管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat transfer tube disposed on the inner wall of a coke oven riser tube in order to effectively recover sensible heat of coke oven generated gas (hereinafter referred to as coke oven J5 gas) in the riser tube.

周如のごとく乾留して発生するコークス炉ガスは、コー
クス炉上の上昇管を介してヘラター管に集合させてづ0
ワーで吸引し、不純物を取り除いて精製したのち工場の
燃料あるいは、都市ガス等に利用されている。
The coke oven gas generated by carbonization is collected in the Herator tube via the riser pipe above the coke oven.
It is sucked in with a blower, refined to remove impurities, and then used as fuel for factories or as city gas.

近年、省エネ)し甲−・廃熱有効利用の立場からコーク
ス炉で発生する顕熱を回収する試みが数多く提案されて
いる。本発明者らも、先例、特願昭53−114399
号、特開昭55−40736号[コークス炉発生ガスの
熱回収方法」において、上昇管部における顕熱回収方法
の発明を公開した。その要旨とするところは、上昇管内
壁に配設した伝熱管と熱交換器を接続して有機熱媒体を
介して顕熱を回収する熱回収方法にある。本発明は、前
記発明の方法に適する伝熱管に関するものである。
In recent years, many attempts have been made to recover the sensible heat generated in coke ovens from the standpoint of energy conservation and effective use of waste heat. The inventors also have a precedent, Japanese Patent Application No. 53-114399.
No., JP-A-55-40736 [Method for recovering heat from coke oven gas] disclosed an invention for a method for recovering sensible heat in a riser pipe section. The gist of this is a heat recovery method that connects a heat exchanger to a heat transfer tube disposed on the inner wall of a riser pipe and recovers sensible heat via an organic heat medium. The present invention relates to a heat exchanger tube suitable for the method of the invention.

上昇管部で効率よ〈熱回収するためには、本来の上昇管
としての機能と換熱器としての機能とを合わせてもたな
ければならないが、上昇管で従来から問題となっている
事は、 1)コークス炉ガス中のタール三ストやカーポジが上昇
管内壁に付着し、狭窄する、いわゆるカーポジ付着があ
ること。
In order to recover heat efficiently in the riser pipe section, it is necessary to have both the original function as a riser pipe and the function as a heat exchanger, but this has traditionally been a problem with riser pipes. 1) Tar and carposis in coke oven gas adhere to the inner wall of the riser pipe, causing a narrowing, so-called carposi adhesion.

11)上昇管内壁部の温度がコークス炉操業によシ、約
600C二1200Cという温度サイクルを受けるため
、上昇管内壁部に熱衝撃および熱疲労の負荷があること
11) Since the temperature of the inner wall of the riser tube is subjected to a temperature cycle of about 600C to 1200C during coke oven operation, the inner wall of the riser tube is subjected to thermal shock and thermal fatigue loads.

111)コークス炉ガスによる酸化還元反応の繰返し、
または凝縮した薬品液に腐食されること。
111) Repeated redox reaction with coke oven gas,
Or be corroded by condensed chemical liquid.

等である。上昇管ではこれらの技術的課題を解決するこ
とが必要であるほか、さらに換熱器としての機9ヒを発
揮するためK iv)換熱能を獲得するだめに伝熱係数を向上させるこ
と。
etc. In addition to solving these technical problems, the riser pipe must also improve its heat transfer coefficient in order to achieve its function as a heat exchanger.

が重要である。is important.

上記11)および111)の技術的課題に対して従来か
ら鋼製の上昇管内面にシセtット質煉瓦まだは、+やス
タづルがライニングされている。また近年では、溶融石
英質煉瓦等がライニングされてきている。
In order to solve the above technical problems 11) and 111), the inner surface of a steel riser pipe has conventionally been lined with solid bricks or studs. Furthermore, in recent years, linings have been made of fused silica bricks and the like.

しかし、上記i)の技術的課題に対しては、カーボン払
い落し作業を絶えずしなければならない等、これらのラ
イニシジ材では、決して満足すべきものでないのが現状
である。また、これらのライコシづ材は熱伝導率が約2
 kcat/m−b−c以下と低いうえ、カーボン付着
がし易いので上記l■)の換熱能に対しても好ましくな
い。
However, the current situation is that these rhinestone materials are by no means satisfactory in terms of the technical problem i) above, as they require constant carbon removal work. In addition, these licorice materials have a thermal conductivity of approximately 2.
It is not preferable for the heat exchanging performance (1) above because it is low, less than kcat/m-b-c, and carbon tends to adhere.

本発明者らは、上記技術的課題を全て解決した伝熱管に
関して種々研究、開発を重ねた結果、炭化珪素の含有量
がほぼ70重R%以上、熱伝導率が9 kca/−/1
n−h−(:’以上、および12.00Cでの曲げ強さ
が200kg/crn2以上の性能をもった炭化珪素質
煉瓦を内壁ライニシク材とすることが、最も有効である
ことを見出しだ。
The present inventors have repeatedly conducted various research and development on heat exchanger tubes that have solved all of the above technical problems, and have found that the silicon carbide content is approximately 70% by weight or more and the thermal conductivity is 9 kca/-/1.
It has been found that it is most effective to use silicon carbide bricks with a bending strength of 200 kg/crn2 or more at 12.00C as the inner wall liner material.

周知のごとく炭化珪素は、熱伝導率が高いこと、熱膨張
率が低いこと、耐熱衝撃性に優れていること、各種雰囲
気や薬品に対する化学的反応性が少ないこと、高い輻射
率を保有していること等の特徴をもっておシ、炭化珪素
を多量に含有する炭化珪素質煉瓦は一般にその含有量と
緻密さ、結合強さに応じてこれらの特徴が発揮される。
As is well known, silicon carbide has high thermal conductivity, low coefficient of thermal expansion, excellent thermal shock resistance, low chemical reactivity to various atmospheres and chemicals, and high emissivity. Silicon carbide bricks containing a large amount of silicon carbide generally exhibit these characteristics depending on the content, density, and bond strength.

伝熱管内壁ライニジづ材として用いる炭化珪素質煉瓦は
、炭化珪素の含有量が70重量%未満では、熱伝導率、
輻射率が小さくコークス炉ガスによる熱衝撃に弱く、化
学的侵食金堂け、従来の煉瓦と大差のない結果となる。
The silicon carbide brick used as the lineage material for the inner wall of the heat exchanger tube has a low thermal conductivity when the silicon carbide content is less than 70% by weight.
It has a low emissivity and is susceptible to thermal shock from coke oven gas, resulting in chemical corrosion that is not much different from conventional bricks.

炭化珪素含有量が70重量%以上であっても熱伝導率が
9 kca4/m−h−C未満であれば充□分な伝熱能
が得られず、また1 200Gでの曲げ強さが200 
k17/lri以下であればもし内面に形成した堅牢な
カーポジの払い落し作業の際に割れたり、折れたりする
など機械的性質が不足する。
Even if the silicon carbide content is 70% by weight or more, sufficient heat transfer ability cannot be obtained if the thermal conductivity is less than 9 kca4/mh-C, and the bending strength at 1200G is 200%.
If it is less than k17/lri, the mechanical properties will be insufficient, such as cracking or breaking when removing the strong carposi formed on the inner surface.

次に本発明の伝熱管の製造に必要な各材料について説明
する。
Next, each material necessary for manufacturing the heat exchanger tube of the present invention will be explained.

この発明の熱回収用伝熱管は骨材として、炭化珪素粒子
を使用し、結合部材とじてカーポジ粉末、金属珪素粉末
およびター1し・ピッチ等のその他の結合剤を使用する
もので、これらの原料を混合したのち、振動成形機など
によって成形し、非酸化雰囲気中で焼成してつくられる
The heat exchanger tube for heat recovery of the present invention uses silicon carbide particles as the aggregate, and uses carposi powder, metallic silicon powder, and other binders such as tar and pitch as the binding member. It is made by mixing raw materials, molding them using a vibration molding machine, etc., and firing them in a non-oxidizing atmosphere.

炭化珪素は重量で7Gチ以上使用し、成形物の充填性が
よくなるよう粒度調整を行うことが好ましい。炭化珪素
が重量で70%未満であると所望の熱伝導率、輻射率が
得られず、伝熱効果が充分でない。また95チ以−ヒで
あると混合物の成形性が悪くなり、その結果、伝熱管の
ような大口径薄肉で成形高さ寸法が大きいものでは、伝
熱管の上部、中部、下部にわたり成形充填度にばらつき
が生じ易くなり成形が困難となるう カーポジ粉末および金属珪素粉末は、重量でそれぞれ3
〜15%使用する。カーポジ粉末と金属珪素粉末とは、
共に配合して焼成あるいは使用中に炭化珪素を生成せし
め、熱回収用伝熱管の強度を増加させることができる。
It is preferable to use silicon carbide in an amount of 7 Gt or more by weight, and to adjust the particle size so as to improve the filling properties of the molded product. If the silicon carbide content is less than 70% by weight, desired thermal conductivity and emissivity cannot be obtained, and the heat transfer effect is insufficient. In addition, if it is more than 95%, the moldability of the mixture will deteriorate, and as a result, in the case of large-diameter, thin-walled and large molded height dimensions such as heat exchanger tubes, the molding filling degree will be high throughout the upper, middle, and lower parts of the heat exchanger tube. Carposi powder and metallic silicon powder, which tend to have unevenness and are difficult to mold, each have a weight of 3.
Use ~15%. What is Carposi powder and metallic silicon powder?
By blending them together, silicon carbide can be generated during firing or use, thereby increasing the strength of the heat recovery heat exchanger tube.

この炭化珪素の生成源としてのカーポジは上記カーボン
粉末のほかター)し・ピッチ等からの骸炭化成分も加わ
るが、炭化珪素の生成のだめのカーボン粉末と金属珪素
粉末はほぼ同重量使用する。カーポジ粉末、金属珪素粉
末のいずれもが重量で、3チ以下であると、熱回収用伝
熱管の強度が不足する。また、いずれもが15%以上で
あるとStとCの反応でStcができる場合、体積が減
少することばより焼成収縮率が大きくなったり、焼成物
の気孔率が犬きくなったりする等の問題があって好まし
くない。バーポジ粉末および金属珪素粉末は分散性をよ
くして結合剤としての効果を発揮させるために0.05
 mm以下のものを使用することが好ましい。カーポジ
粉末としては、鱗状黒鉛、人造黒鉛、土状黒鉛、コーク
ス無煙炭、カーポジづラック等の粉末が使用できる。次
にこれらの各原料をターIL、・ピッチ、フェノール樹
脂、リグニジ、粘土などその他の結合剤を用いて充分に
混合する。その他の結合剤は焼成されて結合部材の一部
として残るが、伝熱管を成形するために必要な成形助剤
として添加するのが目的であるので、その添加量は結合
剤の種類によって適宜変更する。リグニジと粘土を併用
した場合を例にとると、重量で約5〜7%とすることが
好ましい。混合物を撮動成形機等に型込めして所望の円
筒状の伝熱管を成形する。伝熱管は常時、急熱急冷され
るので、特に耐スポーリシジ性に優れたものが要求され
る。
In addition to the above-mentioned carbon powder, carbonized components from tar, pitch, etc. are added to the carposi as a source for producing silicon carbide, but the carbon powder used for producing silicon carbide and the metallic silicon powder are used in approximately the same weight. If the weight of both the carposi powder and the metal silicon powder is less than 3 inches, the strength of the heat recovery heat exchanger tube will be insufficient. In addition, if both are 15% or more, if Stc is formed by the reaction of St and C, there will be problems such as a decrease in volume, a higher firing shrinkage rate, and a higher porosity of the fired product. There is something that I don't like. Barposi powder and metal silicon powder have a 0.05
It is preferable to use one having a diameter of mm or less. As the carposi powder, powders such as scaly graphite, artificial graphite, earthy graphite, coke anthracite, and carposi lac can be used. Next, each of these raw materials is thoroughly mixed with other binders such as teril, pitch, phenolic resin, lignidium, and clay. Other binders are fired and remain as part of the bonding member, but their purpose is to be added as a forming aid necessary for forming the heat exchanger tube, so the amount added may be changed as appropriate depending on the type of binder. do. Taking as an example the case where lignidium and clay are used together, it is preferable that the amount is about 5 to 7% by weight. The mixture is molded into a motion molding machine or the like to mold a desired cylindrical heat exchanger tube. Since heat exchanger tubes are constantly heated and cooled rapidly, they are particularly required to have excellent sporicity resistance.

このため、上記原料面で耐スホーリ、7/7性に優れだ
ものを使用するのみならず成形面でも適切な成形方法に
より、均質な成形体が得られるようにする必要がある。
For this reason, it is necessary not only to use raw materials that have excellent scratch resistance and 7/7 properties, but also to use an appropriate molding method to obtain a homogeneous molded product.

このため、成形方法についても種々考案をした結果、振
動成形機等による成形法が適当であった。
For this reason, various methods of molding were devised, and as a result, a molding method using a vibration molding machine or the like was suitable.

次に成形物は常法によシ非酸化雰囲気中で焼成する。以
上の製造方法をとることにより、熱伝導率がOk ca
t/mh−C以上1200Cにおける曲げ強さが200
 kg/J以上の所望の伝熱管を得ることができた。
The molded article is then fired in a non-oxidizing atmosphere in a conventional manner. By using the above manufacturing method, the thermal conductivity is OK ca
t/mh-C or higher bending strength at 1200C is 200
It was possible to obtain a desired heat exchanger tube with a yield of more than kg/J.

次に本発明の伝熱管を用いた上昇管の効果を実施例に基
づき説明する。
Next, the effects of the riser tube using the heat exchanger tube of the present invention will be explained based on examples.

第1図は熱回収方法のフロー図である。コークス炉乃ス
1はコークス炉の炭化室2から上昇管3を通ってヘラタ
ー管4へ導かれ熱媒体は循環ポジづ5と循環J\イづ6
で上昇管の中腹に配設した伝熱管7内と外部に設けた熱
交換器8とを循環する。
FIG. 1 is a flow diagram of the heat recovery method. The coke oven nozzle 1 is guided from the carbonization chamber 2 of the coke oven through the riser pipe 3 to the herator tube 4, and the heating medium is circulated through the circulation positive 5 and the circulation J\izu 6.
The heat is circulated between the heat exchanger tube 7 disposed in the middle of the riser pipe and the heat exchanger 8 disposed outside.

第2図は伝熱管7の詳細説明図である。伝熱管は熱媒体
9を循環させる伝熱′:/15ゲット10ライニシジ材
12とで構成させ全長高さを2900晒とした。第1表
に示す3種のライニジづ材について各3本づつの上昇管
に伝熱管を配設して約1年間の連続運転試験を行った。
FIG. 2 is a detailed explanatory diagram of the heat exchanger tube 7. The heat transfer tube was composed of a heat transfer tube that circulates a heat medium 9 and a heat transfer tube of /15 get 10 and line material 12, and had a total length and height of 2900 mm. For the three types of lineage materials shown in Table 1, heat transfer tubes were installed in three riser tubes each, and a continuous operation test was conducted for about one year.

表中人が本発明の炭化珪素質ライニング材で、Bおよび
Cは比較品である。
The material in the table is the silicon carbide lining material of the present invention, and B and C are comparative products.

Bは炭化珪素含有量が60重瞬賃ラうニ、、7づ材であ
り、C?−1溶融石英質ライニジづ材である。
B is a material with a silicon carbide content of 60%, 7%, and C? -1 It is a fused silica lineage material.

第2表は試験の操業状況、代表的回収M歇および伝熱解
析結果を示す。
Table 2 shows the test operating conditions, representative recovery M intervals, and heat transfer analysis results.

ライニシジBは試験開始初期の30日間は回収性能がラ
イニジづAとあ1り差がなかったが、次第にその性能の
低丁がみられ、ライニジづCと同等の性能となった。内
壁のカーボン払い落し作業は伝熱管を配設していない従
来の上昇管における通常の作業通り試みたところ、ライ
ニ、7りAは付着の程度がB、Oと比較して少なかった
こと、従来のA常のカーポジ払い落し作業に比較して゛
6易に行うことができた。これは、ライニン’21が雰
囲気ガスと反応物をつくらないので、付着強度が発現し
にくかったことと、ライニジづ表面での大きい温度差が
原因とおもわれる。
During the initial 30 days of the test, the collection performance of Rainijizu B was about the same as that of Rainijizu A, but gradually its performance began to decline, and the performance became equivalent to that of Rainijizu C. When we attempted to remove carbon from the inner wall as usual for conventional riser pipes without heat exchanger tubes, we found that the degree of adhesion was smaller on Line A and B and O than on conventional riser tubes. Compared to the usual carposi removal work, it was easier to do. This is thought to be due to the fact that Linin'21 did not form any reactants with the atmospheric gas, making it difficult to develop adhesion strength, and the large temperature difference on the surface of the linen.

ライニンJjBとCとではカーポジ付着等による影響の
だめに実測値と側算値に差がみられるのに対して、ライ
ニシジAでは第2表にみられるようにカーポジ付着等に
よる性能低下はみられないため、実測値と計算値はほぼ
一致している。又、伝熱管表面での対流及び伝導による
伝熱分が約60チ、輻射による伝熱分が約40チを占め
ており、ライニシクAにおける高い熱伝導率と商い輻射
率の効果が大であったことを示すものである。
For Linin JjB and C, there is a difference between the actual measured value and the calculated value due to the effects of carposi adhesion, etc., whereas for Linin A, there is no performance deterioration due to carposi adhesion, etc., as shown in Table 2. Therefore, the measured values and calculated values almost match. In addition, the heat transferred by convection and conduction on the surface of the heat exchanger tube accounts for about 60 cm, and the heat transferred by radiation accounts for about 40 cm, indicating that the effects of high thermal conductivity and commercial emissivity in Rhineshik A are large. This shows that

以上述べた通り、本発明の炭化珪素質伝熱管は、熱回収
を目的としだものであるが、カーポジ払い落し作業など
を軽減させる。
As described above, although the silicon carbide heat exchanger tube of the present invention is intended for heat recovery, it reduces the work of removing carposis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱回収方法のフロー図、第2図は伝熱管の断面
図である。
FIG. 1 is a flow diagram of the heat recovery method, and FIG. 2 is a sectional view of the heat exchanger tube.

Claims (1)

【特許請求の範囲】[Claims] 重量で、骨材として炭化珪素70〜95%に結合部材と
して、カーポジ粉末3〜15チ、金属珪素粉末3〜15
チ、その他の結合剤残部を混合し、成形し、焼成したこ
とを特徴とすふコークス炉上昇管の熱回収用伝熱管。
By weight, 70-95% silicon carbide as aggregate, 3-15% carposi powder and 3-15% silicon metal powder as bonding member.
H. A heat transfer tube for heat recovery in a coke oven riser tube, characterized in that the remainder of the other binder is mixed, molded, and fired.
JP12824782A 1982-07-22 1982-07-22 Heat transfer pipe for recovering heat of cokes lifting pipe Pending JPS5918394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12824782A JPS5918394A (en) 1982-07-22 1982-07-22 Heat transfer pipe for recovering heat of cokes lifting pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12824782A JPS5918394A (en) 1982-07-22 1982-07-22 Heat transfer pipe for recovering heat of cokes lifting pipe

Publications (1)

Publication Number Publication Date
JPS5918394A true JPS5918394A (en) 1984-01-30

Family

ID=14980127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12824782A Pending JPS5918394A (en) 1982-07-22 1982-07-22 Heat transfer pipe for recovering heat of cokes lifting pipe

Country Status (1)

Country Link
JP (1) JPS5918394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120892A (en) * 1984-11-16 1986-06-07 Nippon Steel Corp Bucket for dry coke quenching installation
US6316048B1 (en) * 1999-12-20 2001-11-13 General Electric Company Methods for providing ceramic matrix composite components with increased thermal capacity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668799A (en) * 1979-11-10 1981-06-09 Nisshin Steel Co Ltd Tile tube heat exchanger
JPS5719587A (en) * 1980-07-09 1982-02-01 Shinagawa Refractories Co Protection of metalic structure in ceramic kiln

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668799A (en) * 1979-11-10 1981-06-09 Nisshin Steel Co Ltd Tile tube heat exchanger
JPS5719587A (en) * 1980-07-09 1982-02-01 Shinagawa Refractories Co Protection of metalic structure in ceramic kiln

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120892A (en) * 1984-11-16 1986-06-07 Nippon Steel Corp Bucket for dry coke quenching installation
JPH0582437B2 (en) * 1984-11-16 1993-11-18 Nippon Steel Corp
US6316048B1 (en) * 1999-12-20 2001-11-13 General Electric Company Methods for providing ceramic matrix composite components with increased thermal capacity

Similar Documents

Publication Publication Date Title
CN100457681C (en) High conductive high strength graphite brick for ultralarge blast furnace, its production technology and application
RU2546268C2 (en) Carbon article, method of producing carbon article and use thereof
CN103740939A (en) Method for producing molten iron and recovering zinc by utilizing zinc-containing dust or sludge in steelworks
CN105645397B (en) It is a kind of for hyperfine structure graphite of EDM and preparation method thereof
CN101503302B (en) Carboneous fire-resistant material for furnace brick lining and preparation thereof
IE51313B1 (en) Process for the preparation of an intermediate containing silicon dioxide and carbon
CN106565253A (en) Preparation method of graphite lining for metal furnace
SU1253433A3 (en) Method of producing aluminium and device for effecting same
CN1847145A (en) Durable graphite bodies and method for their production
CN103979981B (en) A kind of big specification semi-graphite carborundum carbon brick and production technology thereof
CN103620331A (en) Refractory for inner lining of blast furnace, obtained by semi-graphitization of mixture comprising C and Si
JPS5918394A (en) Heat transfer pipe for recovering heat of cokes lifting pipe
CN107244930A (en) A kind of resistance to molten iron corrodes blast furnace carbon brick and preparation method thereof
CN114525371B (en) Plastic phase material for sealing blast furnace cooling wall and hearth carbon brick
CN109809825A (en) A kind of pyrophyllite smelts blocking anhydrous stemming and preparation method thereof
CN108059473A (en) Mullite carbon brick and preparation method thereof
CN107723484A (en) A kind of crucible of preparation method and application of ferrochrome in this method
CN207501672U (en) A kind of ferronickel electric furnace furnace wall overlap joint stings lining up structure
JP6583968B2 (en) Refractory brick
JP3197680B2 (en) Method for producing unburned MgO-C brick
CN101747043B (en) Method for manufacturing cold end part of silicon carbide rod by cubic silicon carbide
CN107814573A (en) Ferronickel electric furnace high heat conduction resistant to corrosion carbon block and preparation method thereof
JP3740543B2 (en) Refractory binder
US4171281A (en) Graphitization and reducing charge
CN104060011A (en) Long-service-life sand port for blast furnace iron tapping and preparation method of sand port