JPS59183803A - Permselective membrane for separation of gas - Google Patents

Permselective membrane for separation of gas

Info

Publication number
JPS59183803A
JPS59183803A JP5524983A JP5524983A JPS59183803A JP S59183803 A JPS59183803 A JP S59183803A JP 5524983 A JP5524983 A JP 5524983A JP 5524983 A JP5524983 A JP 5524983A JP S59183803 A JPS59183803 A JP S59183803A
Authority
JP
Japan
Prior art keywords
membrane
group
oxygen
gas
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5524983A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ito
宏之 伊藤
Takashi Kiyota
隆 清田
Ko Sakata
坂田 興
Hirosuke Imai
宏輔 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP5524983A priority Critical patent/JPS59183803A/en
Priority to FR8403718A priority patent/FR2542211A1/en
Priority to GB08406178A priority patent/GB2139237A/en
Priority to DE19843408996 priority patent/DE3408996A1/en
Publication of JPS59183803A publication Critical patent/JPS59183803A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To form an oxygen-enriching membrane having large PO2 and PO2/ PN2 ratio and excellent strength, durability, chemical resistance, oxidation stability, etc., by using polyaminophosphazene as a constituent. CONSTITUTION:Polyphosphazene is prepared by reaction of polydichlorophosphazene, obtained from thermal polymerization of a cyclic chlorophosphazene, e.g., hexachlorocyclotriphosphazene or octachlorocyclotetraphosphazene, or linear low-molecular weight chlorophosphazene, in the presence or absence of a catalyst in a sufficiently dried system, with a corresponding amine. The gas-separating membrane containing polyphosphazene as a constituent can be easily formed by casting. The preferred concentration of the casting solution is 0.5-30%, more preferably 1-20%. A membrane of a thickness of 0.01-200mum can be obtained from solutions of these concentrations.

Description

【発明の詳細な説明】 本発明は気体分離用選択性透過膜に関するものであシ、
特に空気から、酸素を濃縮するのに適したポリアミノホ
スファゼンを構成成分とする選択性透過膜に関するもの
でらる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a selectively permeable membrane for gas separation.
In particular, it relates to a selectively permeable membrane comprising polyaminophosphazene, which is suitable for concentrating oxygen from air.

高分子素材よ構成る膜を用いて気体混合物から特定の成
分を分離濃縮できることは古くから知られておシ、近年
特に省資源、省エネルギーの観点から注目を集めている
、なかでも膜分離法によシ空気から酸素濃度の高められ
た酸素富化空気が安価に容易にかつ連続的に得られれば
、その価値は太きい。現在、未熟児の保育箱あるいは呼
吸器系疾患を有する患者の治療等の医療用に用いられる
酸素はボンベに充てんされた純酸素が用いられているが
、操作のわずられしさあるいは連続的に供給できないこ
とあるいは、希釈して使用しなければならないととガど
の重大な欠点を有する。しかしながら酸素を空気よシ濃
縮して供給できる効率の良い膜が得られれば、上記欠点
は解消され、さらに簡便な装置によシ家庭でも使用可能
になるなどの医療の分野で大きな進歩が期待でき為。
It has been known for a long time that specific components can be separated and concentrated from a gas mixture using membranes made of polymeric materials.In recent years, membrane separation methods have attracted particular attention from the viewpoint of resource and energy conservation. If oxygen-enriched air with increased oxygen concentration could be obtained easily and continuously at low cost from fresh air, it would be of great value. Currently, pure oxygen is used in cylinders for medical purposes such as incubating premature babies or treating patients with respiratory diseases, but it is difficult to operate and is difficult to use continuously. It has serious drawbacks such as not being able to supply it or having to use it diluted. However, if an efficient membrane capable of supplying oxygen by concentrating it from the air could be obtained, the above drawbacks would be overcome, and further advances could be expected in the medical field, such as a simple device that could be used at home. For.

また駅、在用いられている各種燃焼システム、たとえば
工業用のボイラー、ファーネスあるいは製鉄の高炉、自
動車等に用いられる内燃機関、家庭用暖房器具などにお
いても膜を用いて容易に連続的に酸素富イ)′空気が供
給されるならば、燃焼効率を高めて炉別を節約すること
ができ省エネルギーが達成されるとともに、不完全燃焼
による環境汚染の問題も解消されるっさらには膜によシ
安価で簡便に酸素富化空気が供給されるならば、食品工
業、栽培漁業、廃棄物処理にどの他の分野においてもそ
の発展を促がすことかできる。
In addition, membranes can be used to easily and continuously enrich oxygen in stations, various combustion systems currently in use, such as industrial boilers, furnaces, blast furnaces for steel manufacturing, internal combustion engines used in automobiles, and household heating appliances. b) 'If air is supplied, combustion efficiency can be increased and furnace costs can be saved, energy savings can be achieved, and the problem of environmental pollution caused by incomplete combustion can be solved. If oxygen-enriched air could be supplied cheaply and easily, it could stimulate the development of food industry, fish farming, waste treatment, and any other field.

現在知られている高分子素材は多かれ少なかれ気体透過
性を有するが、工業的に実用可能な酸素富化用膜とする
ためには、酸非の透過速度が十分に大きくかつ酩累の窒
素に対する選択性が大きくなくてはならない。気体の透
過速度は高分子物質に固有の値である透過係数(通常P
で表わされ、単位はcJ(S TP )cm/cri番
see 拳tynH1)、膜の両側間の差圧および膜の
表面積に比例し、膜厚に反比例することが明らかにされ
ている。また酸素の窒素に対する選択性は高分子物質に
固有の値である酸素の透過係数(PO2)、!:窒素の
透過係数(PNz)との比(PO2/PN2)によって
定まる。したがって実用的な透過速度を得るためにはま
ずPO2の大きな素材を選ぶことが必要であり、そうで
ないと差圧あるいは膜表面積を大きくせねばならず装置
が大型で複雑となってしまう。また十分な酸素濃度を得
るためには、P 02/P N2の大きな高分子を選ば
ねば力らない。さらにはできるだけ大きな透過速度を得
るために膜厚を薄くせねばならず、そのためには素材の
強度が大きくなくてはならない。また長期使用に配える
ために耐久性および高濃度酸素に常時接触するための耐
酸化安定性も要求される。すガわち工業的に実用可能な
酸素富化用の膜素材としては、PO2およびPO2/P
N2が大きくかつ強度、耐久性および酸化安定性にすぐ
れたものが要求される0 ゛ しかしながら既存の高分子物質でこれらの要求を満
たすものはほとんどなく、既存の高分子を改良する試み
も数多くなされているがいずれも十分目的を達するに至
っていない、既存の高分子のPO,およびPO2/PN
2の例を次表に示す0 既存の高分子でPO2が10−9以上のものはごく限ら
れておシ、わずかにポリジメチルシロキサン、ポリ−4
−メチルペンテン−1、天然ゴムなどがある。それ以外
のものはほとんどが1o”’10以下であり、膜面積を
杼めて大きくしない限シこれらの高分子より実用的々透
過速度を有する膜を得ることはでき寿い。PO2が10
−9以上の高分子でもたとえば天然ゴム−主鎖に−C=
C−二重結合を有するために耐久性(特に酸化安定性〕
が悪く、また機械的強度も不十分である。
Currently known polymer materials have more or less gas permeability, but in order to make an industrially practical oxygen enrichment membrane, the permeation rate of acid and non-acid gas must be sufficiently high and the permeability of There must be great selectivity. The gas permeation rate is determined by the permeability coefficient (usually P
It is expressed in units of cJ (S TP )cm/critynH1) and has been shown to be proportional to the differential pressure between both sides of the membrane and the surface area of the membrane, and inversely proportional to the membrane thickness. In addition, the selectivity of oxygen to nitrogen is determined by the oxygen permeability coefficient (PO2), which is a value unique to polymeric substances. : Determined by the ratio (PO2/PN2) to the nitrogen permeability coefficient (PNz). Therefore, in order to obtain a practical permeation rate, it is first necessary to select a material with a high PO2 value; otherwise, the differential pressure or membrane surface area must be increased, resulting in a large and complicated device. In addition, in order to obtain a sufficient oxygen concentration, it is difficult to select a polymer with a large P 02 /P N2 ratio. Furthermore, in order to obtain as high a permeation rate as possible, the film thickness must be made thin, and for this purpose the strength of the material must be high. It also requires durability for long-term use and oxidation-resistant stability due to constant contact with high-concentration oxygen. Industrially practical membrane materials for oxygen enrichment include PO2 and PO2/P.
A material with a large N2 content and excellent strength, durability, and oxidation stability is required.0 However, there are few existing polymer materials that meet these requirements, and many attempts have been made to improve existing polymers. However, none of the existing polymers PO and PO2/PN have fully achieved their purpose.
Examples of 2 are shown in the table below.0 Existing polymers with PO2 of 10-9 or higher are very limited, and only a few polymers such as polydimethylsiloxane and poly-4
-Methylpentene-1, natural rubber, etc. Most of the other polymers have a molecular weight of 1o"'10 or less, and unless the membrane area is increased by increasing the membrane area, it is difficult to obtain a membrane with a practical permeation rate higher than that of these polymers.PO2 is 10" or less.
Even if the polymer has −9 or more, for example, natural rubber has −C= in the main chain.
Durability (especially oxidation stability) due to the presence of C-double bonds
It also has poor mechanical strength.

ポリ−4−メチルペンテン−1はポリオレフィンである
ために強度的には強いが、主知に3級炭素を有するため
に酸化安定性が悪く、工業的な厳しい榮件下(たとえば
温度の高い条件下)での使用に間跪がちる。ポリジメチ
ルシロキサンは現在知られている高分子のなかでは最も
大きな気体透過性を有しているが、強度が弱く20μ以
下の脚を作製することは杉めて困難ソあ、!7.PO2
が太きいにもかかわらず実用的な透過速度を得ることは
できない。充てん剤で補強し架橋すれば強度をある程度
増すことはできるが、これらの処理は製膜性をβ且害し
やはシ薄膜化は困難となる。
Since poly-4-methylpentene-1 is a polyolefin, it is strong, but because it mainly contains tertiary carbon, it has poor oxidation stability and cannot be used under harsh industrial conditions (e.g. high temperature conditions). (below) Polydimethylsiloxane has the highest gas permeability among currently known polymers, but its strength is weak and it is extremely difficult to create legs of less than 20μ! 7. PO2
Although it is thick, it is not possible to obtain a practical permeation rate. Strength can be increased to some extent by reinforcing with a filler and crosslinking, but these treatments impair film formability and make it difficult to form a thin film.

さらにPO2/PN2が少さく酸素の窒素に対する選択
性が悪いという本質的な欠点を有している。このポリジ
メチルシロキサンの大きな気体透過性を生かすため、他
の成分との共重合により強度を改良しようとする試みも
いくつかなされている。たとえば米国特許3.189.
662号にポリジメチルシロキサンとポリカーボネート
とのブロック共重合体が提案されているが、この物質は
ポリカーボネート単位が導入されたために強度はある程
度大きくなっているが、耐溶剤性が低下しポンプの油な
どによって劣化しやすい欠点があるばかりか、ポリジメ
チルシロキサン単独に比べてPO2が低下するという間
眺が生じる。ポリオルガノシロキサンをベースにして他
成分との反応による変性を行い上記欠点を改良しようと
する試みはほかにも多くあるが、いずれも高分子中のシ
ロキサン含量を減少させていくと強度的には向上するも
のの、逆にポリオルガノシロキサンのPO。
Furthermore, it has the essential drawback that the ratio of PO2/PN2 is low and the selectivity of oxygen to nitrogen is poor. In order to take advantage of the high gas permeability of polydimethylsiloxane, several attempts have been made to improve its strength by copolymerizing it with other components. For example, U.S. Patent No. 3.189.
No. 662 proposes a block copolymer of polydimethylsiloxane and polycarbonate, but this material has a certain degree of strength due to the introduction of polycarbonate units, but its solvent resistance decreases and it is difficult to use, such as pump oil. Not only does it have the disadvantage of being easily degraded by polydimethylsiloxane, but it also has the disadvantage of lowering PO2 compared to polydimethylsiloxane alone. There are many other attempts to improve the above drawbacks by modifying polyorganosiloxane as a base by reacting with other components, but in all cases, as the siloxane content in the polymer is reduced, strength is reduced. Although it improves, on the contrary, PO of polyorganosiloxane.

が大きいという特徴が失なわれていくというジレンマが
ある。以上のように既存の高分子およびそれらを変性し
た高分子は前記した諸要求を満たすには至っていない。
The dilemma is that the characteristic of having a large amount of energy is lost. As described above, existing polymers and polymers obtained by modifying them do not meet the above-mentioned requirements.

本発明者らはPO2およびPO□/PN、が大きくしか
も強度、耐久性、耐薬品性、酸化安定性々どの諸性質に
すぐれた酸素富化用膜について鋭意研究を進めた結果、
ポリアミノホスファゼンを構成成分とする膜がこれらの
諸要求を満たすことを見出し本発明に到達したものでち
る。
The present inventors have carried out extensive research into oxygen enrichment membranes that have large PO2 and PO□/PN ratios and have excellent properties such as strength, durability, chemical resistance, and oxidation stability.
It has been discovered that a membrane containing polyaminophosphazene as a constituent satisfies these requirements, and the present invention has been achieved.

本発明の選択性気体透過膜は次の一般式で示すポリホス
ファゼンを構成成分とするものである。
The selective gas permeable membrane of the present invention contains polyphosphazene represented by the following general formula as a constituent component.

式(1)中、XおよびX′はアミン基を表わす。ここで
アミン基とは一般式−NR1R2で示されるもので、R
1およびR2は水素、炭素数が1から10までのアルキ
ル基またはこれらのアルキル基の水素の1つ以上がフッ
素、塩素、臭素などのハロゲン、フェニル基、炭素数が
1から4までのアルコキシ基、ニトロ基、シアン基、炭
素数が1から4までのアルキルアミノ基および炭素数が
1から4までのアルキルアセトキシ基から選ばれる1種
以上の基で置換された置換アルキル基、フェニル基また
はフェニル基の水素の1つ以上がフッ素、塩素、臭素な
どのハロゲン、炭素数が1から20’)でのアルキル基
、炭素数が1から4までのアルコキシ基、フェノキシ基
、フェニル基、ニトロ基、シアン基および炭素数が1か
ら4までのアルキルアミノ基から選ばれる1&以上の基
で置換された置換フェニル基、シアン基、ニトロ基、炭
素数が1から4までのアルキルシアノ基、炭素数が1か
ら4までのアルキルカルバメート基、ピリジニル基およ
びイミダゾリル基から成る群から選ばれた基であること
が好ましく、またR1およびR2は同一でも異なってい
てもよいへ 好適なアミン基の具体例としてはアミン基、メチルアミ
ン基、エチルアミノ基、n−プロピルアミノ基、n−ブ
チルナミノ基、5ec−ブチルアミノ基、n−へキシル
アミノ基、シクロヘキシルアミノ基、オクチルアミノ基
、デシルアミノ基、ジメチルアミノ基、ジエチルアミノ
基、メチルエチルアミノ基、ピペリジノ基などのアルキ
ルアミノ基、ベンジルアミノ基、2−フェニルエチルア
ミノ基、λ2,2−トリフルオロエチルアミン基、2.
2.3.3.4.4.4−ヘプタフルオロブチルアミノ
基、エチルアセトキシアミノ基などの置換アルキルアミ
ノ基、フェニルアミノ基、3−フルオロフェニルアミノ
基、゛4−フルオロフェニルアミノ基、5−クロロフェ
ニルアミノ基、4−クロロフェニルアミノ基、3−メチ
ルフェニルアミノ基、4−メチルフェニルアミノ基、4
−エチルフェニルアミノ基、4− n −7’チルフエ
ニルアミノ基、4−メトキシフェニルアミノ基、パーフ
ルオロフェニルアミノ基、パークロロフェニルアミノ基
、ビフェニルアミノ基などのアリールアミノ基、2−ピ
リジルアミノ基、5−メチル−2−ピリジルアミノ基な
どのピリジルアミノ基、イミグリル基、メチルカルバゼ
ート基、エチルカルバゼート基などのアルキルカルバゼ
ート基、メチルヒドラジン、エチルヒドラジンなどから
銹導されるアミン基、シアナミド基、ジシアナミド基な
どのシアノ基含有アミノ基およびニトロ基含有アミノ基
などがあけられる。
In formula (1), X and X' represent an amine group. Here, the amine group is represented by the general formula -NR1R2, and R
1 and R2 are hydrogen, an alkyl group having 1 to 10 carbon atoms, or one or more of the hydrogens in these alkyl groups is a halogen such as fluorine, chlorine, or bromine, a phenyl group, or an alkoxy group having 1 to 4 carbon atoms. , a nitro group, a cyan group, a substituted alkyl group substituted with one or more groups selected from an alkylamino group having 1 to 4 carbon atoms, and an alkyl acetoxy group having 1 to 4 carbon atoms, a phenyl group, or a phenyl group. One or more of the hydrogens in the group is a halogen such as fluorine, chlorine, or bromine, an alkyl group with 1 to 20 carbon atoms, an alkoxy group with 1 to 4 carbon atoms, a phenoxy group, a phenyl group, a nitro group, A substituted phenyl group substituted with one or more groups selected from a cyan group and an alkylamino group having 1 to 4 carbon atoms, a cyan group, a nitro group, an alkylcyano group having 1 to 4 carbon atoms, Preferably, it is a group selected from the group consisting of 1 to 4 alkyl carbamate groups, pyridinyl groups, and imidazolyl groups, and R1 and R2 may be the same or different. Specific examples of suitable amine groups include: Amine group, methylamine group, ethylamino group, n-propylamino group, n-butylnamino group, 5ec-butylamino group, n-hexylamino group, cyclohexylamino group, octylamino group, decylamino group, dimethylamino group, diethylamino group group, alkylamino groups such as methylethylamino group and piperidino group, benzylamino group, 2-phenylethylamino group, λ2,2-trifluoroethylamine group, 2.
2.3.3.4.4.4-Heptafluorobutylamino group, substituted alkylamino group such as ethylacetoxyamino group, phenylamino group, 3-fluorophenylamino group, 4-fluorophenylamino group, 5- Chlorophenylamino group, 4-chlorophenylamino group, 3-methylphenylamino group, 4-methylphenylamino group, 4
-arylamino groups such as -ethylphenylamino group, 4-n-7'tylphenylamino group, 4-methoxyphenylamino group, perfluorophenylamino group, perchlorophenylamino group, biphenylamino group, 2-pyridylamino group, Pyridylamino groups such as 5-methyl-2-pyridylamino groups, alkyl carbazate groups such as imiglyl groups, methyl carbazate groups, and ethyl carbazate groups, amine groups derived from methyl hydrazine, ethyl hydrazine, etc., and cyanamide. group, a cyano group-containing amino group such as a dicyanamide group, and a nitro group-containing amino group.

式(1)中のnは20から70,000までの整数であ
広通常はゴム状または可とり性のある固体である。nが
20より小さい場合は強度か弱すぎて膜としての実用的
な強度が得られず好ましくない。またnが70,000
よ汐大きい場合は分子量が太きすぎて製造が困難である
とともに、製膜用溶液の粘度が大きすぎて製膜が困難と
なり好ましく々いっなおnが20よシ大きいときでも置
換基の種類によっては油状の液体と々る場合があるが、
これらを1部含むポリホスファゼンも当然使用できるし
、また液状ポリマーを他の多孔質に合理して得た膜を使
用することもできる。
In formula (1), n is an integer ranging from 20 to 70,000 and is generally a rubbery or flexible solid. If n is less than 20, the strength is too weak to provide a practical strength as a film, which is undesirable. Also, n is 70,000
If n is larger than 20, the molecular weight will be too thick and production will be difficult, and the viscosity of the film-forming solution will be too high, making it difficult to form a film. may come out as an oily liquid,
Of course, polyphosphazenes containing a portion of these can also be used, and membranes obtained by rationalizing liquid polymers into other porous structures can also be used.

本発明のポリホスファゼンは公知の方法によって製造す
ることができる(たとえばA11cockら、Inor
g、 Chem、。
The polyphosphazenes of the present invention can be produced by known methods (for example, A11cock et al., Inor
g, Chem.

Σ、1716(1966))oたとえばヘキサクロロシ
クロトリホスファゼン、オクタクロロシクロテトラホス
ファゼンなどの環状クロロホスファゼンあるいは線状低
分子量クロロホスファゼンを水を十分に排除した系で触
媒下あるいは無触媒下に加熱重合することにより得られ
るポリジクロロホスファゼンと、対応するアミンとの反
応によシ合成される。またポリジクロロホスファゼンと
対応するアミンをトリエチルアミンなどの3級アミンの
存在下に加熱することによっても合成されるっ 対応するアミンを1種類用いる場合には、  CNPX
2−)nで表わされるホモポリマーとなり、2種類用い
る場合にはの381の反復単位がランク“ムに分布した
コポリマーとなる。
Σ, 1716 (1966)) For example, cyclic chlorophosphazenes such as hexachlorocyclotriphosphazene and octachlorocyclotetraphosphazene or linear low-molecular-weight chlorophosphazenes are thermally polymerized with or without a catalyst in a system from which water has been sufficiently excluded. It is synthesized by reacting polydichlorophosphazene obtained by this method with the corresponding amine. It can also be synthesized by heating polydichlorophosphazene and the corresponding amine in the presence of a tertiary amine such as triethylamine.When using one type of corresponding amine, CNPX
2-) It becomes a homopolymer represented by n, and when two types are used, it becomes a copolymer in which 381 repeating units are distributed in ranks.

また3種類以上用いる場合には、これらの3種以上の置
換基がポリマー中にランダムに分布したコポリマーとガ
る。
When three or more kinds of substituents are used, the polymer is a copolymer in which these three or more kinds of substituents are randomly distributed in the polymer.

本発明において用いられるポリホスファゼンは、単一の
置換基からなるホモポリマーであっても、2種以上の置
換基を有するコポリマーであってもよい0本発明のポリ
ホスファゼンはパーオキサイド、硫黄などによって架橋
できるようにするために、置換基XおよびX′の一部が
アリルアルコキシ基やアリルフェノキシ基などの架橋可
能な基で置換されていてもよく、またポリジクロロボス
ファゼンの塩素原子を全量アミン基で置換せず、少量架
橋用などの目的で残しておいてもよい。轟然のことなが
ら、これらのポリマーも本発明でいうポリアミノホスフ
ァゼンに包含される。
The polyphosphazene used in the present invention may be a homopolymer consisting of a single substituent or a copolymer having two or more substituents. In order to enable crosslinking, some of the substituents X and X' may be substituted with a crosslinkable group such as an allyl alkoxy group or an allyl phenoxy group. A small amount may be left for purposes such as crosslinking without being substituted with an amine group. Needless to say, these polymers are also included in the polyaminophosphazene referred to in the present invention.

本発明のポリアミノホスファゼンを構成成分とする気体
分離用選択性透過膜は、気体の透過速度が大きくかつ選
択性がすぐれているという大きな特徴をもつ。たとえば
空気からの酸素富化を例にとるならばPO2が10−9
オーダーの大きな値を有する。しかもPO2/PN2の
値は5部5以上と著しく太きい。また本発明の気体分離
膜の素材であるポリアミノホスファゼンは、アミン基の
種類あるいは割合によってゴム状からプラスチック状ま
で様々に変化しうるが、そのいずれもが耐溶剤性、耐熱
性、耐酸化安定性の良い高分子でおる。したがってポン
プの油による膜性能の劣化、温度の窩い条件下での使用
における劣化あるいは高濃度酸素に常時接触することに
よる膜の酸化劣化などの問題がなく、これも本発明の大
きな特徴である。さらに本発明のポリアミノホスファゼ
ンはフィルム形成能がすぐれておシ、このことはポリア
ミノホスファゼンを分離膜として用いるときの大きなメ
リットとなる。
The selectively permeable membrane for gas separation comprising polyaminophosphazene as a constituent component of the present invention has significant characteristics of high gas permeation rate and excellent selectivity. For example, if we take the enrichment of oxygen from the air, PO2 is 10-9
Having a large value of order. Furthermore, the value of PO2/PN2 is extremely large, at 5 parts or more. In addition, polyaminophosphazene, which is the material of the gas separation membrane of the present invention, can vary from rubber-like to plastic-like depending on the type or proportion of amine groups, but all of them have good solvent resistance, heat resistance, and oxidation resistance stability. Made of high quality polymer. Therefore, there are no problems such as deterioration of membrane performance due to pump oil, deterioration due to use under low temperature conditions, or oxidative deterioration of the membrane due to constant contact with high concentration oxygen, which is also a major feature of the present invention. . Furthermore, the polyaminophosphazene of the present invention has excellent film-forming ability, which is a great advantage when using the polyaminophosphazene as a separation membrane.

以上のようなすぐれた特徴を有する本発明のポリホスフ
ァゼンを構成成分とする気体分離膜は当分野で既知の製
膜法、たとえばキャスティング法によシ容易に製膜でき
る。
The gas separation membrane containing the polyphosphazene of the present invention having the excellent characteristics described above can be easily formed by a film forming method known in the art, such as a casting method.

溶媒への溶解性は置換基の種類により異寿るので、それ
ぞれのポリホスファゼンに適した溶媒を用いてキャステ
ィング溶液を調製し、ガラス板などの上に流延し乾燥し
て溶媒を除去すれば均質膜が得られる。
The solubility in solvents varies depending on the type of substituent, so if you prepare a casting solution using a solvent suitable for each polyphosphazene, cast it on a glass plate, etc., and dry it to remove the solvent. A homogeneous membrane is obtained.

キャスティング用溶液の濃度は0.5〜50チが適当で
、好ましくは1〜20チであシ、これらの濃度の溶液よ
り0.01μから200pの膜厚のものが得られる。太
き力気体透過量を得る目的のためには膜)r¥は薄い方
が良く、その章味では0.05μから60μまでの膜厚
が好ましい。疎水性溶媒を用いた溶液を水面上に#[t
iQL溶媒を蒸発させたのち、有機あるいは無機の多孔
質支持体上にすくいとる当業界公知の方法を用いれは1
μ以下の薄膜を得ることができる。本発明の膜は均質膜
としてそのまま用いることもできるし、酢酸セルロース
、ポリアミド、ポリカーボネート、ポリスルホン、ポリ
エーテルスルホン、ポリオレフィンなどの高分子多孔質
支持体およびガラス、アルミナのような無機物の多孔性
支持体、織布あるいは不織布などの上にのせて複合化し
、膜強度を増した形でも使用できる。また本発明の膜は
平膜、管状膜、中空糸などのいかなる形態でも性能を発
揮しうる。本発明のポリホスファゼン系の膜は単独で使
用してその%徴を発揮しうるが、他の高分子、たとえば
ポリオレフィンあるいはポリオルガノシロキサンなどと
混合して得られるブレンドポリマーよシ製膜した膜とし
ても使用することができる。
The concentration of the casting solution is suitably 0.5 to 50 mm, preferably 1 to 20 mm, and solutions with these concentrations yield films with a thickness of 0.01 to 200 μm. For the purpose of obtaining a large amount of gas permeation, the thinner the membrane (r) is, the better, and in this case, a film thickness of 0.05μ to 60μ is preferable. #[t
After the iQL solvent is evaporated, it is scooped onto an organic or inorganic porous support using methods known in the art.
A thin film of μ or less can be obtained. The membrane of the present invention can be used as it is as a homogeneous membrane, or can be used on polymeric porous supports such as cellulose acetate, polyamide, polycarbonate, polysulfone, polyethersulfone, and polyolefin, and inorganic porous supports such as glass and alumina. It can also be used in a composite form by placing it on a woven or non-woven fabric to increase the strength of the membrane. Furthermore, the membrane of the present invention can exhibit its performance in any form such as a flat membrane, a tubular membrane, or a hollow fiber. The polyphosphazene-based membrane of the present invention can be used alone to exhibit its characteristics, but it can also be used as a membrane formed from a blend polymer obtained by mixing it with other polymers, such as polyolefin or polyorganosiloxane. can also be used.

以上説明してきたように本発明のポリアミノボスファゼ
ンを構成成分とする気体分離用選択性透過膜は酸素富化
膜として大きなpo2およびP O,/P N、を有し
、がっ強度、耐溶剤性、耐熱性および耐酸化安定性の大
きい画期的な膜であり、医療用、工業用および家庭用の
各種燃焼システムなどに用いられる。また本発明の膜は
空気からの酸素富化用のみならず、水素、−m化炭素、
二酸化炭素、ヘリウム、アルゴン、硫化水素、アンモニ
アあるいはメタン、エタン、プロパン、ブタン、エチレ
ン、プロピレン、ブテン類のような低級炭化水素などの
各種ガスの混合物の分離にも用いることができる。
As explained above, the selective permeable membrane for gas separation containing polyaminobosphazene as a constituent component of the present invention has large po2 and P O,/P N as an oxygen-enriching membrane, and has high strength and durability. This is a revolutionary membrane with excellent solvent resistance, heat resistance, and oxidation resistance, and is used in various medical, industrial, and domestic combustion systems. In addition, the membrane of the present invention is not only used for enriching oxygen from air, but also for hydrogen, -m-carbon,
It can also be used to separate mixtures of various gases such as carbon dioxide, helium, argon, hydrogen sulfide, ammonia or lower hydrocarbons such as methane, ethane, propane, butane, ethylene, propylene and butenes.

以下に実施例により本発明を具体的に説明するが本発明
はこれらに制促されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these examples.

実施例 1 ヘキサクロロシクロトリフアゼンをガラスアンプル中、
真空下に250℃で24時間加熱し重合させた。得られ
たポリジクロロホスファゼンのベンゼン溶液をジメチル
アミンのベンゼン溶液に4時間かけて温度を5℃以下に
保ちながら滴下し、さらに25℃で24時間反応を続け
、ポリとスジメチルアミノホスファゼンを合成した。未
反応アミン、ジメチルアミン塩酸塩、低分子景オリゴマ
ーを除去し絹製したポリマーについて光散乱法にょシ測
定した平均分子量は780.000で、平均重合度(式
(1)のn)は5800であった。次にこのポリマーの
2%トリフルオロエタノール溶液を調製し、ポリプロピ
レン製多孔膜(厚さ25μ、空孔率45%、ポリプラス
チックス社のジュラガード2,500 )上に塗布して
一昼夜宇温で乾燥し複合膜を得た。この複合膜をガス透
過率測定用に作ルしたセルにセットして1次側に3Kp
/−yの空気を流し、膜を透過してくる大気圧の酸素富
化空気の流量および組成測定したところ次の値が得られ
た。
Example 1 Hexachlorocyclotriphazene in a glass ampoule,
Polymerization was carried out by heating at 250° C. for 24 hours under vacuum. The obtained benzene solution of polydichlorophosphazene was added dropwise to a benzene solution of dimethylamine over 4 hours while keeping the temperature below 5°C, and the reaction was continued at 25°C for another 24 hours to synthesize poly and dimethylaminophosphazene. . After removing unreacted amine, dimethylamine hydrochloride, and low-molecular-weight oligomers, the polymer made from silk had an average molecular weight of 780.000, measured using a light scattering method, and an average degree of polymerization (n in formula (1)) of 5800. there were. Next, a 2% trifluoroethanol solution of this polymer was prepared, coated on a polypropylene porous membrane (thickness 25μ, porosity 45%, Polyplastics' Duraguard 2,500) and left at Utemp overnight. A composite membrane was obtained by drying. This composite membrane was set in a cell made for gas permeability measurement, and the primary side was 3Kp.
/-y air was passed through the membrane, and the flow rate and composition of atmospheric pressure oxygen-enriched air passing through the membrane were measured, and the following values were obtained.

との結果はポリビスジメチルアミノホスファゼンの膜が
良好な酸素富化性能を有することを示している。
The results show that the polybisdimethylaminophosphazene membrane has good oxygen enrichment performance.

実施例 2 実施例1と同様にして合成したポリジクロロホスファゼ
ンのベンゼン溶液をアニリンのテトラヒドロフラン溶液
に室温で4時間かけて滴下したのち、さらにリフラック
ス温度で48時間反応を続け、ポリビスフェニルアミノ
ホスファゼンを合成した。未反応アニリン、アニリン塩
酸塩、低分子量オリゴマーを除去し精製したポリマーに
ついて、光散乱法によシ測定した平均分子量は1.72
0.000であり、平均重合度(式(1)のn)は75
00であった。このポリマーの2多ベンゼン溶液を調製
し、実施例1と同様にしてジュラガード2500上に膜
を作製し複合膜とし、酸素および窒素の透過速度を測定
し次の値を得た。
Example 2 A benzene solution of polydichlorophosphazene synthesized in the same manner as in Example 1 was added dropwise to a tetrahydrofuran solution of aniline at room temperature over 4 hours, and the reaction was continued for 48 hours at the reflux temperature to produce polybisphenylaminophosphazene. was synthesized. The average molecular weight of the polymer purified by removing unreacted aniline, aniline hydrochloride, and low molecular weight oligomers was 1.72 as measured by light scattering method.
0.000, and the average degree of polymerization (n in formula (1)) is 75
It was 00. A dibenzene solution of this polymer was prepared, and a membrane was fabricated on Duragard 2500 to form a composite membrane in the same manner as in Example 1. The oxygen and nitrogen permeation rates were measured and the following values were obtained.

この結果はポリビスフェニルアミノホスファゼン膜がす
ぐれた酸素富化性能を有することを示している。
This result shows that the polybisphenylaminophosphazene membrane has excellent oxygen enrichment performance.

実施例 3 実施例1と同様の方法で合成したポリジクロロポス7ア
ゼンのテトラヒドロフラン溶液をジエチルアミンのテト
ラヒドロフラン溶液に室温で2時間かけて滴下し、さら
に室温で2日間反応を続けた。得られたポリマーを十分
精製し元素分析によシ組成を求めたところ原料のポリジ
クロロホスファゼンの塩素原子の50%がジエチルアミ
ノ基で置換され、残り50%の塩素が未置換で残ってい
る構造であることが確認された。次にとのポリマーのテ
トラヒドロフラン溶液をn−ブチルアミンのテトラヒド
ロフラン溶液に室温で2時間かけて滴下したのち室温で
2日間反応を続け、ジエチルアミノ基とn−ブチルアミ
ノ基が等量ずつ導入されたn−ブチルアミノジエチルア
ミノホスファゼンコポリマーを合成した。未反応アミン
、n−ブチルアミン塩酸塩および低分子量オリゴマーを
除去したポリマーの平均分子量は170,000で、平
均重合度は890であった。
Example 3 A tetrahydrofuran solution of polydichloropos-7azene synthesized in the same manner as in Example 1 was added dropwise to a tetrahydrofuran solution of diethylamine over 2 hours at room temperature, and the reaction was further continued at room temperature for 2 days. The obtained polymer was thoroughly purified and its composition was determined by elemental analysis. It was found that 50% of the chlorine atoms in the raw material polydichlorophosphazene were substituted with diethylamino groups, and the remaining 50% of chlorine remained unsubstituted. It was confirmed that there is. Next, the tetrahydrofuran solution of the polymer was added dropwise to the tetrahydrofuran solution of n-butylamine over 2 hours at room temperature, and the reaction was continued at room temperature for 2 days to introduce equal amounts of diethylamino groups and n-butylamino groups. A butylaminodiethylaminophosphazene copolymer was synthesized. The average molecular weight of the polymer from which unreacted amine, n-butylamine hydrochloride and low molecular weight oligomers were removed was 170,000, and the average degree of polymerization was 890.

次にこのポリマーの2%ベンゼン溶液を調製し、容当に
保持された清浄な5℃の水面上にマイクロピペットで1
滴滴下し、水面上に薄膜を形成させた。
A 2% solution of this polymer in benzene was then prepared and micropipetted onto the surface of clean 5°C water maintained for 1 hour.
It was added dropwise to form a thin film on the water surface.

次にジュラガード2500膜を押しつけて薄膜を慎重に
すくい取ダ槍合膜を得たつこの月シについて実施例1と
同様にして酸素および窒素の透過速度を測定し、次の値
を得た。
Next, a Duraguard 2500 membrane was pressed onto the membrane, and the thin membrane was carefully scooped out to obtain a composite membrane.The oxygen and nitrogen permeation rates were measured in the same manner as in Example 1, and the following values were obtained.

この結果はn−ブチルアミノジエチルアミノホスファゼ
ンコポリマーの膜がすぐれた酸素富化性能を有すること
を示している。
This result shows that the n-butylaminodiethylaminophosphazene copolymer membrane has excellent oxygen enrichment performance.

実施例 4 実施例1と同様にして合成したポリジクロロホスファゼ
ンのトルエン溶液に反応促進のためにトリエチルアミン
を加え、この溶液に2−アミノ−4−ピコリンのテトラ
ヒドロフラン溶液を室温・で4時間かけて滴下したのち
、す7うソクス温度で5日間反応を続けて2−アミノ−
4−ピコリンで慟換されたポリホスファゼンを合成した
。次に未反応アミン、トリエチルアミン、これらアミン
の塩酸塩および低分子量物を除いて精製したポリマーの
10%ジオキサン溶液を調製し、ガラス板上にドクター
ブレードナイフを用いて厚さ0.3朝に流延し、−昼夜
室温で風乾して透明で強じんな庸さ20μの均質膜を得
た。この膜を用いて実施例1と同様にして膜を透過して
くる空気の流量および組成を測定してPO2およびPN
2を求めたところ次の結果が得られた。
Example 4 Triethylamine was added to a toluene solution of polydichlorophosphazene synthesized in the same manner as in Example 1 to promote the reaction, and a tetrahydrofuran solution of 2-amino-4-picoline was added dropwise to this solution over 4 hours at room temperature. After that, the reaction was continued for 5 days at 70°C temperature to produce 2-amino-
A polyphosphazene substituted with 4-picoline was synthesized. Next, a 10% dioxane solution of the purified polymer was prepared by removing unreacted amine, triethylamine, the hydrochloride of these amines, and low molecular weight substances, and poured onto a glass plate to a thickness of 0.3 mm using a doctor blade knife. The mixture was spread and air-dried day and night at room temperature to obtain a transparent, strong, homogeneous film with a thickness of 20 μm. Using this membrane, the flow rate and composition of air passing through the membrane were measured in the same manner as in Example 1, and PO2 and PN were measured.
2 was obtained and the following result was obtained.

この結果は本実施例のホリアミノホスファゼンがすぐれ
た酸素富化性能を有することを示している。
This result shows that the polyaminophosphazene of this example has excellent oxygen enrichment performance.

実施例3で作製した膜を実施例1の装置にセットし、膜
の1次側に2 Kg /crux ?の圧力で炭量゛ガ
スと窒素の混合ガスを流してPco2/PN2を求めた
ところ243の値が得られた。また同様にしてヘリウム
と仝素の混合ガスの分離性能を調べたところp a e
 / P N2は 137の値が得られた。
The membrane prepared in Example 3 was set in the apparatus of Example 1, and 2 Kg/crux was applied to the primary side of the membrane. When Pco2/PN2 was determined by flowing a mixed gas of coal amount gas and nitrogen at a pressure of 243, a value of 243 was obtained. In addition, when the separation performance of a mixed gas of helium and nitrogen was investigated in the same way, p a e
A value of 137 was obtained for /P N2.

次に比較のためビス−2,4−ジクロロベンゾイルパー
オキサイドで架橋したシリコーンゴム(ポリジメチルシ
ロキサン)の30μの膜を作成しPCO2/PN2およ
びPHe/PN2の値を測定したところそれぞれ65お
よび12の値が得られた。この結果はポリエトキシホス
ファゼン膜がシリコーンゴムに比較してはるかにすぐれ
た分離能を有することを示している。
Next, for comparison, a 30μ film of silicone rubber (polydimethylsiloxane) crosslinked with bis-2,4-dichlorobenzoyl peroxide was prepared, and the values of PCO2/PN2 and PHe/PN2 were measured, and the values were 65 and 12, respectively. value was obtained. This result shows that the polyethoxyphosphazene membrane has far superior separation ability compared to silicone rubber.

手続補正書 昭帽158年5月12日 特許庁長官 若 杉 和 夫 殿 1事件の表示 昭和58年特許願第55249号 2、発明の名称 気体分離用選択性透過膜 3補正をする者 事件との関係  特許出願人 名称 (444)  日本石油株式会社赤坂大成ビル(
電話582−7161)明細書の発明の詳細な説明の桐 6、補正の内各
May 12, 158 May 12, 158 Kazuo Wakasugi, Commissioner of the Patent Office Display of the case 1982 Patent Application No. 55249 2 Name of the invention Selective permeable membrane for gas separation 3 Case of the person making the amendment Relationship Patent applicant name (444) Nippon Oil Co., Ltd. Akasaka Taisei Building (
Telephone 582-7161) Kiri 6 of the detailed description of the invention in the specification, each of the amendments

Claims (1)

【特許請求の範囲】 1、一般式; %式%) (式中、XおよびX′はアミノ基を表わし、nは20〜
70.000である) で示されるポリホスファゼンを構成成分とする気体分離
用選択性透過膜。
[Claims] 1. General formula; % formula %) (In the formula, X and X' represent an amino group, and n is 20 to
70.000) A selectively permeable membrane for gas separation comprising polyphosphazene as a constituent component.
JP5524983A 1983-03-11 1983-04-01 Permselective membrane for separation of gas Pending JPS59183803A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5524983A JPS59183803A (en) 1983-04-01 1983-04-01 Permselective membrane for separation of gas
FR8403718A FR2542211A1 (en) 1983-03-11 1984-03-09 SELECTIVE PERMEABLE MEMBRANE FOR GAS SEPARATIONS
GB08406178A GB2139237A (en) 1983-03-11 1984-03-09 Selective permeable membrane for gas separation
DE19843408996 DE3408996A1 (en) 1983-03-11 1984-03-12 SELECTIVE PERMEABLE MEMBRANE SUITABLE FOR GAS SEPARATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5524983A JPS59183803A (en) 1983-04-01 1983-04-01 Permselective membrane for separation of gas

Publications (1)

Publication Number Publication Date
JPS59183803A true JPS59183803A (en) 1984-10-19

Family

ID=12993317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5524983A Pending JPS59183803A (en) 1983-03-11 1983-04-01 Permselective membrane for separation of gas

Country Status (1)

Country Link
JP (1) JPS59183803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310713A (en) * 1988-06-08 1989-12-14 Komatsu Ltd Gas separation membrane and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310713A (en) * 1988-06-08 1989-12-14 Komatsu Ltd Gas separation membrane and its preparation

Similar Documents

Publication Publication Date Title
US4717394A (en) Polyimide gas separation membranes
Okamoto et al. Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane
US7018445B2 (en) Polyimide blends for gas separation membranes
Tanaka et al. Gas permeability and permselectivity in polyimides based on 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride
Hayashi et al. Simultaneous improvement of permeance and permselectivity of 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride-4, 4'-oxydianiline polyimide membrane by carbonization
US5112941A (en) Aromatic polymide separation membrane
Islam et al. Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides
RU2705342C2 (en) Method of producing thermally regrouped pbx, thermally regrouped pbx and membrane containing thereof
EP0094050A2 (en) Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture
JPH07132216A (en) Separation film for fluorinated aromatic polyimide, polyamide and polyamide-imide gas
CA2385947A1 (en) Chemical modification of polyimides
US5076817A (en) Polyamide gas separation membranes and process of using same
CA2027021A1 (en) Surfactant treatment of aromatic polyimide gas separation membranes
US5061298A (en) Gas separating membranes formed from blends of polyimide polymers
CA1294093C (en) Polyphosphazene fluid separation membranes
CN106794430A (en) Carbon molecular sieve (CMS) hollow-fibre membrane and its preparation for starting from pre-oxidation polyimides
JPS60156505A (en) Polyphosphazen gas separating film
JPH01194905A (en) Separation membrane of polyimide
JPH057052B2 (en)
CN113845659A (en) Network type polyimide resin with flexible side chain, preparation method thereof and application in gas separation
JPS59183803A (en) Permselective membrane for separation of gas
GB2139237A (en) Selective permeable membrane for gas separation
FR2561538A1 (en) MEMBRANE FOR THE SELECTIVE SEPARATION OF GAS
JPS59166209A (en) Selective permeable membrane for separating gas
JPS59183802A (en) Permselective membrane for separation of gas